Границы всхожести семян фитомелиорантов в присутствии токсичных концентраций тяжелых металлов

Обложка

Цитировать

Полный текст

Аннотация

Цель исследования заключается в проведении биологического тестирования на начальных стадиях жизнеспособности растительных объектов в модельных условиях загрязнения тяжелыми металлами. В статье представлены результаты лабораторных опытов по оценке влияния различных концентраций солей тяжелых металлов на жизнеспособность семян донника желтого и люцерны посевной. Проведенными экспериментальными исследованиями установлена прямая зависимость уменьшения показателей энергии прорастания и лабораторной всхожести семян при повышении концентрации солей фитотоксикантов, определены критическая (пороговая) концентрация изучаемых элементов и содержание металла, при котором процессы роста и развития семян сохраняются. Оптимальной для всхожести семян донника является концентрация 0,01% по кадмию, цинку, свинцу и меди, где всхожесть составила 80%, 74%, 69% и 64% соответственно. Для семян люцерны высокие показатели всхожести отмечены в 0,01% загрязнении свинцом, цинком, кадмием и медью - 82%, 80%, 77% и 76% соответственно, а также в 0,1% растворе соли свинца, меди и цинка зафиксировано 75%, 74% и 72% проростков. Цинк в концентрации 0,01% на начальных этапах всхожести семян фитомелиорантов оказывал стимулирование энергии прорастания. Отмечена тенденция устойчивости к загрязнению свинцом, цинком и медью у всходов люцерны посевной, к загрязнению кадмием наибольшую устойчивость проявил донник желтый. Определение границ всхожести семян бобовых растений в присутствии токсичных агентов позволит проводить научные разработки по биологической рекультивации загрязненных почв и может быть использовано на техногенно-нарушенных территориях.

Полный текст

Введение

Загрязнение природной среды сегодня является острой экологической проблемой. В последние десятилетия в связи с быстрым развитием промышленности во всем мире наблюдается значительное возрастание содержания тяжелых металлов в окружающей среде и продуктах питания [1–5].

В результате хозяйственной деятельности человека тяжелые металлы поступают в окружающую среду в количествах, сопоставимых с количествами металлов, участвующих в природных процессах круговорота, что приводит к ее загрязнению. Земли, включенные в сельскохозяйственный оборот, с каждым годом становятся все более истощенными и экологически уязвимыми [6–11].

Проблема деградации техногенно-нарушенных почв вследствие загрязнения тяжелыми металлами является особенно актуальной. Для устойчивого развития аграрного производства необходимы биометоды и биотехнологии, которые без вреда для растительного и животного мира, в том числе для человека являются безопасными, способствуют повышению качества и количества готовой продукции [12–15].

Возделывание растений-фитомелиорантов, в частности донника желтого и люцерны посевной, способствует очищению почвы, улучшению химических и физических свойств, повышению ее плодородия.

Проведение модельных исследований по влиянию различных доз и видов тяжелых металлов на растительные объекты позволит решить следующие задачи: установить границы разной устойчивости растений и тенденции приспособления к токсикантам, выявить влияние конкретного металла, выяснить летальные дозы, а также концентрации при которых сохраняется жизнеспособность тест-объектов.

Целью исследований явилось изучение возможности жизнеспособности семян фитомелиорантов в модельных условиях загрязнения тяжелыми металлами.

Объекты исследований

В качестве тест-объектов были выбраны семена фитомелиорантов – донника желтого (Melilotus officinalis) и люцерны посевной (Medicago sativa).

Материалы и методика исследований

Эксперимент проводился в лабораторных условиях, семена проращивали в чашках Петри на слое фильтровальной бумаги, смоченной водным раствором соли тяжелых металлов. В качестве токсиканта использовали растворы нитрата свинца, сульфата меди, нитрата кадмия и сульфата цинка следующих концентраций: 0,01%; 0,1%; 0,3%; 0,5%; 1%; 3%; 5% и 6% по каждому металлу в отдельности. В контрольном варианте семена смачивались только дистиллированной водой. Проращивание осуществлялось в соответствии с ГОСТ 12038–84. Семена сельскохозяйственных культур. Методы определения всхожести: энергию прорастания семян определяли на 4-е сутки проращивания; лабораторную всхожесть у семян люцерны – на 7-е сутки, у донника – на 10-е сутки.

Результаты исследований и их обсуждение

При оценке влияния модельного загрязнения среды на жизнеспособность семян донника желтого и люцерны посевной, представленной на рисунках 1–4, выявлены следующие закономерности: отмечено снижение показателей прорастания семян при повышении концентрации раствора солей свинца, меди, кадмия во всех исследуемых вариантах; наблюдалось некоторое увеличение энергии прорастания семян тестируемых культур при 0,01% концентрации соли цинка, однако для всхожести семян данная тенденция не характерна и наблюдается ингибирующее действие уже при минимальной концентрации раствора.

Признаки угнетения энергии прорастания семян донника по отношению к контролю (рис. 1) наблюдались уже при минимальной 0,01% концентрации кадмия, меди и свинца, разница между контрольным вариантом и моделируемым 0,01% образцом составила 8%, 18% и 63% соответственно. При загрязнении среды солью цинка в концентрации 0,01% отмечалось незначительное стимулирование энергии прорастания, что составило 52% всхожих семян при 49% в контрольном варианте.

Каждое последующее увеличение концентрации тяжелых металлов приводило к снижению процесса прорастания семян донника.

 

Рисунок 1 – Результаты определения энергии прорастания семян донника желтого в зависимости от концентрации фитотоксиканта, %

 

Рисунок 2 – Результаты определения всхожести семян донника желтого в зависимости от концентрации фитотоксиканта, %

 

Рисунок 3 – Результаты определения энергии прорастания семян люцерны посевной в зависимости от концентрации фитотоксиканта, %

 

Рисунок 4 – Результаты определения всхожести семян люцерны в зависимости от концентрации фитотоксиканта, %

 

При определении всхожести семян донника (рис. 2) можно отметить следующее: с увеличением концентрации раствора солей тяжелых металлов от 0,01% → 0,1% → 0,3% → 0,5% → 1% показатели всхожести значительно снижаются в отличие от контрольного варианта, наименьшее ингибирование прорастания наблюдалось по цинку 74% проросших семян – в варианте 0,01% раствора соли; 54% семян – при 0,1% концентрации; 41% семян – при 0,3% содержании; 17% семян – в среде 0,5% раствора соли и 4% семян – при 1% концентрации элемента. При загрязнении среды медью лабораторная всхожесть семян снизилась на 22–31% в 0,01% и 0,1% растворе соли соответственно, далее с повышением концентрации наблюдалось резкое сокращение количества проростков: 6% проросших семян в 0,3% концентрации раствора, 4% семян – в 0,5% концентрации и 2% семян – в 1% концентрации. В модельном варианте с кадмием и свинцом критической для прорастания стала концентрация 0,5% раствора соли, при которой сохраняют жизнеспособность 6% и 3% всхожих семян соответственно. В концентрациях 0,01%, 0,1% и 0,3% кадмия отклонения от контроля составили 1,2–2,3–5,2 раза; по свинцу 1,2–5–11,9 раз соответственно.

Наиболее сильное угнетение энергии прорастания и всхожести семян донника характерно при загрязнении среды солью свинца.

Угнетающее действие элементов на процесс прорастания семян донника в порядке убывания можно выразить в следующей последовательности: свинец > кадмий > медь > цинк.

По результатам исследований влияния солей тяжелых металлов на процессы прорастания семян люцерны (рис. 3) отмечено ингибирование энергии прорастания: при 0,01% концентрации меди количество проростков снизилось на 3%; в варианте с кадмием – на 10%; при загрязнении свинцом – на 54%; цинк в данной концентрации стимулировал рост семян на 2%. С увеличением концентрации раствора солей токсикантов наблюдалось снижение энергии прорастания семян.

Лабораторная всхожесть семян (рис. 4) была ниже контроля во всех моделируемых вариантах. Снижение всхожести семян люцерны было наиболее сильным в варианте с кадмием, где проросло наименьшее количество семян 77% проростков – в 0,01% концентрации раствора, 43% семян – в 0,1% содержании и 2% семян – в 0,3% дозе металла, которая стала критической.

В модельном образце с медью и цинком критической установлена концентрация 1% раствора соли, где жизнеспособность сохранили 4% и 8% семян соответственно; для свинца порогом выживаемости семян стало 3% содержание элемента, в котором отмечено 6% проростков.

Ингибирование прорастания семян люцерны тяжелыми металлами в порядке убывания можно выразить в следующей закономерности: кадмий > медь > цинк > свинец.

Семена донника и люцерны по-разному реагируют на токсичность элементов и их концентраций. В целом донник желтый наиболее чувствителен к загрязненной среде, чем люцерна посевная: снижение показателей всхожести зафиксировано в опыте с медью, свинцом и цинком. Для донника устойчивость в сравнении с люцерной прослеживалась лишь по отношению к кадмию: 6% всхожих семян в 0,5% концентрации, которая для люцерны стала летальной и 19% проростков донника в соотношении с 2% люцерны в 0,3% загрязнении среды. Напротив, для люцерны характерны благоприятные показатели всхожести семян к свинцовому загрязнению, даже при высоких концентрациях: 6% всхожих семян в 3% загрязнении среды, что по доннику составило лишь 3% в 0,5% растворе соли.

Полное ингибирование всхожести наблюдается при следующих концентрациях тяжелых металлов: для семян донника – 1% и выше соли свинца и кадмия, 3% и выше соли меди и цинка; для семян люцерны 0,5% и выше – соли кадмия, 3% и выше – соли меди и цинка; 5% и выше соли свинца.

Выводы

Процесс жизнеспособности семян фитомелиорантов является довольно устойчивым к действию тяжелых металлов при 0,01% концентрации токсикантов, где жизнеспособность проростков составляла 64–80% всхожих семян донника желтого и 76–82% люцерны посевной. Высокие показатели всхожести семян люцерны также отмечены в 0,1% загрязнении цинком, медью и свинцом – 72%, – 74%, – 75% всхожих семян соответственно.

Концентрация цинка 0,01% при непродолжительном действии оказывала стимулирование энергии прорастания семян донника на 3% выше контроля, люцерны – на 2%.

В сравнении культуры неодинаково реагируют на загрязнение тяжелыми металлами: люцерна посевная проявила устойчивость к загрязнению свинцом, цинком и медью, донник наиболее устойчив к загрязнению кадмием.

Знание границ устойчивости фитомелиорантов, оптимальных и критических доз тяжелых металлов позволит проводить научные разработки по биологической рекультивации загрязненных почв и может быть использовано на техногенно-нарушенных территориях.

×

Об авторах

Анастасия Олеговна Ознобихина

Тюменский индустриальный университет

Автор, ответственный за переписку.
Email: n_a_s_t_y_a86@mail.ru

аспирант кафедры техносферной безопасности

Россия, Тюмень

Список литературы

  1. Ознобихина А.О., Скипин Л.Н., Котченко С.Г., Гаевая Е.В., Захарова Е.В. Особенности накопления тяжелых металлов в почвах северной лесостепи районов Тюменской области // Вестник КрасГАУ. 2018. № 5. С. 252-257.
  2. Гаевая Е.В., Захарова Е.В., Скипин Л.Н. Биогеохимия элементов в системе почва - растение - животное в условиях юга Тюменской области // Вестник КрасГАУ. 2013. № 11. С. 149-153.
  3. Наплекова Н.Н., Степанова М.Д. Биоиндикация загрязнения почв свинцом и кадмием по микробным ценозам. Новосибирск, 2000. 124 с.
  4. Ильин В.Б. Тяжелые металлы в системе почва - растение. Новосибирск: Наука, Сибирское отделение, 1991. 151 с.
  5. Кузнецов А.Е., Градова Н.Б., Лушников С.В., Энгельхарт М. Прикладная экобиотехнология: учеб. пособие для студентов. В 2 т. 2-е изд. (электронное). М.: Бином. Лаб. знаний, 2012.
  6. Боме Н.А., Белозерова А.А. Основы биотехнологии растений: учеб. пособие. Тюмень: Изд-во ТюмГУ, 2007. 92 с.
  7. Oznobihina A.O., Gayevaya E.V. Heavy Metals in Soil&Plant System Under Conditions of the South of Tyumen Region // IOP Conference Series: Materials Science and Engineering (MSE) International Conference on Construction, Architecture and Technosphere Safety, ICCATS 2017. Vol. 262. Chelyabinsk: South Ural State University, 2017. P. 012170.
  8. Савич В.И., Седых В.А., Никиточкин Д.Н., Сердюкова А.В., Шестаков А.К., Саидов Е.И. Агроэкологическая оценка состояния почв в системе почва - растение. М.: Изд-во ВНИИА, 2012. 360 с.
  9. Барсегян А.Г., Гендугов В.М., Глазунов Г.П. и др. Экологическое нормирование и управление качеством почв и земель. М.: НИА-Природа, 2013. 373 с.
  10. Глазовская М.А. Геохимия природных и техногенных ландшафтов. М.: Высшая школа, 1988. 328 с.
  11. Сысо А.И. Закономерности распределения химических элементов в почвообразующих породах и почвах Западной Сибири. Новосибирск: Изд-во СО РАН, 2007. 277 с.
  12. Муха В.Д., Картамышев Н.И., Муха Д.В. Агропочвоведение. М.: КолосС, 2004. С. 480-485.
  13. Черников В.А., Грингоф И.Г., Емцев В.Т. Агроэкология. Методология, технология, экономика. М.: КолосС, 2004. 400 с.
  14. Витол И.С. Экологические проблемы производства и потребления пищевых продуктов: учебное пособие. М.: Издательский комплекс МГУПП, 2000. 93 с.
  15. Давыдова С.Л., Тагасов В.И. Тяжелые металлы как супертоксиканты 21 века. М.: Изд-во РУДН, 2002. 140 с.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рисунок 1 – Результаты определения энергии прорастания семян донника желтого в зависимости от концентрации фитотоксиканта, %

Скачать (65KB)
3. Рисунок 2 – Результаты определения всхожести семян донника желтого в зависимости от концентрации фитотоксиканта, %

Скачать (18KB)
4. Рисунок 3 – Результаты определения энергии прорастания семян люцерны посевной в зависимости от концентрации фитотоксиканта, %

Скачать (48KB)
5. Рисунок 4 – Результаты определения всхожести семян люцерны в зависимости от концентрации фитотоксиканта, %

Скачать (47KB)

© Ознобихина А.О., 2019

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.