Изменения кишечной микробиоты и биотрансформации ивабрадина у крыс при экспериментальной алкоголизации

Обложка

Цитировать

Полный текст

Аннотация

В последнее время активно обсуждается роль кишечной микробиоты в развитии большого числа патологических процессов. Показано, что длительно существующий дисбиоз кишечника, в особенности синдром избыточного бактериального роста, влияет на процесс пищеварения и биотрансформацию ксенобиотиков. Существует целый ряд механизмов, посредством которых кишечная микробиота способна провоцировать ряд метаболических нарушений, приводящих к возникновению тяжёлых заболеваний. Одним из факторов, провоцирующих дисбиоз, является алкоголь, токсическое действие которого связано с изменением активности систем, отвечающих за метаболизм ксенобиотиков. Целью представленной работы явилась оценка взаимосвязи дисбиотических процессов, возникающих у крыс при хронической алкоголизации, и биотрансформации ивабрадина, субстрата изофермента CYP3А4. Работа выполнена на 30 крысах-самцах стока Вистар, поделенных на две группы – контрольную и экспериментальную, в которой хроническую алкоголизацию моделировали назначением 15% алкоголя в качестве единственного источника жидкости в течение 40 дней. В экспериментальной группе было обнаружено сокращение бифидо- и лактобакерий, находящееся в корреляционной взаимосвязи с показателями, характеризующими биотрансформацию ивабрадина. Данные изменения указывают на участие кишечной микробиоты в метаболизме ивабрадина при пероральном введении.

Полный текст

Актуальность исследования

Желудочно-кишечный тракт (ЖКТ) человека населен многочисленными микроорганизмами, метаболизм которых тесно интегрирован в метаболизм макроорганизма [1]. В 2006 г. R. Goodacre введено понятие «суперорганизм», под которым понимается сообщество человека и населяющих его микроорганизмов [2], причем доля собственно человеческих клеток в нем составляет всего лишь 10%, а 90% принадлежат бактериям [3]. Исследования последних лет существенно изменили стандартные представления о роли кишечной микробиоты в патогенезе многих заболеваний [4]. Хорошо изучена одна из важнейших метаболических функций кишечной микробиоты, связанная с синтезом короткоцепочечных жирных кислот (КЦЖК): уксусной, пропионовой, масляной, валериановой, капроновой кислот и их изомеров. Образующиеся в результате анаэробного (бифидобактерии, пропионибактерии, бактероиды и др.) брожения доступных для бактерий ди-, олиго- и полисахаридов КЦЖК определяют снижение рН, обеспечивают колонизационную резистентность, а также принимают участие в регуляции кишечной моторики и всасывание некоторых ионов, таких как кальций, магний, железо, необходимых для поддержания водно-электролитного баланса в организме [5; 6]. В многочисленных исследованиях показана важная роль микробиоты кишечника, т.к. она участвует в иммуностимуляции, синтезе витаминов группы В и витамина К, никотиновой и фолиевых кислот, различных биологически активных соединений: эстрогенов, промазина, морфина, колхицина, дигоксина, регулировании моторики и других функций ЖКТ. Таким образом, кишечный биоценоз поддерживает значительное число биохимических процессов организма и сравнивается по значимости с печенью [7].

Состояние микробного дисбаланса (дисбиоза) характеризуется изменением качественного и/или количественного состава кишечной микробиоты. Наблюдаемые изменения могут включать выраженное сокращение количества представителей пробиотических штаммов (бифидобактерии, лактобактерии) и повышение патогенной протеолитической микробиоты, являющейся маркером дисбиотических нарушений, под воздействием которой образуются продукты распада белков и аминокислот – индол, скатол, фенол и др. [8]. Данные соединения, в свою очередь, вместе с микробными токсинами (экзо- и эндотоксины) и различными факторами патогенности микроорганизмов (патогенных, условно-патогенных, непатогенных) выступают в качестве источников эндотоксинемии [9]. Совокупность описанных нарушений лежит в основе развития синдрома эндогенной интоксикации (ЭИ).

Алкоголь приводит к избыточному бактериальному росту и способен существенно изменить количественный и качественный состав микробиоты кишечника [10]. J.C. Bode и соавт. показали, что почти у половины больных алкоголизмом в аспирате тощей кишки обнаружено увеличение общего числа бактерий с преобладанием анаэробных микроорганизмов [11; 12]. Этанол является одновременно источником энергии и сильным фармакологическим агентом. Первичное поражение систем детоксикации в результате непосредственного влияния этанола, а также их вторичное поражение токсическими продуктами извращенного метаболизма приводят к изменению гомеостаза [9]. В результате происходит взаимное усиление процессов, приводящих к ЭИ.

Анализ приблизительно 78 млн базовых пар последовательностей ДНК из фекальных образцов здоровых взрослых людей показал, что кишечный микробиом активно участвует в метаболизме глицинов, аминокислот, ксенобиотиков [13]. Метаболический ответ организма на эндотоксемию заключается в индукции ферментов, отвечающих за метаболизм ксенобиотиков. Окисление происходит за счет микросомальных оксидаз смешанного действия при участии НАДФ, кислорода и цитохрома Р450 [14, с. 119]. Система цитохрома P450 участвует в нейтрализации многочисленных соединений как экзогенного, так и эндогенного характера. Его индукторы: глюкокортикоиды, фенолы, индолы – участвуют в биотрансформации большого числа лекарственных веществ. Одна из самых распространенных реакций окисления ксенобиотиков цитохромом Р450 – окислительное деалкилирование, сопровождающееся окислением алкильной группы, присоединенной к атомам N, O или S [15]. Этот процесс происходит в эндоплазматическом ретикулуме (ЭПР) гепатоцитов.

Индукция ферментов, отвечающих за метаболизм ксенобиотиков, может приводить к снижению эффективности лекарственной терапии, поэтому оценка вклада эндогенной интоксикации, возникающей при дисбиотических процессах на фоне хронического употребления алкоголя, является важной задачей клинической фармакологии.

Цель исследования

Изучить взаимосвязь дисбиотических процессов и особенностей биотрансформации ивабрадина, субстрата изофермента CYP3A4, при хронической алкоголизации крыс.

Методика исследования

Клинико-лабораторные исследования выполнялись в Волгоградском государственном медицинском университете на базе лаборатории геномных и протеомных исследований Волгоградского медицинского научного центра. Исследование влияния хронической алкоголизации на дисбиотические процессы и систему цитохрома Р450 печени проведены in vitro и на экспериментальных животных. Работа выполнена на 30 крысах-самцах стока Wistar (280–350 г.), содержавшихся в стандартных условиях вивария с соблюдением всех правил лабораторной практики при проведении доклинических исследований на территории РФ, в НИИ фармакологии ВолгГМУ.

Животные были распределены на 2 группы: контрольную, содержавшуюся на стандартном водно-пищевом рационе, и экспериментальную, с 15% этанолом как единственным источником жидкости на протяжении 40 суток [16; 17].

Оценка микробиологического статуса кишечника крыс производилась до начала эксперимента (по истечении срока карантина) и на 40-е сутки [18]. Кишечная микробиота оценивалась методом бактериологического посева по стандартным методикам. В качестве объектов микробиологического исследования были выбраны Bifidobacterium spp., Lactobacterium spp., Escherichia coli.

Изучение активности изофермента CYP3A4 производили с использованием в качестве маркерной субстанции ивабрадина, вводимого крысам при помощи интрагастрального зонда (5 мг/кг) на 40-е сутки эксперимента. После введения ивабрадина животных помещали на 6 ч. в метаболические камеры для сбора мочи. Активность CYP3A4 оценивали путем определения метаболического соотношения N-десметиливабрадин/ивабрадин в моче [19; 20] при помощи хроматографической системы высокого давления Agilent 1260 и гибридной масс-спектрометрической системы Sciex QTRAP 5500 на базе тандемного масс-анализатора типа тройной квадруполь.

Статистическая обработка полученных результатов производилась с помощью программ MS Excel (Microsoft, США), GraphPad Prism 5.0 (GraphPad Software Inc., США). Параметры распределения оценивали по критериям Колмогорова-Смирнова и Шапиро-Уилка; сравнение групп производили при помощи t-критерия Стьюдента (при нормальном распределении) и U-критерия Манна-Уитни (распределение, отличающееся от нормального). Корреляционный анализ проводили с использованием рангового критерия Спирмена.

Результаты исследования и их обсуждение

В ходе исследования обнаружены дисбиотические нарушения в составе кишечной микробиоты у крыс, подвергнутых хронической алкогольной интоксикации, сопровождающиеся снижением количества представителей пробиотических штаммов.

Анализ результатов микробиологического исследования у животных экспериментальной группы выявил сокращение сахаролитических бактерий – Lactobacterium spp., Bifidobacterium spp. на 2–4 порядка (рис. 1).

 

Рисунок 1 - Состояние сахаролитической микробиоты кишечника крыс после алкоголизации.

Примечание: ** – p<0,01 (U-критерий Манна-Уитни)

 

Изменения в составе микробиоты сопровождались статистически значимым увеличением метаболического отношения N-десметиливабрадин/ивабрадин в моче крыс и достоверным снижением общей экскреции данных соединений (p<0,001; см. рис. 2). Повышение метаболического отношения может быть связано с индуцирующим действием алкоголя на различные ферментативные системы организма, включающие цитоплазменные оксидаз, микросомальные оксигеназы и ряд изоферментов системы цитохрома P450, в том числе и CYP3A4, субстратом которого является ивабрадин. В то же время, наблюдаемое снижение общей экскреции ивабрадина и его метаболита свидетельствует о снижении скорости всасывания ивабрадина в желудочно-кишечном тракте.

 

Рисунок 2 - Метаболическое соотношение N-десметиливабрадин/ивабрадин и их общая экскреция.

Примечание: *** – p<0,05 (t-критерий Стьюдента)

 

Показатели, характеризующие метаболизм ивабрадина, и состояние микробиоты кишечника крыс коррелировали между собой (см. рис. 3): метаболическое отношение находилось в обратной, а общая экскреция – в прямой корреляционной взаимосвязи с содержанием бифидо- и лактобактерий, что указывает на возможное влияние микробиоты на фармакокинетические показатели ивабрадина. Таким образом, экспериментальная алкоголизация оказала значительное влияние на состояние кишечной микробиоты и, как возможное следствие, на метаболизм ивабрадина – субстрата CYP3A4, что может требовать в клинической ситуации более пристального внимания врача к назначаемым препаратам. Однако для оценки клинической значимости подобных взаимодействий необходимы дальнейшие исследования.

 

Рисунок 3 - Корреляция показателей метаболизма ивабрадина и состоянием сахаролитической микробиоты. Примечание: показаны коэффициенты корреляции и уровень значимости по ранговому критерию Спирмена, сплошная линия – результаты линейной регрессии для лактобактерий, пунктирная – для бифидобактерий

 

Заключение

В ходе работы было обнаружено, что хроническая алкогольная интоксикация в эксперименте сопровождается сокращением количества представителей пробиотических штаммов (бифидобактерии, лактобактерии). При использовании ивабрадина в качестве маркерного субстрата для фенотипирования активности CYP3A4 в группе животных, подвергнутых алкоголизации, было обнаружено увеличение метаболического отношения и снижение общей экскреции ивабрадина и его метаболита с мочой, коррелировавшие с содержанием лактобактерий и биофидобактерий. Обнаруженные изменения указывают на участие кишечной микробиоты в метаболизме ивабрадина и, возможно, иных лекарственных веществ – субстратов CYP3A4, вводимых энтеральным путем.

×

Об авторах

Борис Евгеньевич Толкачев

Волгоградский государственный медицинский университет

Автор, ответственный за переписку.
Email: boris.volgmed@mail.ru

кандидат медицинских наук, доцент кафедры фундаментальной медицины и биологии

Россия, Волгоград

Евгений Игоревич Морковин

Волгоградский государственный медицинский университет; Волгоградский медицинский научный центр

Email: e.i.morkovin@gmail.com

кандидат медицинских наук, доцент кафедры фундаментальной медицины и биологии; старший научный сотрудник лаборатории геномных и протеомных исследований

Россия, Волгоград; Волгоград

Лилия Петровна Кнышова

Волгоградский государственный медицинский университет; Волгоградский медицинский научный центр

Email: knyshova-liliya@inbox.ru

аспирант кафедры клинической лабораторной диагностики с курсом клинической лабораторной диагностики ФУВ; младший научный сотрудник лаборатории геномных и протеомных исследований

Россия, Волгоград; Волгоград

Анатолий Трофимович Яковлев

Волгоградский государственный медицинский университет

Email: yakov1609@yandex.ru

доктор медицинских наук, профессор, заведующий кафедрой клинической лабораторной диагностики с курсом клинической лабораторной диагностики ФУВ

Россия, Волгоград

Андрей Валерьевич Стрыгин

Волгоградский государственный медицинский университет; Волгоградский медицинский научный центр

Email: drumsav@mail.ru

кандидат медицинских наук, заведующий кафедрой фундаментальной медицины и биологии; заведующий лабораторией геномных и протеомных исследований

Россия, Волгоград; Волгоград

Список литературы

  1. Rolfe R.D. Interactions among microorganisms of the indigenous intestinal flora and their influence on the host // Rev Infect Dis. 1984. Vol. 6. Suppl 1. S. 73-79.
  2. Goodacre R. Metabolomics of a superorganism // J. Nutr 2007. Vol. 137 (1 Suppl). P. 259-266.
  3. Turnbaugh P.J., Ley R.E., Hamady M. et al. The human microbiome project // Nature. 2007. Vol. 449 (7164). P. 804-810.
  4. Пауков B.C., Угрюмов А.И., Беляева Н.Ю. Межорганные отношения при алкогольной интоксикации // Архив патологии. 1991. Т. 53, № 3. С. 3-10.
  5. Jenkins D.J.A., Kendall C.W.C., Vuksan V. Inulin, Oligofructose and Intestinal Function // J. Nutr. 1999. Vol. 129. P. 1431-1433.
  6. Тюренков И.Н., Куркин Д.В., Волотова Е.В., Бакулин Д.А. Роль микрофлоры кишечника, состава пищи, GPR41 и GPR43 рецепторов к короткоцепочечным жирным кислотам в энергетическом обмене позвоночных животных // Успехи физиологических наук. 2017. Т. 48, № 2. С. 141-153.
  7. Хавкин А.И. Микрофлора пищеварительного тракта. М.: Фонд социальной педиатрии, 2006. 416 с.
  8. Кнышова Л.П., Яковлев А.Т., Морковин Е.И., Доценко А.М. Динамика микробиологических показателей и провоспалительных интерлейкинов при моделировании хронической алкогольной интоксикации у крыс // Врач-аспирант. 2017. Т. 84, № 5. С. 69-75.
  9. Кнышова Л.П., Яковлев А.Т. Роль эндогенной интоксикации в нарушении гомеостаза организма человека при алкогольной интоксикации // Наука в современном информационном обществе: мат-лы IX междунар. науч.-практ. конф. М.: НИЦ «Академический», 2016. С. 31-33.
  10. Кнышова Л.П., Яковлев А.Т., Ларионов С.С. Экзо- и эндогенные этиологические факторы нарушения микробиоценоза // Современные инновации. 2016. № 5 (7). С. 53-57.
  11. Bode Ch., Schäfer C., Bode J.Ch. The role of gut-derived bacterial toxins (endotoxin) for the development of alcoholic liver disease in man // Gut and the Liver. Kluwer Academic Publishers, Dordrecht, Boston, London. 1998. P. 281-298.
  12. Paiva S.A.R., Sepe T.E., Booth S.L., Camilo M.E., O'Brien M.E., Davidson K.W., Sadowski J.A., Russell R.M. Interaction between vitamin K nutriture and bacterial overgrowth in hypochlorhydria induced by omeprazole // Am. J. Clin. Nutr. 1998. Vol. 68. P. 699-704.
  13. Gill S.R., Pop М., DeBoy R.T. et al. Metagenomic Analysis of the Human Distal Gut Microbiome // Science. 2 June 2006. Vol. 312. P. 1355-1359.
  14. Куценко С.А. Основы токсикологии. М.: Фолиант, 2004. 570 с.
  15. Черняк Ю.И., Колесников С.И., Черняк Е.В. Цитохром Р450: основные представления, методы исследования, значение для практической медицины: учеб.-метод. пособие. 2-е изд., испр. Иркутск: Изд-во ИГУ, 2014. С. 47.
  16. Кнышова Л.П., Поройский С.В., Яковлев А.Т., Морковин Е.И., Тарасов А.С. Критерии достоверности воспроизведения экспериментальной модели хронической алкогольной интоксикации // Волгоградский научно-медицинский журнал. 2016. № 4 (52). С. 48-52.
  17. Кнышова Л.П., Поройский С.В., Яковлев А.Т., Морковин Е.И. Влияние экспериментальной хронической эндогенной алкогольной интоксикации на микрофлору кишечника // Вестник Волгоградского государственного медицинского университета. 2016. № 4 (60). С. 40-44.
  18. Даштемирова Д.Х., Яковлев А.Т., Кнышова Л.П. Влияние хронической алкогольной интоксикации на состояние микрофлоры кишечника в эксперименте // Современные тенденции в науке и образовании: сб. материалов XVIII междунар. науч.-практ. конф. 2017. С. 303-304.
  19. Петров В.И., Магницкая О.В., Толкачев Б.Е. и др. Определение метаболического отношения N-деметиливабрадин/ивабрадин для оценки активности CYP3A4 // Вестник ВолгГМУ. 2013. № 3 (47). С. 30-32.
  20. Петров В.И., Магницкая О.В., Толкачев Б.Е. и др. Сравнительная оценка методов определения метаболического коэффициента N-деметиливабрадин/ ивабрадин в плазме и моче // Вестник ВолгГМУ. 2013. № 3 (47). С. 33-34.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рисунок 1 - Состояние сахаролитической микробиоты кишечника крыс после алкоголизации. Примечание: ** – p<0,01 (U-критерий Манна-Уитни)

Скачать (29KB)
3. Рисунок 2 - Метаболическое соотношение N-десметиливабрадин/ивабрадин и их общая экскреция. Примечание: *** – p<0,05 (t-критерий Стьюдента)

Скачать (26KB)
4. Рисунок 3 - Корреляция показателей метаболизма ивабрадина и состоянием сахаролитической микробиоты. Примечание: показаны коэффициенты корреляции и уровень значимости по ранговому критерию Спирмена, сплошная линия – результаты линейной регрессии для лактобактерий, пунктирная – для бифидобактерий

Скачать (32KB)

© Толкачев Б.Е., Морковин Е.И., Кнышова Л.П., Яковлев А.Т., Стрыгин А.В., 2017

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах