Анализ структуры математической подготовки специалистов в области искусственного интеллекта на основании учебных планов бакалавриата
- Авторы: Черемухин А.Д.1, Колодкина Н.Н.1
-
Учреждения:
- Нижегородский государственный инженерно-экономический университет
- Выпуск: Том 14, № 2 (2025)
- Страницы: 211-216
- Раздел: Педагогические науки
- URL: https://snv63.ru/2309-4370/article/view/689240
- DOI: https://doi.org/10.55355/snv2025142312
- ID: 689240
Цитировать
Полный текст
Аннотация
Современные образовательные программы, направленные на подготовку специалистов в области искусственного интеллекта и анализа данных, предполагают наличие продуманной и последовательной математической подготовки, обеспечивающей фундамент для освоения алгоритмических и вычислительных дисциплин. Отсутствие единых подходов к проектированию учебных планов приводит к значительной вариативности как в структуре, так и в содержании математических курсов. Это затрудняет сопоставление образовательных траекторий, формирование единых требований к выпускникам и оценку качества подготовки. Проведённое исследование направлено на выявление типичных структур математической подготовки и их классификацию с использованием методов анализа данных. Анализ 46 учебных планов бакалавриата позволил определить частотность включения ключевых дисциплин, их распределение по семестрам, а также устойчивые комбинации, характерные для подавляющего числа программ. С целью формализации образовательных траекторий была реализована графовая модель, где вершины соответствуют дисциплинам, а рёбра отражают порядок их изучения. На основе введённой метрики расстояния между программами осуществлена кластеризация, позволившая выделить две устойчивые группы учебных планов с различной глубиной математической подготовки, а также аномальную траекторию, выходящую за рамки типовой структуры. Результаты исследования могут служить основой для разработки рекомендаций по унификации подходов к построению учебных планов, а также для внедрения инструментов автоматизированного анализа и сравнения образовательных программ.
Об авторах
Артем Дмитриевич Черемухин
Нижегородский государственный инженерно-экономический университет
Автор, ответственный за переписку.
Email: ngieu.cheremuhin@yandex.ru
кандидат экономических наук, доцент кафедры математики и вычислительной техники
Нина Николаевна Колодкина
Нижегородский государственный инженерно-экономический университет
Email: nin204@yandex.ru
старший преподаватель кафедры математики и вычислительной техники
Список литературы
- О внесении изменений в указ президента Российской Федерации от 10.10.2019 № 490 «О развитии искусственного интеллекта в Российской Федерации» и в Национальную стратегию, утвержденную этим указом: указ президента РФ от 15.02.2024 № 124 [Электронный ресурс] // Гарант.ру. https://base.garant.ru/408559959.
- Россия должна развивать суверенный искусственный интеллект [Электронный ресурс] // РИА Новости. https://ria.ru/20241107/putin-1982528300.html.
- В России не хватает ИИ-специалистов [Электронный ресурс] // Российская газета. https://rg.ru/2024/10/29/v-rossii-ne-hvataet-ii-specialistov.html.
- Nadzinski G., Gerazov B., Zlatinov S., Kartalov T., Markovska Dimitrovska M., Gjoreski H., Chavdarov R., Kokolanski Z., Atanasov I., Horstmann J., Sterle U., Gams M. Data science and machine learning teaching practices with focus on vocational education and training // Informatics in Education. 2023. Vol. 22, № 4. P. 671–690.
- Kross S., Guo P.J. Practitioners teaching data science in industry and academia: Expectations, workflows, and challenges // Proceedings of the 2019 CHI conference on human factors in computing systems. 2019. P. 1–14.
- Перестройка системы подготовки специалистов в сфере ИИ [Электронный ресурс] // Российская газета. https://rg.ru/2024/10/24/shadaev-trebuetsia-perestroit-sistemu-podgotovki-specialistov-v-sfere-ii.html.
- Greenhow C., Galvin S.M., Brandon D.L., Askari E. A decade of research on K-12 teaching and teacher learning with social media: Insights on the state of the field // Teachers College Record. 2020. Vol. 122, № 6. P. 1–72.
- Miller F.A., Katz J.H., Gans R. The OD imperative to add inclusion to the algorithms of artificial intelligence // OD practitioner. 2018. Vol. 50, № 1. P. 6–12.
- Stefaniak J., Xu M. An examination of the systemic reach of instructional design models: a systematic review // TechTrends. 2020. Vol. 64, № 5. P. 710–719.
- Hacohen G., Weinshall D. On the power of curriculum learning in training deep networks // International conference on machine learning. PMLR. 2019. P. 2535–2544.
- Zhou T., Wang S., Bilmes J. Curriculum learning by optimizing learning dynamics // International Conference on Artificial Intelligence and Statistics. PMLR. 2021. P. 433–441.
- Khalil M.K., Elkhider I.A. Applying learning theories and instructional design models for effective instruction // Advances in physiology education. 2016. Vol. 40, iss. 2. P. 147–156. doi: 10.1152/advan.00138.2015.
- Song I.-Y., Zhu Y. Big data and data science: what should we teach? // Expert Systems. 2016. Vol. 33, iss. 4. P. 364–373. doi: 10.1111/exsy.12130.
- Kross S., Guo P.J. Practitioners teaching data science in industry and academia: expectations, workflows, and challenges // Proceedings of the 2019 CHI conference on human factors in computing systems. 2019. P. 1–14. doi: 10.1145/3290605.3300493.
- Demchenko Y., Belloum A., Los W., Wiktorski T., Manieri A., Brocks H. EDISON data science framework: a foundation for building data science profession for research and industry // 2016 IEEE international conference on cloud computing technology and science. 2016. P. 620–626. doi: 10.1109/cloudcom.2016.0107.
- Рейтинг вузов в области ИИ [Электронный ресурс] // Альянс в области ИИ. https://rating.a-ai.ru.
- Об утверждении требований к структуре официального сайта образовательной организации в информационно-телекоммуникационной сети «Интернет» и формату представления информации: приказ Рособрнадзора от 04.08.2023 № 1493 [Электронный ресурс] // Гарант.ру. https://base.garant.ru/408091235.
Дополнительные файлы
