Analysis of the structure of mathematical training of specialists in the field of artificial intelligence based on the curricula of the bachelor's degree

Cover Page

Cite item

Full Text

Abstract

Modern educational programs aimed at training specialists in artificial intelligence and data analysis require a well-structured and consistent mathematical foundation, which underpins the development of algorithmic and computational skills. The lack of unified approaches to curriculum design leads to significant variability in both the structure and content of mathematical courses. This complicates the comparison of educational trajectories, the formulation of common graduate requirements, and the assessment of training quality. The conducted study focuses on identifying typical structures of mathematical training and classifying them using data analysis methods. An analysis of 46 bachelor’s degree curricula allowed for the determination of the frequency of key mathematical disciplines, their semester-wise distribution, and recurring combinations present in the majority of programs. To formalize educational trajectories, a graph-based model was implemented, where vertices represent disciplines and edges reflect the sequence of their study. Based on a defined distance metric between programs, clustering was performed, resulting in two stable groups of curricula with varying depth of mathematical training, as well as one outlier trajectory that deviates from the typical structure. The findings of this study may serve as a foundation for developing recommendations to standardize curriculum design approaches and for implementing tools for automated analysis and comparison of educational programs.

 

About the authors

Artem Dmitrievich Cheremuhin

Nizhny Novgorod State Engineering and Economic University

Author for correspondence.
Email: ngieu.cheremuhin@yandex.ru

candidate of economical sciences, associate professor of Mathematics and Computer Science Department

Nina Nikolaevna Kolodkina

Nizhny Novgorod State Engineering and Economic University

Email: nin204@yandex.ru

senior lecturer of Mathematics and Computer Science Department

References

  1. О внесении изменений в указ президента Российской Федерации от 10.10.2019 № 490 «О развитии искусственного интеллекта в Российской Федерации» и в Национальную стратегию, утвержденную этим указом: указ президента РФ от 15.02.2024 № 124 [Электронный ресурс] // Гарант.ру. https://base.garant.ru/408559959.
  2. Россия должна развивать суверенный искусственный интеллект [Электронный ресурс] // РИА Новости. https://ria.ru/20241107/putin-1982528300.html.
  3. В России не хватает ИИ-специалистов [Электронный ресурс] // Российская газета. https://rg.ru/2024/10/29/v-rossii-ne-hvataet-ii-specialistov.html.
  4. Nadzinski G., Gerazov B., Zlatinov S., Kartalov T., Markovska Dimitrovska M., Gjoreski H., Chavdarov R., Kokolanski Z., Atanasov I., Horstmann J., Sterle U., Gams M. Data science and machine learning teaching practices with focus on vocational education and training // Informatics in Education. 2023. Vol. 22, № 4. P. 671–690.
  5. Kross S., Guo P.J. Practitioners teaching data science in industry and academia: Expectations, workflows, and challenges // Proceedings of the 2019 CHI conference on human factors in computing systems. 2019. P. 1–14.
  6. Перестройка системы подготовки специалистов в сфере ИИ [Электронный ресурс] // Российская газета. https://rg.ru/2024/10/24/shadaev-trebuetsia-perestroit-sistemu-podgotovki-specialistov-v-sfere-ii.html.
  7. Greenhow C., Galvin S.M., Brandon D.L., Askari E. A decade of research on K-12 teaching and teacher learning with social media: Insights on the state of the field // Teachers College Record. 2020. Vol. 122, № 6. P. 1–72.
  8. Miller F.A., Katz J.H., Gans R. The OD imperative to add inclusion to the algorithms of artificial intelligence // OD practitioner. 2018. Vol. 50, № 1. P. 6–12.
  9. Stefaniak J., Xu M. An examination of the systemic reach of instructional design models: a systematic review // TechTrends. 2020. Vol. 64, № 5. P. 710–719.
  10. Hacohen G., Weinshall D. On the power of curriculum learning in training deep networks // International conference on machine learning. PMLR. 2019. P. 2535–2544.
  11. Zhou T., Wang S., Bilmes J. Curriculum learning by optimizing learning dynamics // International Conference on Artificial Intelligence and Statistics. PMLR. 2021. P. 433–441.
  12. Khalil M.K., Elkhider I.A. Applying learning theories and instructional design models for effective instruction // Advances in physiology education. 2016. Vol. 40, iss. 2. P. 147–156. doi: 10.1152/advan.00138.2015.
  13. Song I.-Y., Zhu Y. Big data and data science: what should we teach? // Expert Systems. 2016. Vol. 33, iss. 4. P. 364–373. doi: 10.1111/exsy.12130.
  14. Kross S., Guo P.J. Practitioners teaching data science in industry and academia: expectations, workflows, and challenges // Proceedings of the 2019 CHI conference on human factors in computing systems. 2019. P. 1–14. doi: 10.1145/3290605.3300493.
  15. Demchenko Y., Belloum A., Los W., Wiktorski T., Manieri A., Brocks H. EDISON data science framework: a foundation for building data science profession for research and industry // 2016 IEEE international conference on cloud computing technology and science. 2016. P. 620–626. doi: 10.1109/cloudcom.2016.0107.
  16. Рейтинг вузов в области ИИ [Электронный ресурс] // Альянс в области ИИ. https://rating.a-ai.ru.
  17. Об утверждении требований к структуре официального сайта образовательной организации в информационно-телекоммуникационной сети «Интернет» и формату представления информации: приказ Рособрнадзора от 04.08.2023 № 1493 [Электронный ресурс] // Гарант.ру. https://base.garant.ru/408091235.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Cheremuhin A.D., Kolodkina N.N.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.