Vol 24, No 16 (2024)

Oncology

Natural Compounds as Protease Inhibitors in Therapeutic Focus on Cancer Therapy

Kakali B.

Abstract

:Proteases are implicated in every hallmark of cancer and have complicated functions. For cancer cells to survive and thrive, the process of controlling intracellular proteins to keep the balance of the cell proteome is essential. Numerous natural compounds have been used as ligands/ small molecules to target various proteases that are found in the lysosomes, mitochondria, cytoplasm, and extracellular matrix, as possible anticancer therapeutics. Promising protease modulators have been developed for new drug discovery technology through recent breakthroughs in structural and chemical biology. The protein structure, function of significant tumor-related proteases, and their natural compound inhibitors have been briefly included in this study. This review highlights the most current frontiers and future perspectives for novel therapeutic approaches associated with the list of anticancer natural compounds targeting protease and the mode and mechanism of proteinase-mediated molecular pathways in cancer.

Anti-Cancer Agents in Medicinal Chemistry. 2024;24(16):1167-1181
pages 1167-1181 views

The Potential Role of Non-coding RNAs in Regulating Ferroptosis in Cancer: Mechanisms and Application Prospects

Cao M., Zhang Z., Hou X., Wang X.

Abstract

:Cancer is the second leading cause of death globally. Despite some successes, conventional cancer treatments are insufficient to address the growing problem of drug resistance in tumors and to achieve efficient treatment outcomes. Therefore, there is an urgent need to explore new therapeutic options. Ferroptosis, a type of iron- and reactive oxygen species-dependent regulated cell death, has been closely associated with cancer development and progression. Non-coding RNAs (ncRNAs) are a class of RNAs that do not code for proteins, and studies have demonstrated their involvement in the regulation of ferroptosis in cancer. This review aims to explore the molecular regulatory mechanisms of ncRNAs involved in ferroptosis in cancer and to emphasize the feasibility of ferroptosis and ncRNAs as novel therapeutic strategies for cancer. We conducted a systematic and extensive literature review using PubMed, Google Scholar, Web of Science, and various other sources to identify relevant studies on ferroptosis, ncRNAs, and cancer. A deeper understanding of ferroptosis and ncRNAs could facilitate the development of new cancer treatment strategies.

Anti-Cancer Agents in Medicinal Chemistry. 2024;24(16):1182-1196
pages 1182-1196 views

Overexpression of NOP58 Facilitates Proliferation, Migration, Invasion, and Stemness of Non-small Cell Lung Cancer by Stabilizing hsa_circ_0001550

Jiang Y., Cai Y., Bao Y., Kong X., Jin H.

Abstract

Background:NOP58 ribonucleoprotein (NOP58) is associated with the recurrence of lung adenocarcinoma.

Aims:Few investigations concentrate on the role of NOP58 in non-small cell lung cancer (NSCLC), which is the focus of our current study.

Methods:Following transfection, the proliferation, migration, and invasion of NSCLC cells were assessed by 5- ethynyl-2’-deoxyuridine (EdU), wound healing, and transwell assays. The percentage of CD9+ cells was evaluated by flow cytometry assay. Based on target genes and binding sites predicted through bioinformatics analysis, a dual-luciferase reporter assay was performed to verify the targeting relationship between hsa_circ_0001550 and NOP58. The effect of NOP58 overexpression on hsa_circ_0001550 stability was gauged using Actinomycin D. The hsa_circ_0001550 and NOP58 expression levels, as well as protein expressions of CD44, CD133, OCT4, and SOX2 in NSCLC cells were determined by quantitative real-time PCR and Western blot, respectively.

Results:Hsa_circ_0001550 was remarkably up-regulated in NSCLC cell lines A549 and PC9, silencing of which weakened cell abilities to proliferate, migrate and invade, decreased CD9+ cell ratio, and diminished protein expressions of CD44, CD133, OCT4, and SOX2. NOP58 could bind to hsa_circ_0001550 and stabilize its expression, and NOP58 overexpression partially abrogated hsa_circ_0001550 knockdown-inhibited NSCLC cell proliferation, migration, invasion and stemness.

Conclusion:Overexpression of NOP58 facilitates proliferation, migration, invasion, and stemness of NSCLC cells by stabilizing hsa_circ_0001550, hinting that NOP58 is a novel molecular target for NSCLC therapy.

Anti-Cancer Agents in Medicinal Chemistry. 2024;24(16):1197-1206
pages 1197-1206 views

Resveratrol Inhibits Nasopharyngeal Carcinoma (NPC) by Targeting the MAPK Signaling Pathway

Yi Y., Zhou B., Man T., Xu Z., Tang H., Li J., Sun Z.

Abstract

Background:With conventional cancer treatments facing limitations, interest in plant-derived natural products as potential alternatives is increasing. Although resveratrol has demonstrated antitumor effects in various cancers, its impact and mechanism on nasopharyngeal carcinoma remain unclear

Objective:This study aimed to systematically investigate the anti-cancer effects of resveratrol on nasopharyngeal carcinoma using a combination of experimental pharmacology, network pharmacology, and molecular docking approaches.

Methods:Resveratrol inhibited the proliferation, invasion, and migration of nasopharyngeal carcinoma cells, ultimately inducing apoptosis in a time- and dose-dependent manner. Network pharmacology analysis revealed that resveratrol may exert its anti-nasopharyngeal carcinoma effect mainly through the MAPK pathway. Immunohistochemistry results from clinical cases showed MAPK signaling activation in nasopharyngeal carcinoma tissues compared to adjacent tissues. Western blotting validated the targeting effect of resveratrol, demonstrating significant inhibition of the MAPK signaling pathway. Furthermore, molecular docking supported its multi-target role with MAPK, TP53, PIK3CA, SRC, etc.

Results:Resveratrol inhibited the proliferation, invasion, and migration of nasopharyngeal carcinoma cells, ultimately inducing apoptosis in a time- and dose-dependent manner. Network pharmacology analysis revealed that resveratrol may exert its anti-nasopharyngeal carcinoma effect mainly through the MAPK pathway. Immunohistochemistry results from clinical cases showed MAPK signaling activation in nasopharyngeal carcinoma tissues compared to adjacent tissues. Western blotting validated the targeting effect of resveratrol, demonstrating significant inhibition of the MAPK signaling pathway. Furthermore, molecular docking supported its multi-target role with MAPK, TP53, PIK3CA, SRC, etc.

Conclusion:Resveratrol has shown promising potential in inhibiting human nasopharyngeal carcinoma cells by primarily targeting the MAPK pathway. These findings position resveratrol as a potential therapeutic agent for nasopharyngeal carcinoma.

Anti-Cancer Agents in Medicinal Chemistry. 2024;24(16):1207-1219
pages 1207-1219 views

The Growth Inhibitory Effect of Resveratrol and Gallic Acid on Prostate Cancer Cell Lines through the Alteration of Oxidative Stress Balance: The Interplay between Nrf2, HO-1, and BACH1 Genes

Moghadam D., Zarei R., Rostami A., Samare-Najaf M., Ghojoghi R., Savardashtaki A., Jafarinia M., Vakili S., Irajie C.

Abstract

Background:The association between oxidative stress and prostate cancer (PC) has been demonstrated both epidemiologically and experimentally. Balance in reactive oxygen species (ROS) levels depends on multiple factors, such as the expression of Nrf2, HO-1, and BACH1 genes. Natural polyphenols, such as resveratrol (RSV) and gallic acid (GA), affect cellular oxidative profiles.

Objective:The present study investigated the possible effects of GA and RSV on the oxidative profiles of PC3 and DU145 cells, as well as Nrf2, HO-1, and BACH1 gene expression to achieve an understanding of the mechanisms involved.

Methods:PC3 and DU145 cells were treated with ascending concentrations of RSV and GA for 72 h. Then cell growth and mRNA expression of Nrf2, HO-1, and BACH1 genes were analyzed by real-time PCR. Various spectrophotometric analyses were performed to measure oxidative stress markers.

Results:RSV and GA significantly decreased the growth of PC3 and DU145 cells compared to the control group in a concentration-dependent manner. RSV and GA also decreased ROS production in PC3 cells, but in DU145 cells, only the latter polyphenol significantly decreased ROS content. In addition, RSV and GA had ameliorating effects on SOD, GR, GPX, and CAT activities and GSH levels in both cell lines. Also, RSV and GA induced HO- 1 and Nrf2 gene expression in both cell lines. BACH1 gene expression was induced by RSV only at lower concentrations, in contrast to GA in both cell lines.

Conclusion:Our data suggest that RSV and GA can prevent the growth of prostate cancer cells by disrupting oxidative stress-related pathways, such as changes in Nrf2, HO-1, and BACH1 gene expression.

Anti-Cancer Agents in Medicinal Chemistry. 2024;24(16):1220-1232
pages 1220-1232 views

Pistacia vera and its Combination with Cisplatin: A Potential Anticancer Candidate by Modulating Apoptotic Genes

Khanamani Falahati-Pour S., Torabizadeh S., Baghery F., Noroozi-Karimabad M.

Abstract

Introduction:Many bioactive phytochemicals have essential significance for handling various diseases and developing new drugs. The aim was to investigate the anti-tumor activity and the underlying mechanisms of pistachio pericarp extract (PPE) and pistachio kernel extract (PKE) alone and combined with cisplatin (CP) in the treatment of prostate cancer.

Methods:fThe effects of the PPE, PKE, and CP alone and PPE and PKE in combination with CP (PPE+CP and PKE+CP) on the proliferation of PC-3 cells were determined using the MTT assay. The fold changes of BAX, BCL-2, P53, KLK2, TNF, TGF, and NANOG expression against β-actin were determined by real-time technique. Data were analyzed by two-way ANOVA and repeated measure tests.

Results:These research results indicated that a greater anti-proliferative effect of the PPE and PKE was shown in combination with CP compared with treatments using the PPE and PKE or CP alone. The extracts and Cisplatin in vitro had good synergistic effects on the inhibition of the proliferation of PC-3 cells. The IC50 values of PKE+CP were 4.141, 2.140, and 0.884 ug/mL, and PPE+CP were 2.754, 2.061, and 0.753 ug/mL after 24 h, 48 h, and 72h treatment, respectively. Also, this result presented that the mRNA expression of BAX and P53 increased, and BCL-2, KLK2, TNF, TGF, and NANOG decreased in PC-3 cells.

Conclusions:The finding of this research showed for the first time the anti-carcinogenesis effects of separately and in the combination of PPE, PKE, and CP on the PC-3 prostate cancer cells via modulating some genes and that it may be nominated for the herbal anti-cancer medications.

Anti-Cancer Agents in Medicinal Chemistry. 2024;24(16):1233-1240
pages 1233-1240 views