The Growth Inhibitory Effect of Resveratrol and Gallic Acid on Prostate Cancer Cell Lines through the Alteration of Oxidative Stress Balance: The Interplay between Nrf2, HO-1, and BACH1 Genes


Цитировать

Полный текст

Аннотация

Background:The association between oxidative stress and prostate cancer (PC) has been demonstrated both epidemiologically and experimentally. Balance in reactive oxygen species (ROS) levels depends on multiple factors, such as the expression of Nrf2, HO-1, and BACH1 genes. Natural polyphenols, such as resveratrol (RSV) and gallic acid (GA), affect cellular oxidative profiles.

Objective:The present study investigated the possible effects of GA and RSV on the oxidative profiles of PC3 and DU145 cells, as well as Nrf2, HO-1, and BACH1 gene expression to achieve an understanding of the mechanisms involved.

Methods:PC3 and DU145 cells were treated with ascending concentrations of RSV and GA for 72 h. Then cell growth and mRNA expression of Nrf2, HO-1, and BACH1 genes were analyzed by real-time PCR. Various spectrophotometric analyses were performed to measure oxidative stress markers.

Results:RSV and GA significantly decreased the growth of PC3 and DU145 cells compared to the control group in a concentration-dependent manner. RSV and GA also decreased ROS production in PC3 cells, but in DU145 cells, only the latter polyphenol significantly decreased ROS content. In addition, RSV and GA had ameliorating effects on SOD, GR, GPX, and CAT activities and GSH levels in both cell lines. Also, RSV and GA induced HO- 1 and Nrf2 gene expression in both cell lines. BACH1 gene expression was induced by RSV only at lower concentrations, in contrast to GA in both cell lines.

Conclusion:Our data suggest that RSV and GA can prevent the growth of prostate cancer cells by disrupting oxidative stress-related pathways, such as changes in Nrf2, HO-1, and BACH1 gene expression.

Ключевые слова

Об авторах

Delaram Moghadam

Autophagy Research Center, Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences

Email: info@benthamscience.net

Reza Zarei

Autophagy Research Center, Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences

Email: info@benthamscience.net

Amirabbas Rostami

Department of Internal Medicine, School of Medicine, Isfahan University of Medical Sciences

Email: info@benthamscience.net

Mohammad Samare-Najaf

Autophagy Research Center, Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences

Email: info@benthamscience.net

Rozita Ghojoghi

Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences

Email: info@benthamscience.net

Amir Savardashtaki

Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences

Email: info@benthamscience.net

Morteza Jafarinia

Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences

Email: info@benthamscience.net

Sina Vakili

Infertility Research Center, Shiraz University of Medical Sciences

Автор, ответственный за переписку.
Email: info@benthamscience.net

Cambyz Irajie

Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences

Автор, ответственный за переписку.
Email: info@benthamscience.net

Список литературы

  1. Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer Statistics, 2021. CA Cancer J. Clin., 2021, 71(1), 7-33. doi: 10.3322/caac.21654 PMID: 33433946
  2. Kitamura, H.; Motohashi, H. NRF2 addiction in cancer cells. Cancer Sci., 2018, 109(4), 900-911. doi: 10.1111/cas.13537 PMID: 29450944
  3. Bellezza, I.; Scarpelli, P.; Pizzo, S.V.; Grottelli, S.; Costanzi, E.; Minelli, A. ROS-independent Nrf2 activation in prostate cancer. Oncotarget, 2017, 8(40), 67506-67518. doi: 10.18632/oncotarget.18724 PMID: 28978049
  4. Zuo, J.; Zhang, Z.; Li, M.; Yang, Y.; Zheng, B.; Wang, P.; Huang, C.; Zhou, S. The crosstalk between reactive oxygen species and noncoding RNAs: from cancer code to drug role. Mol. Cancer, 2022, 21(1), 30. doi: 10.1186/s12943-021-01488-3 PMID: 35081965
  5. Abbasi, A.; Mostafavi-Pour, Z.; Amiri, A.; Keshavarzi, F.; Nejabat, N.; Ramezani, F.; Sardarian, A.; Zal, F. Chemoprevention of prostate cancer cells by vitamin C plus quercetin: Role of Nrf2 in inducing oxidative stress. Nutr. Cancer, 2020, 2020, 1-11. PMID: 32924610
  6. Dodson, M.; Castro-Portuguez, R.; Zhang, D.D. NRF2 plays a critical role in mitigating lipid peroxidation and ferroptosis. Redox Biol., 2019, 23, 101107. doi: 10.1016/j.redox.2019.101107 PMID: 30692038
  7. Redza-Dutordoir, M.; Averill-Bates, D.A. Activation of apoptosis signalling pathways by reactive oxygen species. Biochim. Biophys. Acta Mol. Cell Res., 2016, 1863(12), 2977-2992. doi: 10.1016/j.bbamcr.2016.09.012 PMID: 27646922
  8. Brigelius-Flohé, R.; Flohé, L. Basic principles and emerging concepts in the redox control of transcription factors. Antioxid. Redox Signal., 2011, 15(8), 2335-2381. doi: 10.1089/ars.2010.3534 PMID: 21194351
  9. Zhang, M.J.; Sun, W.W.; Yang, J.; Shi, D.D.; Dai, X.F.; Li, X.M. The effect of preventing oxidative stress and its mechanisms in the extract from Sonchus brachyotus DC. Based on the Nrf2-Keap1-ARE signaling pathway. Antioxidants, 2023, 12(9), 1677. doi: 10.3390/antiox12091677 PMID: 37759980
  10. Bellezza, I.; Grottelli, S.; Gatticchi, L.; Mierla, A.L.; Minelli, A. α-Tocopheryl succinate pre-treatment attenuates quinone toxicity in prostate cancer PC3 cells. Gene, 2014, 539(1), 1-7. doi: 10.1016/j.gene.2014.02.009 PMID: 24530478
  11. Ferrando, M.; Gueron, G.; Elguero, B.; Giudice, J.; Salles, A.; Leskow, F.C.; Jares-Erijman, E.A.; Colombo, L.; Meiss, R.; Navone, N.; De Siervi, A.; Vazquez, E. Heme oxygenase 1 (HO-1) challenges the angiogenic switch in prostate cancer. Angiogenesis, 2011, 14(4), 467-479. doi: 10.1007/s10456-011-9230-4 PMID: 21833623
  12. Chapple, S.J.; Keeley, T.P.; Mastronicola, D.; Arno, M.; Vizcay-Barrena, G.; Fleck, R.; Siow, R.C.M.; Mann, G.E. Bach1 differentially regulates distinct Nrf2-dependent genes in human venous and coronary artery endothelial cells adapted to physiological oxygen levels. Free Radic. Biol. Med., 2016, 92, 152-162. doi: 10.1016/j.freeradbiomed.2015.12.013 PMID: 26698668
  13. Ogawa, K.; Sun, J.; Taketani, S.; Nakajima, O.; Nishitani, C.; Sassa, S.; Hayashi, N.; Yamamoto, M.; Shibahara, S.; Fujita, H.; Igarashi, K. Heme mediates derepression of Maf recognition element through direct binding to transcription repressor Bach1. EMBO J., 2001, 20(11), 2835-2843. doi: 10.1093/emboj/20.11.2835 PMID: 11387216
  14. Schultz, M.A.; Abdel-Mageed, A.B.; Mondal, D. The nrf1 and nrf2 balance in oxidative stress regulation and androgen signaling in prostate cancer cells. Cancers, 2010, 2(2), 1354-1378. doi: 10.3390/cancers2021354 PMID: 24281119
  15. Gueron, G.; Giudice, J.; Valacco, P.; Paez, A.; Elguero, B.; Toscani, M.; Jaworski, F.; Leskow, F.C.; Cotignola, J.; Marti, M.; Binaghi, M.; Navone, N.; Vazquez, E. Heme-oxygenase-1 implications in cell morphology and the adhesive behavior of prostate cancer cells. Oncotarget, 2014, 5(12), 4087-4102. doi: 10.18632/oncotarget.1826 PMID: 24961479
  16. Leonardi, D.B.; Anselmino, N.; Brandani, J.N.; Jaworski, F.M.; Páez, A.V.; Mazaira, G.; Meiss, R.P.; Nuñez, M.; Nemirovsky, S.I.; Giudice, J.; Galigniana, M.; Pecci, A.; Gueron, G.; Vazquez, E.; Cotignola, J. Heme oxygenase 1 impairs glucocorticoid receptor activity in prostate cancer. Int. J. Mol. Sci., 2019, 20(5), 1006. doi: 10.3390/ijms20051006 PMID: 30813528
  17. Shajari, N.; Davudian, S.; Kazemi, T.; Mansoori, B.; Salehi, S.; Khaze Shahgoli, V.; Shanehbandi, D.; Mohammadi, A.; Duijf, P.H.G.; Baradaran, B. Silencing of BACH1 inhibits invasion and migration of prostate cancer cells by altering metastasis-related gene expression. Artif. Cells Nanomed. Biotechnol., 2018, 46(7), 1495-1504. doi: 10.1080/21691401.2017.1374284 PMID: 28889753
  18. Samare-Najaf, M.; Zal, F.; Safari, S. Primary and secondary markers of doxorubicin-induced female infertility and the alleviative properties of quercetin and vitamin E in a rat model. Reprod. Toxicol., 2020, 96, 316-326. doi: 10.1016/j.reprotox.2020.07.015 PMID: 32810592
  19. Jang, Y.G.; Go, R.E.; Hwang, K.A.; Choi, K.C. Resveratrol inhibits DHT-induced progression of prostate cancer cell line through interfering with the AR and CXCR4 pathway. J. Steroid Biochem. Mol. Biol., 2019, 192, 105406. doi: 10.1016/j.jsbmb.2019.105406 PMID: 31185279
  20. Kahkeshani, N.; Farzaei, F.; Fotouhi, M.; Alavi, S.S.; Bahramsoltani, R.; Naseri, R.; Momtaz, S.; Abbasabadi, Z.; Rahimi, R.; Farzaei, M.H.; Bishayee, A. Pharmacological effects of gallic acid in health and diseases: A mechanistic review. Iran. J. Basic Med. Sci., 2019, 22(3), 225-237. PMID: 31156781
  21. Sagdicoglu Celep, A.G.; Demirkaya, A.; Solak, E.K. Antioxidant and anticancer activities of gallic acid loaded sodium alginate microspheres on colon cancer. Curr. Appl. Phys., 2022, 40, 30-42. doi: 10.1016/j.cap.2020.06.002
  22. Aruoma, O.; Murcia, A.; Butler, J.; Halliwell, B. Evaluation of the antioxidant and prooxidant actions of gallic acid and its derivatives. J AGR. Food Chem., 2008, 2008, 41.
  23. Iqbal, M.J.; Kabeer, A.; Abbas, Z.; Siddiqui, H.A.; Calina, D.; Sharifi-Rad, J.; Cho, W.C. Interplay of oxidative stress, cellular communication and signaling pathways in cancer. Cell Commun. Signal., 2024, 22(1), 7. doi: 10.1186/s12964-023-01398-5 PMID: 38167159
  24. Bouyahya, A.; Bakrim, S.; Aboulaghras, S.; El Kadri, K.; Aanniz, T.; Khalid, A.; Abdalla, A.N.; Abdallah, A.A.; Ardianto, C.; Ming, L.C.; El Omari, N. Bioactive compounds from nature: Antioxidants targeting cellular transformation in response to epigenetic perturbations induced by oxidative stress. Biomed. Pharmacother., 2024, 174, 116432. doi: 10.1016/j.biopha.2024.116432 PMID: 38520868
  25. Tossetta, G.; Fantone, S.; Marzioni, D.; Mazzucchelli, R. Role of natural and synthetic compounds in modulating NRF2/KEAP1 signaling pathway in prostate cancer. Cancers, 2023, 15(11), 3037. doi: 10.3390/cancers15113037 PMID: 37296999
  26. Ashrafizadeh, M.; Zarrabi, A.; Mirzaei, S.; Hashemi, F.; Samarghandian, S.; Zabolian, A.; Hushmandi, K.; Ang, H.L.; Sethi, G.; Kumar, A.P.; Ahn, K.S.; Nabavi, N.; Khan, H.; Makvandi, P.; Varma, R.S. Gallic acid for cancer therapy: Molecular mechanisms and boosting efficacy by nanoscopical delivery. Food Chem. Toxicol., 2021, 157, 112576. doi: 10.1016/j.fct.2021.112576 PMID: 34571052
  27. Kaur, M.; Velmurugan, B.; Rajamanickam, S.; Agarwal, R.; Agarwal, C. Gallic acid, an active constituent of grape seed extract, exhibits anti-proliferative, pro-apoptotic and anti-tumorigenic effects against prostate carcinoma xenograft growth in nude mice. Pharm. Res., 2009, 26(9), 2133-2140. doi: 10.1007/s11095-009-9926-y PMID: 19543955
  28. Reddivari, L.; Vanamala, J.; Safe, S.H.; Miller, J.C., Jr The bioactive compounds α-chaconine and gallic acid in potato extracts decrease survival and induce apoptosis in LNCaP and PC3 prostate cancer cells. Nutr. Cancer, 2010, 62(5), 601-610. doi: 10.1080/01635580903532358 PMID: 20574921
  29. Saffari-Chaleshtori, J.; Heidari-Sureshjani, E.; Moradi, F.; Jazi, H.M.; Heidarian, E. The study of apoptosis-inducing effects of three pre-apoptotic factors by gallic acid, using simulation analysis and the comet assay technique on the prostatic cancer cell line PC3. Malays. J. Med. Sci., 2017, 24(4), 18-29. doi: 10.21315/mjms2017.24.4.3 PMID: 28951686
  30. Kuwajerwala, N.; Cifuentes, E.; Gautam, S.; Menon, M.; Barrack, E.R.; Reddy, G.P. Resveratrol induces prostate cancer cell entry into s phase and inhibits DNA synthesis. Cancer Res., 2002, 62(9), 2488-2492. PMID: 11980638
  31. Rashid, A.; Liu, C.; Sanli, T.; Tsiani, E.; Singh, G.; Bristow, R.G.; Dayes, I.; Lukka, H.; Wright, J.; Tsakiridis, T. Resveratrol enhances prostate cancer cell response to ionizing radiation. Modulation of the AMPK, Akt and mTOR pathways. Radiat. Oncol., 2011, 6(1), 144. doi: 10.1186/1748-717X-6-144 PMID: 22029423
  32. Zal, F.; Khademi, F.; Taheri, R.; Mostafavi-Pour, Z. Antioxidant ameliorating effects against H2O2-induced cytotoxicity in primary endometrial cells. Toxicol. Mech. Methods, 2018, 28(2), 122-129. doi: 10.1080/15376516.2017.1372540 PMID: 28849685
  33. Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 1976, 72(1-2), 248-254. doi: 10.1016/0003-2697(76)90527-3 PMID: 942051
  34. Moghadam, D.; Zarei, R.; Vakili, S.; Ghojoghi, R.; Zarezade, V.; Veisi, A.; Sabaghan, M.; Azadbakht, O.; Behrouj, H. The effect of natural polyphenols Resveratrol, Gallic acid, and Kuromanin chloride on human telomerase reverse transcriptase (hTERT) expression in HepG2 hepatocellular carcinoma: role of SIRT1/Nrf2 signaling pathway and oxidative stress. Mol. Biol. Rep., 2023, 50(1), 77-84. doi: 10.1007/s11033-022-08031-7 PMID: 36307623
  35. Aebi, H. Catalase in vitro. Methods in enzymology; Elsevier, 1984, pp. 121-126.
  36. Maiani, G.; Mobarhan, S.; Nicastro, A.; Virgili, F.; Scaccini, C.; Ferro-Luzzi, A. Determination of glutathione reductase activity in erythrocytes and whole blood as an indicator of riboflavin nutrition. Acta Vitaminol. Enzymol., 1983, 5(3), 171-178. PMID: 6650303
  37. Zal, F.; Mostafavi-Pour, Z.; Amini, F.; Heidari, A. Effect of vitamin E and C supplements on lipid peroxidation and GSH-dependent antioxidant enzyme status in the blood of women consuming oral contraceptives. Contraception, 2012, 86(1), 62-66. doi: 10.1016/j.contraception.2011.11.006 PMID: 22494786
  38. Gupta-Elera, G.; Garrett, A.R.; Robison, R.A.; O’Neill, K.L. The role of oxidative stress in prostate cancer. Eur. J. Cancer Prev., 2012, 21(2), 155-162. doi: 10.1097/CEJ.0b013e32834a8002 PMID: 21857523
  39. Khandrika, L.; Kumar, B.; Koul, S.; Maroni, P.; Koul, H.K. Oxidative stress in prostate cancer. Cancer Lett., 2009, 282(2), 125-136. doi: 10.1016/j.canlet.2008.12.011 PMID: 19185987
  40. Abbasi, A.; Movahedpour, A.; Amiri, A.; Najaf, M.S.; Mostafavi-Pour, Z. Darolutamide as a second-generation androgen receptor inhibitor in the treatment of prostate cancer. Curr. Mol. Med., 2020, 21(4), 332-346.
  41. Saikolappan, S.; Kumar, B.; Shishodia, G.; Koul, S.; Koul, H.K. Reactive oxygen species and cancer: A complex interaction. Cancer Lett., 2019, 452, 132-143. doi: 10.1016/j.canlet.2019.03.020 PMID: 30905813
  42. Hayes, J.D.; Dinkova-Kostova, A.T.; Tew, K.D. Oxidative stress in cancer. Cancer Cell, 2020, 38(2), 167-197. doi: 10.1016/j.ccell.2020.06.001 PMID: 32649885
  43. Kumar, B.; Koul, S.; Khandrika, L.; Meacham, R.B.; Koul, H.K. Oxidative stress is inherent in prostate cancer cells and is required for aggressive phenotype. Cancer Res., 2008, 68(6), 1777-1785. doi: 10.1158/0008-5472.CAN-07-5259 PMID: 18339858
  44. Russell, L.H., Jr; Mazzio, E.; Badisa, R.B.; Zhu, Z.P.; Agharahimi, M.; Oriaku, E.T.; Goodman, C.B. Autoxidation of gallic acid induces ROS-dependent death in human prostate cancer LNCaP cells. Anticancer Res., 2012, 32(5), 1595-1602. PMID: 22593437
  45. Zheng, X.; Jia, B.; Tian, X.T.; Song, X.; Wu, M.L.; Kong, Q.Y.; Li, H.; Liu, J. Correlation of reactive oxygen species levels with resveratrol sensitivities of anaplastic thyroid cancer cells. Oxid. Med. Cell. Longev., 2018, 2018, 1-12. doi: 10.1155/2018/6235417 PMID: 30116486
  46. Song, J.; Huang, Y.; Zheng, W.; Yan, J.; Cheng, M.; Zhao, R.; Chen, L.; Hu, C.; Jia, W. Resveratrol reduces intracellular reactive oxygen species levels by inducing autophagy through the AMPK-mTOR pathway. Front. Med., 2018, 12(6), 697-706. doi: 10.1007/s11684-018-0655-7 PMID: 30421395
  47. Rodríguez-Enríquez, S.; Pacheco-Velázquez, S.C.; Marín-Hernández, Á.; Gallardo-Pérez, J.C.; Robledo-Cadena, D.X.; Hernández-Reséndiz, I.; García-García, J.D.; Belmont-Díaz, J.; López-Marure, R.; Hernández-Esquivel, L.; Sánchez-Thomas, R.; Moreno-Sánchez, R. Resveratrol inhibits cancer cell proliferation by impairing oxidative phosphorylation and inducing oxidative stress. Toxicol. Appl. Pharmacol., 2019, 370, 65-77. doi: 10.1016/j.taap.2019.03.008 PMID: 30878505
  48. Aggarwal, V.; Tuli, H.; Varol, A.; Thakral, F.; Yerer, M.; Sak, K.; Varol, M.; Jain, A.; Khan, M.; Sethi, G. Role of reactive oxygen species in cancer progression: molecular mechanisms and recent advancements. Biomolecules, 2019, 9(11), 735. doi: 10.3390/biom9110735 PMID: 31766246
  49. Valenti, G.E.; Tasso, B.; Traverso, N.; Domenicotti, C.; Marengo, B. Glutathione in cancer progression and chemoresistance: An update. Redox. Experim. Med., 2023, 2023(1), e220023.
  50. Traverso, N.; Ricciarelli, R.; Nitti, M.; Marengo, B.; Furfaro, A.L.; Pronzato, M.A.; Marinari, U.M.; Domenicotti, C. Role of glutathione in cancer progression and chemoresistance. Oxid. Med. Cell. Longev., 2013, 2013, 1-10. doi: 10.1155/2013/972913 PMID: 23766865
  51. Sharmila, G.; Bhat, F.A.; Arunkumar, R.; Elumalai, P.; Raja, S.P.; Senthilkumar, K.; Arunakaran, J. Chemopreventive effect of quercetin, a natural dietary flavonoid on prostate cancer in in vivo model. Clin. Nutr., 2014, 33(4), 718-726. doi: 10.1016/j.clnu.2013.08.011 PMID: 24080313
  52. Tang, X.; Ding, H.; Liang, M.; Chen, X.; Yan, Y.; Wan, N.; Chen, Q.; Zhang, J.; Cao, J. Curcumin induces ferroptosis in non‐small‐cell lung cancer via activating autophagy. Thorac. Cancer, 2021, 12(8), 1219-1230. doi: 10.1111/1759-7714.13904 PMID: 33656766
  53. Lee, J.; Jang, C.H.; Kim, Y.; Oh, J.; Kim, J.S. Quercetin-induced glutathione depletion sensitizes colorectal cancer cells to oxaliplatin. Foods, 2023, 12(8), 1733. doi: 10.3390/foods12081733 PMID: 37107528
  54. Guha, P.; Dey, A.; Sen, R.; Chatterjee, M.; Chattopadhyay, S.; Bandyopadhyay, S.K. Intracellular GSH depletion triggered mitochondrial Bax translocation to accomplish resveratrol-induced apoptosis in the U937 cell line. J. Pharmacol. Exp. Ther., 2011, 336(1), 206-214. doi: 10.1124/jpet.110.171983 PMID: 20876229
  55. Na, H.K.; Surh, Y.J. Oncogenic potential of Nrf2 and its principal target protein heme oxygenase-1. Free Radic. Biol. Med., 2014, 67, 353-365. doi: 10.1016/j.freeradbiomed.2013.10.819 PMID: 24200599
  56. Chiang, S.K.; Chen, S.E.; Chang, L.C. The Role of HO-1 and its crosstalk with oxidative stress in cancer cell survival. Cells, 2021, 10(9), 2401. doi: 10.3390/cells10092401 PMID: 34572050
  57. Schultz, M.A.; Hagan, S.S.; Datta, A.; Zhang, Y.; Freeman, M.L.; Sikka, S.C.; Abdel-Mageed, A.B.; Mondal, D. Nrf1 and Nrf2 transcription factors regulate androgen receptor transactivation in prostate cancer cells. PLoS One, 2014, 9(1), e87204. doi: 10.1371/journal.pone.0087204 PMID: 24466341
  58. Khurana, N.; Sikka, S. Targeting crosstalk between Nrf-2, NF-κB and androgen receptor signaling in prostate cancer. Cancers, 2018, 10(10), 352. doi: 10.3390/cancers10100352 PMID: 30257470
  59. Tian, X.; Cong, F.; Guo, H.; Fan, J.; Chao, G.; Song, T. Downregulation of Bach1 protects osteoblasts against hydrogen peroxide-induced oxidative damage in vitro by enhancing the activation of Nrf2/ARE signaling. Chem. Biol. Interact., 2019, 309, 108706. doi: 10.1016/j.cbi.2019.06.019 PMID: 31194955
  60. Davudian, S.; Shajari, N.; Kazemi, T.; Mansoori, B.; Salehi, S.; Mohammadi, A.; Shanehbandi, D.; Shahgoli, V.K.; Asadi, M.; Baradaran, B. BACH1 silencing by siRNA inhibits migration of HT-29 colon cancer cells through reduction of metastasis-related genes. Biomed. Pharmacother., 2016, 84, 191-198. doi: 10.1016/j.biopha.2016.09.021 PMID: 27657827
  61. Liang, Y.; Wu, H.; Lei, R.; Chong, R.A.; Wei, Y.; Lu, X.; Tagkopoulos, I.; Kung, S.Y.; Yang, Q.; Hu, G.; Kang, Y. Transcriptional network analysis identifies BACH1 as a master regulator of breast cancer bone metastasis. J. Biol. Chem., 2012, 287(40), 33533-33544. doi: 10.1074/jbc.M112.392332 PMID: 22875853
  62. Zhu, G.D.; Liu, F.; OuYang, S.; Zhou, R.; Jiang, F.N.; Zhang, B.; Liao, W.J. BACH1 promotes the progression of human colorectal cancer through BACH1/CXCR4 pathway. Biochem. Biophys. Res. Commun., 2018, 499(2), 120-127. doi: 10.1016/j.bbrc.2018.02.178 PMID: 29481800
  63. Yun, J.; Frankenberger, C.A.; Kuo, W.L.; Boelens, M.C.; Eves, E.M.; Cheng, N.; Liang, H.; Li, W.H.; Ishwaran, H.; Minn, A.J.; Rosner, M.R. Signalling pathway for RKIP and Let-7 regulates and predicts metastatic breast cancer. EMBO J., 2011, 30(21), 4500-4514. doi: 10.1038/emboj.2011.312 PMID: 21873975
  64. Kaspar, J.W.; Jaiswal, A.K. Antioxidant-induced phosphorylation of tyrosine 486 leads to rapid nuclear export of Bach1 that allows Nrf2 to bind to the antioxidant response element and activate defensive gene expression. J. Biol. Chem., 2010, 285(1), 153-162. doi: 10.1074/jbc.M109.040022 PMID: 19897490
  65. Glorieux, C.; Enríquez, C.; González, C.; Aguirre-Martínez, G.; Buc Calderon, P. The multifaceted roles of NRF2 in Cancer: friend or foe? Antioxidants, 2024, 13(1), 70. doi: 10.3390/antiox13010070 PMID: 38247494
  66. Wiel, C.; Le Gal, K.; Ibrahim, M.X.; Jahangir, C.A.; Kashif, M.; Yao, H.; Ziegler, D.V.; Xu, X.; Ghosh, T.; Mondal, T.; Kanduri, C.; Lindahl, P.; Sayin, V.I.; Bergo, M.O. BACH1 stabilization by antioxidants stimulates lung cancer metastasis. Cell, 2019, 178(2), 330-345.e22. doi: 10.1016/j.cell.2019.06.005 PMID: 31257027
  67. Reczek, C.R.; Chandel, N.S. The two faces of reactive oxygen species in cancer. Annu. Rev. Cancer Biol., 2017, 1(1), 79-98. doi: 10.1146/annurev-cancerbio-041916-065808
  68. Piskounova, E.; Agathocleous, M.; Murphy, M.M.; Hu, Z.; Huddlestun, S.E.; Zhao, Z.; Leitch, A.M.; Johnson, T.M.; DeBerardinis, R.J.; Morrison, S.J. Oxidative stress inhibits distant metastasis by human melanoma cells. Nature, 2015, 527(7577), 186-191. doi: 10.1038/nature15726 PMID: 26466563
  69. Schafer, Z.T.; Grassian, A.R.; Song, L.; Jiang, Z.; Gerhart-Hines, Z.; Irie, H.Y.; Gao, S.; Puigserver, P.; Brugge, J.S. Antioxidant and oncogene rescue of metabolic defects caused by loss of matrix attachment. Nature, 2009, 461(7260), 109-113. doi: 10.1038/nature08268 PMID: 19693011
  70. Galadari, S.; Rahman, A.; Pallichankandy, S.; Thayyullathil, F. Reactive oxygen species and cancer paradox: To promote or to suppress? Free Radic. Biol. Med., 2017, 104, 144-164. doi: 10.1016/j.freeradbiomed.2017.01.004 PMID: 28088622
  71. Khan, F.; Khan, I.; Farooqui, A.; Ansari, I.A. Carvacrol induces reactive oxygen species (ROS)-mediated apoptosis along with cell cycle arrest at G0/G1 in human prostate cancer cells. Nutr. Cancer, 2017, 69(7), 1075-1087. doi: 10.1080/01635581.2017.1359321 PMID: 28872904
  72. Wang, D.; Gao, Z.; Zhang, X. Resveratrol induces apoptosis in murine prostate cancer cells via hypoxia-inducible factor 1-alpha (HIF-1α)/reactive oxygen species (ROS)/P53 signaling. Med. Sci. Monit., 2018, 24, 8970-8976. doi: 10.12659/MSM.913290 PMID: 30531685
  73. Kim, U.; Kim, C.Y.; Lee, J.M.; Oh, H.; Ryu, B.; Kim, J.; Park, J.H. Phloretin inhibits the human prostate cancer cells through the generation of reactive oxygen species. Pathol. Oncol. Res., 2020, 26(2), 977-984. doi: 10.1007/s12253-019-00643-y PMID: 30937835
  74. Kandoth, C.; McLellan, M.D.; Vandin, F.; Ye, K.; Niu, B.; Lu, C.; Xie, M.; Zhang, Q.; McMichael, J.F.; Wyczalkowski, M.A.; Leiserson, M.D.M.; Miller, C.A.; Welch, J.S.; Walter, M.J.; Wendl, M.C.; Ley, T.J.; Wilson, R.K.; Raphael, B.J.; Ding, L. Mutational landscape and significance across 12 major cancer types. Nature, 2013, 502(7471), 333-339. doi: 10.1038/nature12634 PMID: 24132290
  75. Goldstein, L.D.; Lee, J.; Gnad, F.; Klijn, C.; Schaub, A.; Reeder, J.; Daemen, A.; Bakalarski, C.E.; Holcomb, T.; Shames, D.S.; Hartmaier, R.J.; Chmielecki, J.; Seshagiri, S.; Gentleman, R.; Stokoe, D. Recurrent loss of NFE2L2 exon 2 is a mechanism for Nrf2 pathway activation in human cancers. Cell Rep., 2016, 16(10), 2605-2617. doi: 10.1016/j.celrep.2016.08.010 PMID: 27568559
  76. Fabrizio, F.P.; Costantini, M.; Copetti, M.; la Torre, A.; Sparaneo, A.; Fontana, A.; Poeta, L.; Gallucci, M.; Sentinelli, S.; Graziano, P.; Parente, P.; Pompeo, V.; Salvo, L.D.; Simone, G.; Papalia, R.; Picardo, F.; Balsamo, T.; Flammia, G.P.; Trombetta, D.; Pantalone, A.; Kok, K.; Paranita, F.; Muscarella, L.A.; Fazio, V.M. Keap1/Nrf2 pathway in kidney cancer: frequent methylation of KEAP1 gene promoter in clear renal cell carcinoma. Oncotarget, 2017, 8(7), 11187-11198. doi: 10.18632/oncotarget.14492 PMID: 28061437
  77. Inami, Y.; Waguri, S.; Sakamoto, A.; Kouno, T.; Nakada, K.; Hino, O.; Watanabe, S.; Ando, J.; Iwadate, M.; Yamamoto, M.; Lee, M.S.; Tanaka, K.; Komatsu, M. Persistent activation of Nrf2 through p62 in hepatocellular carcinoma cells. J. Cell Biol., 2011, 193(2), 275-284. doi: 10.1083/jcb.201102031 PMID: 21482715
  78. Komatsu, M.; Kurokawa, H.; Waguri, S.; Taguchi, K.; Kobayashi, A.; Ichimura, Y.; Sou, Y.S.; Ueno, I.; Sakamoto, A.; Tong, K.I.; Kim, M.; Nishito, Y.; Iemura, S.; Natsume, T.; Ueno, T.; Kominami, E.; Motohashi, H.; Tanaka, K.; Yamamoto, M. The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nat. Cell Biol., 2010, 12(3), 213-223. doi: 10.1038/ncb2021 PMID: 20173742
  79. DeNicola, G.M.; Karreth, F.A.; Humpton, T.J.; Gopinathan, A.; Wei, C.; Frese, K.; Mangal, D.; Yu, K.H.; Yeo, C.J.; Calhoun, E.S.; Scrimieri, F.; Winter, J.M.; Hruban, R.H.; Iacobuzio-Donahue, C.; Kern, S.E.; Blair, I.A.; Tuveson, D.A. Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature, 2011, 475(7354), 106-109. doi: 10.1038/nature10189 PMID: 21734707
  80. Okazaki, K.; Papagiannakopoulos, T.; Motohashi, H. Metabolic features of cancer cells in NRF2 addiction status. Biophys. Rev., 2020, 12(2), 435-441. doi: 10.1007/s12551-020-00659-8 PMID: 32112372
  81. Zhang, P.; Singh, A.; Yegnasubramanian, S.; Esopi, D.; Kombairaju, P.; Bodas, M.; Wu, H.; Bova, S.G.; Biswal, S. Loss of Kelch-like ECH-associated protein 1 function in prostate cancer cells causes chemoresistance and radioresistance and promotes tumor growth. Mol. Cancer Ther., 2010, 9(2), 336-346. doi: 10.1158/1535-7163.MCT-09-0589 PMID: 20124447
  82. Lu, D.Y.; Yeh, W.L.; Huang, S.M.; Tang, C.H.; Lin, H.Y.; Chou, S.J. Osteopontin increases heme oxygenase–1 expression and subsequently induces cell migration and invasion in glioma cells. Neuro-oncol., 2012, 14(11), 1367-1378. doi: 10.1093/neuonc/nos262 PMID: 23074199
  83. Zhu, J.; Wang, H.; Sun, Q.; Ji, X.; Zhu, L.; Cong, Z.; Zhou, Y.; Liu, H.; Zhou, M. Nrf2 is required to maintain the self-renewal of glioma stem cells. BMC Cancer, 2013, 13(1), 380. doi: 10.1186/1471-2407-13-380 PMID: 23937621
  84. Shen, H.; Yang, Y.; Xia, S.; Rao, B.; Zhang, J.; Wang, J. Blockage of Nrf2 suppresses the migration and invasion of esophageal squamous cell carcinoma cells in hypoxic microenvironment. Dis. Esophagus, 2014, 27(7), 685-692. doi: 10.1111/dote.12124 PMID: 24028437
  85. Do, M.T.; Kim, H.G.; Khanal, T.; Choi, J.H.; Kim, D.H.; Jeong, T.C.; Jeong, H.G. Metformin inhibits heme oxygenase-1 expression in cancer cells through inactivation of Raf-ERK-Nrf2 signaling and AMPK-independent pathways. Toxicol. Appl. Pharmacol., 2013, 271(2), 229-238. doi: 10.1016/j.taap.2013.05.010 PMID: 23707609
  86. Ma, D.; Fang, Q.; Wang, P.; Gao, R.; Wu, W.; Lu, T.; Cao, L.; Hu, X.; Wang, J. Induction of heme oxygenase-1 by Na+-H+ exchanger 1 protein plays a crucial role in imatinib-resistant chronic myeloid leukemia cells. J. Biol. Chem., 2015, 290(20), 12558-12571. doi: 10.1074/jbc.M114.626960 PMID: 25802333
  87. Zhong, Y.; Zhang, F.; Sun, Z.; Zhou, W.; Li, Z.Y.; You, Q.D.; Guo, Q.L.; Hu, R. Drug resistance associates with activation of Nrf2 in MCF ‐7/DOX cells, and wogonin reverses it by down‐regulating Nrf2‐mediated cellular defense response. Mol. Carcinog., 2013, 52(10), 824-834. doi: 10.1002/mc.21921 PMID: 22593043
  88. Bao, L-J.; Jaramillo, M.C.; Zhang, Z-B.; Zheng, Y-X.; Yao, M.; Zhang, D.D.; Yi, X-F. Nrf2 induces cisplatin resistance through activation of autophagy in ovarian carcinoma. Int. J. Clin. Exp. Pathol., 2014, 7(4), 1502-1513. PMID: 24817946
  89. Jayakumar, S.; Kunwar, A.; Sandur, S.K.; Pandey, B.N.; Chaubey, R.C. Differential response of DU145 and PC3 prostate cancer cells to ionizing radiation: Role of reactive oxygen species, GSH and Nrf2 in radiosensitivity. Biochim. Biophys. Acta, Gen. Subj., 2014, 1840(1), 485-494. doi: 10.1016/j.bbagen.2013.10.006 PMID: 24121106
  90. Furfaro, A.L.; Traverso, N.; Domenicotti, C.; Piras, S.; Moretta, L.; Marinari, U.M.; Pronzato, M.A.; Nitti, M. The Nrf2/HO-1 axis in cancer cell growth and chemoresistance. Oxid. Med. Cell. Longev., 2016, 2016, 1-14. doi: 10.1155/2016/1958174 PMID: 26697129
  91. Gorrini, C.; Harris, I.S.; Mak, T.W. Modulation of oxidative stress as an anticancer strategy. Nat. Rev. Drug Discov., 2013, 12(12), 931-947. doi: 10.1038/nrd4002 PMID: 24287781
  92. Singh, C.K.; Chhabra, G.; Ndiaye, M.A.; Siddiqui, I.A.; Panackal, J.E.; Mintie, C.A.; Ahmad, N. Quercetin–resveratrol combination for prostate cancer management in TRAMP mice. Cancers , 2020, 12(8), 2141. doi: 10.3390/cancers12082141 PMID: 32748838
  93. Fonseca, J.; Moradi, F.; Maddalena, L.A.; Ferreira-Tollstadius, B.; Selim, S.; Stuart, J.A. Resveratrol integrates metabolic and growth effects in PC3 prostate cancer cells-involvement of prolyl hydroxylase and hypoxia inducible factor-1. Oncol. Lett., 2019, 17(1), 697-705. PMID: 30655819
  94. Zhang, J.; Wang, X.; Vikash, V.; Ye, Q.; Wu, D.; Liu, Y.; Dong, W. ROS and ROS-mediated cellular signaling. Oxid. Med. Cell. Longev., 2016, 2016, 1-18. doi: 10.1155/2016/4350965 PMID: 26998193
  95. Rudrapal, M.; Khairnar, S.J.; Khan, J.; Dukhyil, A.B.; Ansari, M.A.; Alomary, M.N.; Alshabrmi, F.M.; Palai, S.; Deb, P.K.; Devi, R. Dietary polyphenols and their role in oxidative stress-induced human diseases: Insights into protective effects, antioxidant potentials and mechanism (s) of action. Front. Pharmacol., 2022, 13, 806470. doi: 10.3389/fphar.2022.806470 PMID: 35237163
  96. Buttari, B.; Arese, M.; Oberley-Deegan, R.E.; Saso, L.; Chatterjee, A. NRF2: A crucial regulator for mitochondrial metabolic shift and prostate cancer progression. Front. Physiol., 2022, 13, 989793. doi: 10.3389/fphys.2022.989793 PMID: 36213236
  97. Shiota, M. Oxidative stress and prostate cancer. Cancer; 2nd ed; Preedy, V.R.; Patel, V.B., Eds.; Academic Press: San Diego, 2021, pp. 15-26. doi: 10.1016/B978-0-12-819547-5.00002-X
  98. Oh, B.; Figtree, G.; Costa, D.; Eade, T.; Hruby, G.; Lim, S.; Elfiky, A.; Martine, N.; Rosenthal, D.; Clarke, S.; Back, M. Oxidative stress in prostate cancer patients: A systematic review of case control studies. Prostate Int., 2016, 4(3), 71-87. doi: 10.1016/j.prnil.2016.05.002 PMID: 27689064
  99. Shukla, S.; Srivastava, J.K.; Shankar, E.; Kanwal, R.; Nawab, A.; Sharma, H.; Bhaskaran, N.; Ponsky, L.E.; Fu, P.; MacLennan, G.T.; Gupta, S. Oxidative stress and antioxidant status in high-risk prostate cancer subjects. Diagnostics, 2020, 10(3), 126. doi: 10.3390/diagnostics10030126 PMID: 32120827

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Bentham Science Publishers, 2024