Resveratrol Inhibits Nasopharyngeal Carcinoma (NPC) by Targeting the MAPK Signaling Pathway


Cite item

Full Text

Abstract

Background:With conventional cancer treatments facing limitations, interest in plant-derived natural products as potential alternatives is increasing. Although resveratrol has demonstrated antitumor effects in various cancers, its impact and mechanism on nasopharyngeal carcinoma remain unclear

Objective:This study aimed to systematically investigate the anti-cancer effects of resveratrol on nasopharyngeal carcinoma using a combination of experimental pharmacology, network pharmacology, and molecular docking approaches.

Methods:Resveratrol inhibited the proliferation, invasion, and migration of nasopharyngeal carcinoma cells, ultimately inducing apoptosis in a time- and dose-dependent manner. Network pharmacology analysis revealed that resveratrol may exert its anti-nasopharyngeal carcinoma effect mainly through the MAPK pathway. Immunohistochemistry results from clinical cases showed MAPK signaling activation in nasopharyngeal carcinoma tissues compared to adjacent tissues. Western blotting validated the targeting effect of resveratrol, demonstrating significant inhibition of the MAPK signaling pathway. Furthermore, molecular docking supported its multi-target role with MAPK, TP53, PIK3CA, SRC, etc.

Results:Resveratrol inhibited the proliferation, invasion, and migration of nasopharyngeal carcinoma cells, ultimately inducing apoptosis in a time- and dose-dependent manner. Network pharmacology analysis revealed that resveratrol may exert its anti-nasopharyngeal carcinoma effect mainly through the MAPK pathway. Immunohistochemistry results from clinical cases showed MAPK signaling activation in nasopharyngeal carcinoma tissues compared to adjacent tissues. Western blotting validated the targeting effect of resveratrol, demonstrating significant inhibition of the MAPK signaling pathway. Furthermore, molecular docking supported its multi-target role with MAPK, TP53, PIK3CA, SRC, etc.

Conclusion:Resveratrol has shown promising potential in inhibiting human nasopharyngeal carcinoma cells by primarily targeting the MAPK pathway. These findings position resveratrol as a potential therapeutic agent for nasopharyngeal carcinoma.

About the authors

Yujuan Yi

Institute (College) of Integrated Medicine, Dalian Medical University

Email: info@benthamscience.net

Bo Zhou

Institute (College) of Integrated Medicine, Dalian Medical University

Email: info@benthamscience.net

Tengjun Man

Institute (College) of Integrated Medicine, Dalian Medical University

Email: info@benthamscience.net

Zihan Xu

Institute (College) of Integrated Medicine,, Dalian Medical University

Email: info@benthamscience.net

Hong Tang

Department of Oncology, The First Affiliated Hospital of Dalian Medical University

Email: info@benthamscience.net

Jia Li

Department of Oncology, The First Affiliated Hospital of Dalian Medical University

Author for correspondence.
Email: info@benthamscience.net

Zheng Sun

Institute (College) of Integrated Medicine, Dalian Medical University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Chua, M.L.K.; Wee, J.T.S.; Hui, E.P.; Chan, A.T.C. Nasopharyngeal carcinoma. Lancet, 2016, 387(10022), 1012-1024. doi: 10.1016/S0140-6736(15)00055-0 PMID: 26321262
  2. Wong, K.C.W.; Hui, E.P.; Lo, K.W.; Lam, W.K.J.; Johnson, D.; Li, L.; Tao, Q.; Chan, K.C.A.; To, K.F.; King, A.D.; Ma, B.B.Y.; Chan, A.T.C. Nasopharyngeal carcinoma: An evolving paradigm. Nat. Rev. Clin. Oncol., 2021, 18(11), 679-695. doi: 10.1038/s41571-021-00524-x PMID: 34194007
  3. Bossi, P.; Chan, A.T.; Licitra, L.; Trama, A.; Orlandi, E.; Hui, E.P.; Halámková, J.; Mattheis, S.; Baujat, B.; Hardillo, J.; Smeele, L.; van Herpen, C.; Castro, A.; Machiels, J.P. Nasopharyngeal carcinoma: ESMO-EURACAN clinical practice guidelines for diagnosis, treatment and follow-up†. Ann. Oncol., 2021, 32(4), 452-465. doi: 10.1016/j.annonc.2020.12.007 PMID: 33358989
  4. Tang, L.L.; Chen, Y.P.; Chen, C.B.; Chen, M.Y.; Chen, N.Y.; Chen, X.Z.; Du, X.J.; Fang, W.F.; Feng, M.; Gao, J.; Han, F.; He, X.; Hu, C.S.; Hu, D.; Hu, G.Y.; Jiang, H.; Jiang, W.; Jin, F.; Lang, J.Y.; Li, J.G.; Lin, S.J.; Liu, X.; Liu, Q.F.; Ma, L.; Mai, H.Q.; Qin, J.Y.; Shen, L.F.; Sun, Y.; Wang, P.G.; Wang, R.S.; Wang, R.Z.; Wang, X.S.; Wang, Y.; Wu, H.; Xia, Y.F.; Xiao, S.W.; Yang, K.Y.; Yi, J.L.; Zhu, X.D.; Ma, J. The Chinese Society of Clinical Oncology (CSCO) clinical guidelines for the diagnosis and treatment of nasopharyngeal carcinoma. Cancer Commun. (Lond.), 2021, 41(11), 1195-1227. doi: 10.1002/cac2.12218 PMID: 34699681
  5. Huang, T.; Ploner, A.; Chang, E.T.; Liu, Q.; Cai, Y.; Zhang, Z.; Chen, G.; Huang, Q.; Xie, S.; Cao, S.; Jia, W.; Zheng, Y.; Liao, J.; Chen, Y.; Lin, L.; Ernberg, I.; Huang, G.; Zeng, Y.; Zeng, Y.; Adami, H.O.; Ye, W. Dietary patterns and risk of nasopharyngeal carcinoma: A population-based case-control study in southern China. Am. J. Clin. Nutr., 2021, 114(2), 462-471. doi: 10.1093/ajcn/nqab114 PMID: 33963745
  6. Chen, Y.; Chang, E.T.; Liu, Z.; Liu, Q.; Cai, Y.; Zhang, Z.; Chen, G.; Huang, Q.H.; Xie, S.H.; Cao, S.M.; Jia, W.H.; Zheng, Y.; Li, Y.; Lin, L.; Ernberg, I.; Zhao, H.; Feng, R.; Huang, G.; Zeng, Y.; Zeng, Y.X.; Adami, H.O.; Ye, W. Residence characteristics and risk of nasopharyngeal carcinoma in southern China: A population-based case-control study. Environ. Int., 2021, 151, 106455. doi: 10.1016/j.envint.2021.106455 PMID: 33652252
  7. Chen, Y.; Chang, E.T.; Liu, Q.; Cai, Y.; Zhang, Z.; Chen, G.; Huang, Q.H.; Xie, S.H.; Cao, S.M.; Jia, W.H.; Zheng, Y.; Li, Y.; Lin, L.; Ernberg, I.; Wang, D.; Chen, W.; Feng, R.; Huang, G.; Zeng, Y.X.; Adami, H.O.; Ye, W. Occupational exposures and risk of nasopharyngeal carcinoma in a high-risk area: A population-based case-control study. Cancer, 2021, 127(15), 2724-2735. doi: 10.1002/cncr.33536 PMID: 33823062
  8. Argirion, I.; Zarins, K.R.; Ruterbusch, J.J.; Vatanasapt, P.; Sriplung, H.; Seymour, E.K.; Rozek, L.S. Increasing incidence of epstein-barr virus–related nasopharyngeal carcinoma in the united states. Cancer, 2020, 126(1), 121-130. doi: 10.1002/cncr.32517 PMID: 31524955
  9. Su, Z.Y.; Siak, P.Y.; Leong, C.O.; Cheah, S.C. The role of Epstein–Barr virus in nasopharyngeal carcinoma. Front. Microbiol., 2023, 14, 1116143. doi: 10.3389/fmicb.2023.1116143 PMID: 36846758
  10. Zhang, Y.; Rumgay, H.; Li, M.; Cao, S.; Chen, W. Nasopharyngeal cancer incidence and mortality in 185 countries in 2020 and the projected burden in 2040: Population-based global epidemiological profiling. JMIR Public Health Surveill., 2023, 9, e49968. doi: 10.2196/49968 PMID: 37728964
  11. Su, Z.Y.; Siak, P.Y.; Leong, C.O.; Cheah, S.C. Nasopharyngeal carcinoma and its microenvironment: Past, current, and future perspectives. Front. Oncol., 2022, 12, 840467. doi: 10.3389/fonc.2022.840467 PMID: 35311066
  12. Toumi, N.; Ennouri, S.; Charfeddine, I.; Daoud, J.; Khanfir, A. Prognostic factors in metastatic nasopharyngeal carcinoma. Rev. Bras. Otorrinolaringol., 2022, 88(2), 212-219. doi: 10.1016/j.bjorl.2020.05.022 PMID: 32690385
  13. Guan, S.; Wei, J.; Huang, L.; Wu, L. Chemotherapy and chemo-resistance in nasopharyngeal carcinoma. Eur. J. Med. Chem., 2020, 207, 112758. doi: 10.1016/j.ejmech.2020.112758 PMID: 32858472
  14. Hashem, S.; Ali, T.A.; Akhtar, S.; Nisar, S.; Sageena, G.; Ali, S.; Al-Mannai, S.; Therachiyil, L.; Mir, R.; Elfaki, I.; Mir, M.M.; Jamal, F.; Masoodi, T.; Uddin, S.; Singh, M.; Haris, M.; Macha, M.; Bhat, A.A. Targeting cancer signaling pathways by natural products: Exploring promising anti-cancer agents. Biomed. Pharmacother., 2022, 150, 113054. doi: 10.1016/j.biopha.2022.113054 PMID: 35658225
  15. Ren, X.; Xie, X.; Chen, B.; Liu, L.; Jiang, C.; Qian, Q. Marine natural products: A potential source of anti-hepatocellular carcinoma drugs. J. Med. Chem., 2021, 64(12), 7879-7899. doi: 10.1021/acs.jmedchem.0c02026 PMID: 34128674
  16. Ma, L.; Zhang, M.; Zhao, R.; Wang, D.; Ma, Y.; Ai, L. Plant natural products: Promising resources for cancer chemoprevention. Molecules, 2021, 26(4), 933. doi: 10.3390/molecules26040933 PMID: 33578780
  17. Gallego-Jara, J.; Lozano-Terol, G.; Sola-Martínez, R.A.; Cánovas-Díaz, M.; de Diego Puente, T. A compressive review about taxol®: History and future challenges. Molecules, 2020, 25(24), 5986. doi: 10.3390/molecules25245986 PMID: 33348838
  18. Sharifi-Rad, J.; Quispe, C.; Patra, J.K.; Singh, Y.D.; Panda, M.K.; Das, G.; Adetunji, C.O.; Michael, O.S.; Sytar, O.; Polito, L.; Živković, J.; Cruz-Martins, N.; Klimek-Szczykutowicz, M.; Ekiert, H.; Choudhary, M.I.; Ayatollahi, S.A.; Tynybekov, B.; Kobarfard, F.; Muntean, A.C.; Grozea, I.; Daştan, S.D.; Butnariu, M.; Szopa, A.; Calina, D. Paclitaxel: Application in modern oncology and nanomedicine-based cancer therapy. Oxid. Med. Cell. Longev., 2021, 2021, 1-24. doi: 10.1155/2021/3687700 PMID: 34707776
  19. Yu, D.L.; Lou, Z.P.; Ma, F.Y.; Najafi, M. The interactions of paclitaxel with tumour microenvironment. Int. Immunopharmacol., 2022, 105, 108555. doi: 10.1016/j.intimp.2022.108555 PMID: 35121223
  20. Kumar, S.; Chang, Y-C.; Lai, K-H.; Hwang, T-L. Resveratrol, a molecule with anti-inflammatory and anti-cancer activities: Natural product to chemical synthesis. Curr. Med. Chem., 2021, 28(19), 3773-3786. doi: 10.2174/1875533XMTEwrMDQh5 PMID: 32957870
  21. Yang, J.; Wang, Y.; Cai, X.; Qu, B.; Zhang, Y.; Sun, Z.; Yan, J. Comparative pharmacokinetics and tissue distribution of polydatin, resveratrol, and emodin after oral administration of Huzhang and Huzhang-Guizhi herb-pair extracts to rats. J. Ethnopharmacol., 2024, 318(Pt B), 117010. doi: 10.1016/j.jep.2023.117010 PMID: 37557937
  22. Bang, T.H.; Park, B.S.; Kang, H.M.; Kim, J.H.; Kim, I.R. Polydatin, a glycoside of resveratrol, induces apoptosis and inhibits metastasis oral squamous cell carcinoma cells in vitro. Pharmaceuticals (Basel), 2021, 14(9), 902. doi: 10.3390/ph14090902 PMID: 34577602
  23. Hu, H.C.; Lei, Y.H.; Zhang, W.H.; Luo, X.Q. antioxidant and anti-inflammatory properties of resveratrol in diabetic nephropathy: A systematic review and meta-analysis of animal studies. Front. Pharmacol., 2022, 13, 841818. doi: 10.3389/fphar.2022.841818 PMID: 35355720
  24. Wang, Q.; Yu, Q.; Wu, M. Antioxidant and neuroprotective actions of resveratrol in cerebrovascular diseases. Front. Pharmacol., 2022, 13, 948889. doi: 10.3389/fphar.2022.948889 PMID: 36133823
  25. Bartra, C.; Yuan, Y.; Vuraić, K.; Valdés-Quiroz, H.; Garcia-Baucells, P.; Slevin, M.; Pastorello, Y.; Suñol, C.; Sanfeliu, C. Resveratrol activates antioxidant protective mechanisms in cellular models of alzheimer’s disease inflammation. Antioxidants, 2024, 13(2), 177. doi: 10.3390/antiox13020177 PMID: 38397775
  26. Zhang, B.; Zhang, Y.; Liu, X.; Zhao, C.; Yin, J.; Li, X.; Zhang, X.; Wang, J.; Wang, S. Distinctive anti-inflammatory effects of resveratrol, dihydroresveratrol, and 3-(4-hydroxyphenyl)-propionic acid on DSS-induced colitis in pseudo-germ-free mice. Food Chem., 2023, 400, 133904. doi: 10.1016/j.foodchem.2022.133904 PMID: 36055136
  27. Hu, L.F.; Lan, H.R.; Li, X.M.; Jin, K.T. A systematic review of the potential chemoprotective effects of resveratrol on doxorubicin-induced cardiotoxicity: Focus on the antioxidant, antiapoptotic, and anti-inflammatory activities. Oxid. Med. Cell. Longev., 2021, 2021, 1-19. doi: 10.1155/2021/2951697 PMID: 34471463
  28. Chen, L.; Musa, A.E. Boosting immune system against cancer by resveratrol. Phytother. Res., 2021, 35(10), 5514-5526. doi: 10.1002/ptr.7189 PMID: 34101276
  29. Zucchi, A.; Claps, F.; Pastore, A.L.; Perotti, A.; Biagini, A.; Sallicandro, L.; Gentile, R.; Caglioti, C.; Palazzetti, F.; Fioretti, B. Focus on the use of resveratrol in bladder cancer. Int. J. Mol. Sci., 2023, 24(5), 4562. doi: 10.3390/ijms24054562 PMID: 36901993
  30. Nadile, M.; Retsidou, M.I.; Gioti, K.; Beloukas, A.; Tsiani, E. Resveratrol against cervical cancer: Evidence from in vitro and in vivo studies. Nutrients, 2022, 14(24), 5273. doi: 10.3390/nu14245273 PMID: 36558430
  31. Fukuda, M.; Ogasawara, Y.; Hayashi, H.; Inoue, K.; Sakashita, H. Resveratrol inhibits proliferation and induces autophagy by blocking SREBP1 expression in oral cancer cells. Molecules, 2022, 27(23), 8250. doi: 10.3390/molecules27238250 PMID: 36500345
  32. Huang, T.T.; Lin, H.C.; Chen, C.C.; Lu, C.C.; Wei, C.F.; Wu, T.S.; Liu, F.G.; Lai, H.C. Resveratrol induces apoptosis of human nasopharyngeal carcinoma cells via activation of multiple apoptotic pathways. J. Cell. Physiol., 2011, 226(3), 720-728. doi: 10.1002/jcp.22391 PMID: 20717957
  33. Yang, H.Y.; Liu, M.L.; Luo, P.; Yao, X.S.; Zhou, H. Network pharmacology provides a systematic approach to understanding the treatment of ischemic heart diseases with traditional Chinese medicine. Phytomedicine, 2022, 104, 154268. doi: 10.1016/j.phymed.2022.154268 PMID: 35777118
  34. Nogales, C.; Mamdouh, Z.M.; List, M.; Kiel, C.; Casas, A.I.; Schmidt, H.H.H.W. Network pharmacology: Curing causal mechanisms instead of treating symptoms. Trends Pharmacol. Sci., 2022, 43(2), 136-150. doi: 10.1016/j.tips.2021.11.004 PMID: 34895945
  35. Zhang, P.; Zhang, D.; Zhou, W.; Wang, L.; Wang, B.; Zhang, T.; Li, S. Network pharmacology: Towards the artificial intelligence-based precision traditional Chinese medicine. Brief. Bioinform., 2023, 25(1), bbad518. doi: 10.1093/bib/bbad518
  36. Gao, F.; Niu, Y.; Sun, L.; Li, W.; Xia, H.; Zhang, Y.; Geng, S.; Guo, Z.; Lin, H.; Du, G. Integrating network pharmacology and transcriptomic validation to investigate the efficacy and mechanism of Mufangji decoction preventing lung cancer. J. Ethnopharmacol., 2022, 298, 115573. doi: 10.1016/j.jep.2022.115573 PMID: 35917893
  37. Zheng, Y.; Zhong, Z.; Guo, X. Network pharmacology-based and molecular docking analysis of resveratrol’s pharmacological effects on type I endometrial cancer. Anticancer. Agents Med. Chem., 2022, 22(10), 1933-1944. doi: 10.2174/1871520621666211015140455 PMID: 34773964
  38. Lin, F.; Zhang, G.; Yang, X.; Wang, M.; Wang, R.; Wan, M.; Wang, J.; Wu, B.; Yan, T.; Jia, Y. A network pharmacology approach and experimental validation to investigate the anticancer mechanism and potential active targets of ethanol extract of Wei-Tong-Xin against colorectal cancer through induction of apoptosis via PI3K/AKT signaling pathway. J. Ethnopharmacol., 2023, 303, 115933. doi: 10.1016/j.jep.2022.115933 PMID: 36403742
  39. Wang, Z.; Xie, J.; Yan, M.; Wang, J.; Wang, X.; Zhang, J.; Zhang, Y.; Li, P.; Lei, X.; Huang, Q.; Lin, S.; Guo, X.; Liu, Q. Downregulation of ATOH8 induced by EBV-encoded LMP1 contributes to the malignant phenotype of nasopharyngeal carcinoma. Oncotarget, 2016, 7(18), 26765-26779. doi: 10.18632/oncotarget.8503 PMID: 27049918
  40. Guan, Z.; Zhang, J.; Wang, J.; Wang, H.; Zheng, F.; Peng, J.; Xu, Y.; Yan, M.; Liu, B.; Cui, B.; Huang, Y.; Liu, Q. SOX1 down-regulates β-catenin and reverses malignant phenotype in nasopharyngeal carcinoma. Mol. Cancer, 2014, 13(1), 257. doi: 10.1186/1476-4598-13-257 PMID: 25427424
  41. Yan, M.; Zhang, Y.; He, B.; Xiang, J.; Wang, Z.; Zheng, F.; Xu, J.; Chen, M.; Zhu, Y.; Wen, H.; Wan, X.; Yue, C.; Yang, N.; Zhang, W.; Zhang, J.; Wang, J.; Wang, Y.; Li, L.; Zeng, Y.; Lam, E.W.F.; Hung, M.C.; Liu, Q. IKKα restoration via EZH2 suppression induces nasopharyngeal carcinoma differentiation. Nat. Commun., 2014, 5(1), 3661. doi: 10.1038/ncomms4661 PMID: 24739462
  42. Ru, J.; Li, P.; Wang, J.; Zhou, W.; Li, B.; Huang, C.; Li, P.; Guo, Z.; Tao, W.; Yang, Y.; Xu, X.; Li, Y.; Wang, Y.; Yang, L. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. J. Cheminform., 2014, 6(1), 13. doi: 10.1186/1758-2946-6-13 PMID: 24735618
  43. Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.A.; Thiessen, P.A.; Yu, B.; Zaslavsky, L.; Zhang, J.; Bolton, E.E. PubChem in 2021: new data content and improved web interfaces. Nucleic Acids Res., 2021, 49(D1), D1388-D1395. doi: 10.1093/nar/gkaa971 PMID: 33151290
  44. Daina, A.; Michielin, O.; Zoete, V. SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res., 2019, 47(W1), W357-W364. doi: 10.1093/nar/gkz382 PMID: 31106366
  45. Wishart, D.S.; Feunang, Y.D.; Guo, A.C.; Lo, E.J.; Marcu, A.; Grant, J.R.; Sajed, T.; Johnson, D.; Li, C.; Sayeeda, Z.; Assempour, N.; Iynkkaran, I.; Liu, Y.; Maciejewski, A.; Gale, N.; Wilson, A.; Chin, L.; Cummings, R.; Le, D.; Pon, A.; Knox, C.; Wilson, M. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Res., 2018, 46(D1), D1074-D1082. doi: 10.1093/nar/gkx1037 PMID: 29126136
  46. Wang, X.; Shen, Y.; Wang, S.; Li, S.; Zhang, W.; Liu, X.; Lai, L.; Pei, J.; Li, H. PharmMapper 2017 update: A web server for potential drug target identification with a comprehensive target pharmacophore database. Nucleic Acids Res., 2017, 45(W1), W356-W360. doi: 10.1093/nar/gkx374 PMID: 28472422
  47. McGarvey, P.B.; Nightingale, A.; Luo, J.; Huang, H.; Martin, M.J.; Wu, C.; Consortium, U.P. UniProt genomic mapping for deciphering functional effects of missense variants. Hum. Mutat., 2019, 40(6), 694-705. doi: 10.1002/humu.23738 PMID: 30840782
  48. Piñero, J.; Ramírez-Anguita, J.M.; Saüch-Pitarch, J.; Ronzano, F.; Centeno, E.; Sanz, F.; Furlong, L.I. The DisGeNET knowledge platform for disease genomics: 2019 update. Nucleic Acids Res., 2019, 48(D1), gkz1021. doi: 10.1093/nar/gkz1021 PMID: 31680165
  49. Fishilevich, S.; Zimmerman, S.; Kohn, A.; Iny Stein, T.; Olender, T.; Kolker, E.; Safran, M.; Lancet, D. Genic insights from integrated human proteomics in GeneCards. Database (Oxford), 2016, 2016, baw030. doi: 10.1093/database/baw030 PMID: 27048349
  50. Zhou, Y.; Zhang, Y.; Zhao, D.; Yu, X.; Shen, X.; Zhou, Y.; Wang, S.; Qiu, Y.; Chen, Y.; Zhu, F. TTD: Therapeutic target database describing target druggability information. Nucleic Acids Res., 2024, 52(D1), D1465-D1477. doi: 10.1093/nar/gkad751 PMID: 37713619
  51. Amberger, J.S.; Bocchini, C.A.; Schiettecatte, F.; Scott, A.F.; Hamosh, A. OMIM.org: Online Mendelian Inheritance in Man (OMIM®), an online catalog of human genes and genetic disorders. Nucleic Acids Res., 2015, 43(D1), D789-D798. doi: 10.1093/nar/gku1205 PMID: 25428349
  52. Davis, A.P.; Grondin, C.J.; Johnson, R.J.; Sciaky, D.; Wiegers, J.; Wiegers, T.C.; Mattingly, C.J. Comparative Toxicogenomics Database (CTD): update 2021. Nucleic Acids Res., 2021, 49(D1), D1138-D1143. doi: 10.1093/nar/gkaa891 PMID: 33068428
  53. Szklarczyk, D.; Kirsch, R.; Koutrouli, M.; Nastou, K.; Mehryary, F.; Hachilif, R.; Gable, A.L.; Fang, T.; Doncheva, N.T.; Pyysalo, S.; Bork, P.; Jensen, L.J.; von Mering, C. The STRING database in 2023: protein–protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res., 2023, 51(D1), D638-D646. doi: 10.1093/nar/gkac1000 PMID: 36370105
  54. Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res., 2003, 13(11), 2498-2504. doi: 10.1101/gr.1239303 PMID: 14597658
  55. Sk, B. Impact of Structural Biologists and theProtein Data Bank, 2021.
  56. Seeliger, D.; de Groot, B.L. Ligand docking and binding site analysis with PyMOL and Autodock/Vina. J. Comput. Aided Mol. Des., 2010, 24(5), 417-422. doi: 10.1007/s10822-010-9352-6 PMID: 20401516
  57. Singh, A.P.; Singh, R.; Verma, S.S.; Rai, V.; Kaschula, C.H.; Maiti, P.; Gupta, S.C. Health benefits of resveratrol: Evidence from clinical studies. Med. Res. Rev., 2019, 39(5), 1851-1891. doi: 10.1002/med.21565 PMID: 30741437
  58. Ren, B.; Kwah, M.X.Y.; Liu, C.; Ma, Z.; Shanmugam, M.K.; Ding, L.; Xiang, X.; Ho, P.C.L.; Wang, L.; Ong, P.S.; Goh, B.C. Resveratrol for cancer therapy: Challenges and future perspectives. Cancer Lett., 2021, 515, 63-72. doi: 10.1016/j.canlet.2021.05.001 PMID: 34052324
  59. Tinworth, C.P.; Young, R.J. Facts, patterns, and principles in drug discovery: Appraising the rule of 5 with measured physicochemical data. J. Med. Chem., 2020, 63(18), 10091-10108. doi: 10.1021/acs.jmedchem.9b01596 PMID: 32324397
  60. Chimento, A.; De Amicis, F.; Sirianni, R.; Sinicropi, M.S.; Puoci, F.; Casaburi, I.; Saturnino, C.; Pezzi, V. Progress to improve oral bioavailability and beneficial effects of resveratrol. Int. J. Mol. Sci., 2019, 20(6), 1381. doi: 10.3390/ijms20061381 PMID: 30893846
  61. Li, Y.; Zhang, R.; Zhang, Q.; Luo, M.; Lu, F.; He, Z.; Jiang, Q.; Zhang, T. Dual strategy for improving the oral bioavailability of resveratrol: Enhancing water solubility and inhibiting glucuronidation. J. Agric. Food Chem., 2021, 69(32), 9249-9258. doi: 10.1021/acs.jafc.1c02602 PMID: 34357767
  62. Pannu, N.; Bhatnagar, A. Resveratrol: from enhanced biosynthesis and bioavailability to multitargeting chronic diseases. Biomed. Pharmacother., 2019, 109, 2237-2251. doi: 10.1016/j.biopha.2018.11.075 PMID: 30551481
  63. Katila, N.; Duwa, R.; Bhurtel, S.; Khanal, S.; Maharjan, S.; Jeong, J.H.; Lee, S.; Choi, D.Y.; Yook, S. Enhancement of blood–brain barrier penetration and the neuroprotective effect of resveratrol. J. Control. Release, 2022, 346, 1-19. doi: 10.1016/j.jconrel.2022.04.003 PMID: 35398173
  64. Velásquez-Jiménez, D.; Corella-Salazar, D.A.; Zuñiga-Martínez, B.S.; Domínguez-Avila, J.A.; Montiel-Herrera, M.; Salazar-López, N.J.; Rodrigo-Garcia, J.; Villegas-Ochoa, M.A.; González-Aguilar, G.A. Phenolic compounds that cross the blood–brain barrier exert positive health effects as central nervous system antioxidants. Food Funct., 2021, 12(21), 10356-10369. doi: 10.1039/D1FO02017J PMID: 34608925
  65. Kiskova, T.; Kubatka, P.; Büsselberg, D.; Kassayova, M. The plant-derived compound resveratrol in brain cancer: A review. Biomolecules, 2020, 10(1), 161. doi: 10.3390/biom10010161 PMID: 31963897
  66. Angellotti, G.; Di Prima, G.; Belfiore, E.; Campisi, G.; De Caro, V. Chemopreventive and anticancer role of resveratrol against oral squamous cell carcinoma. Pharmaceutics, 2023, 15(1), 275. doi: 10.3390/pharmaceutics15010275 PMID: 36678905
  67. Mikami, S.; Ota, I.; Masui, T.; Uchiyama, T.; Okamoto, H.; Kimura, T.; Takasawa, S.; Kitahara, T. Resveratrol induced REG III expression enhances chemo and radiosensitivity in head and neck cancer in xenograft mice. Oncol. Rep., 2019, 42(1), 436-442. doi: 10.3892/or.2019.7137 PMID: 31059079
  68. Yue, J.; López, J.M. Understanding MAPK Signaling Pathways in Apoptosis. Int. J. Mol. Sci., 2020, 21(7), 2346. doi: 10.3390/ijms21072346 PMID: 32231094
  69. Ronkina, N.; Gaestel, M. MAPK-Activated Protein Kinases: Servant or Partner? Annu. Rev. Biochem., 2022, 91(1), 505-540. doi: 10.1146/annurev-biochem-081720-114505 PMID: 35303787
  70. Yuan, J.; Dong, X.; Yap, J.; Hu, J. The MAPK and AMPK signalings: interplay and implication in targeted cancer therapy. J. Hematol. Oncol., 2020, 13(1), 113. doi: 10.1186/s13045-020-00949-4 PMID: 32807225
  71. Lee, S.; Rauch, J.; Kolch, W. Targeting MAPK signaling in cancer: mechanisms of drug resistance and sensitivity. Int. J. Mol. Sci., 2020, 21(3), 1102. doi: 10.3390/ijms21031102 PMID: 32046099
  72. Rezatabar, S.; Karimian, A.; Rameshknia, V.; Parsian, H.; Majidinia, M.; Kopi, T.A.; Bishayee, A.; Sadeghinia, A.; Yousefi, M.; Monirialamdari, M.; Yousefi, B. RAS/MAPK signaling functions in oxidative stress, DNA damage response and cancer progression. J. Cell. Physiol., 2019, 234(9), 14951-14965. doi: 10.1002/jcp.28334 PMID: 30811039
  73. Tan, G.X.; Wang, X.N.; Tang, Y.Y.; Cen, W.J.; Li, Z.H.; Wang, G.C.; Jiang, J.W.; Wang, X.C. PP-22 promotes autophagy and apoptosis in the nasopharyngeal carcinoma cell line CNE-2 by inducing endoplasmic reticulum stress, downregulating STAT3 signaling, and modulating the MAPK pathway. J. Cell. Physiol., 2019, 234(3), 2618-2630. doi: 10.1002/jcp.27076 PMID: 30191969
  74. Pua, L.J.W.; Mai, C.W.; Chung, F.F.L.; Khoo, A.S.B.; Leong, C.O.; Lim, W.M.; Hii, L.W. Functional roles of JNK and p38 MAPK signaling in nasopharyngeal carcinoma. Int. J. Mol. Sci., 2022, 23(3), 1108. doi: 10.3390/ijms23031108 PMID: 35163030
  75. Jiang, X.; Yang, X.; Shi, Y.; Long, Y.; Su, W.; He, W.; Wei, K.; Miao, J. Maackiain inhibits proliferation and promotes apoptosis of nasopharyngeal carcinoma cells by inhibiting the MAPK/Ras signaling pathway. Chin. J. Nat. Med., 2023, 21(3), 185-196. doi: 10.1016/S1875-5364(23)60420-0 PMID: 37003641
  76. Hankittichai, P.; Thaklaewphan, P.; Wikan, N.; Ruttanapattanakul, J.; Potikanond, S.; Smith, D.R.; Nimlamool, W. Resveratrol enhances cytotoxic effects of cisplatin by inducing cell cycle arrest and apoptosis in ovarian adenocarcinoma SKOV-3 cells through activating the p38 MAPK and suppressing AKT. Pharmaceuticals (Basel), 2023, 16(5), 755. doi: 10.3390/ph16050755 PMID: 37242538
  77. Yang, M.D.; Sun, Y.; Zhou, W.J.; Xie, X.Z.; Zhou, Q.M.; Lu, Y.Y.; Su, S.B. Resveratrol enhances inhibition effects of cisplatin on cell migration and invasion and tumor growth in breast cancer mda-mb-231 cell models in vivo and in vitro. Molecules, 2021, 26(8), 2204. doi: 10.3390/molecules26082204 PMID: 33921192
  78. Ren, M.; Zhou, X.; Gu, M.; Jiao, W.; Yu, M.; Wang, Y.; Liu, S.; Yang, J.; Ji, F. Resveratrol synergizes with cisplatin in antineoplastic effects against AGS gastric cancer cells by inducing endoplasmic reticulum stress mediated apoptosis and G2/M phase arrest. Oncol. Rep., 2020, 44(4), 1605-1615. doi: 10.3892/or.2020.7708 PMID: 32945472
  79. Xiong, H.; Cheng, J.; Jiang, S.; Wen, J.; Jian, Y.; Wei, L.; Zhe, Z.; Fu-Qiang, J.; Peng, X. The antitumor effect of resveratrol on nasopharyngeal carcinoma cells. Front. Biosci., 2019, 24(5), 961-970. doi: 10.2741/4761 PMID: 30844723
  80. Kohandel, Z.; Farkhondeh, T.; Aschner, M.; Pourbagher-Shahri, A.M.; Samarghandian, S. STAT3 pathway as a molecular target for resveratrol in breast cancer treatment. Cancer Cell Int., 2021, 21(1), 468. doi: 10.1186/s12935-021-02179-1 PMID: 34488773
  81. Fu, X.; Li, M.; Tang, C.; Huang, Z.; Najafi, M. Targeting of cancer cell death mechanisms by resveratrol: A review. Apoptosis, 2021, 26(11-12), 561-573. doi: 10.1007/s10495-021-01689-7 PMID: 34561763
  82. Khan, H.; Reale, M.; Ullah, H.; Sureda, A.; Tejada, S.; Wang, Y.; Zhang, Z.J.; Xiao, J. Anti-cancer effects of polyphenols via targeting p53 signaling pathway: Updates and future directions. Biotechnol. Adv., 2020, 38, 107385. doi: 10.1016/j.biotechadv.2019.04.007 PMID: 31004736
  83. Almatroodi, S.A.; A. Alsahli, M.; S.M. Aljohani, A.; Alhumaydhi, F.A.; Babiker, A.Y.; Khan, A.A.; Rahmani, A.H. Potential therapeutic targets of resveratrol, a plant polyphenol, and its role in the therapy of various types of cancer. Molecules, 2022, 27(9), 2665. doi: 10.3390/molecules27092665 PMID: 35566016
  84. Shen, Y.A.; Lin, C.H.; Chi, W.H.; Wang, C.Y.; Hsieh, Y.T.; Wei, Y.H.; Chen, Y.J. Resveratrol impedes the stemness, epithelial-mesenchymal transition, and metabolic reprogramming of cancer stem cells in nasopharyngeal carcinoma through p53 activation. Evid. Based Complement. Alternat. Med., 2013, 2013, 1-13. doi: 10.1155/2013/590393 PMID: 23737838
  85. Zhang, M.; Zhou, X.; Zhou, K. Resveratrol inhibits human nasopharyngeal carcinoma cell growth via blocking pAkt/p70S6K signaling pathways. Int. J. Mol. Med., 2013, 31(3), 621-627. doi: 10.3892/ijmm.2013.1237 PMID: 23314035

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers