Resveratrol Inhibits Nasopharyngeal Carcinoma (NPC) by Targeting the MAPK Signaling Pathway
- Authors: Yi Y.1, Zhou B.1, Man T.1, Xu Z.2, Tang H.3, Li J.3, Sun Z.1
-
Affiliations:
- Institute (College) of Integrated Medicine, Dalian Medical University
- Institute (College) of Integrated Medicine,, Dalian Medical University
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University
- Issue: Vol 24, No 16 (2024)
- Pages: 1207-1219
- Section: Oncology
- URL: https://snv63.ru/1871-5206/article/view/643909
- DOI: https://doi.org/10.2174/0118715206319761240705115109
- ID: 643909
Cite item
Full Text
Abstract
Background:With conventional cancer treatments facing limitations, interest in plant-derived natural products as potential alternatives is increasing. Although resveratrol has demonstrated antitumor effects in various cancers, its impact and mechanism on nasopharyngeal carcinoma remain unclear
Objective:This study aimed to systematically investigate the anti-cancer effects of resveratrol on nasopharyngeal carcinoma using a combination of experimental pharmacology, network pharmacology, and molecular docking approaches.
Methods:Resveratrol inhibited the proliferation, invasion, and migration of nasopharyngeal carcinoma cells, ultimately inducing apoptosis in a time- and dose-dependent manner. Network pharmacology analysis revealed that resveratrol may exert its anti-nasopharyngeal carcinoma effect mainly through the MAPK pathway. Immunohistochemistry results from clinical cases showed MAPK signaling activation in nasopharyngeal carcinoma tissues compared to adjacent tissues. Western blotting validated the targeting effect of resveratrol, demonstrating significant inhibition of the MAPK signaling pathway. Furthermore, molecular docking supported its multi-target role with MAPK, TP53, PIK3CA, SRC, etc.
Results:Resveratrol inhibited the proliferation, invasion, and migration of nasopharyngeal carcinoma cells, ultimately inducing apoptosis in a time- and dose-dependent manner. Network pharmacology analysis revealed that resveratrol may exert its anti-nasopharyngeal carcinoma effect mainly through the MAPK pathway. Immunohistochemistry results from clinical cases showed MAPK signaling activation in nasopharyngeal carcinoma tissues compared to adjacent tissues. Western blotting validated the targeting effect of resveratrol, demonstrating significant inhibition of the MAPK signaling pathway. Furthermore, molecular docking supported its multi-target role with MAPK, TP53, PIK3CA, SRC, etc.
Conclusion:Resveratrol has shown promising potential in inhibiting human nasopharyngeal carcinoma cells by primarily targeting the MAPK pathway. These findings position resveratrol as a potential therapeutic agent for nasopharyngeal carcinoma.
About the authors
Yujuan Yi
Institute (College) of Integrated Medicine, Dalian Medical University
Email: info@benthamscience.net
Bo Zhou
Institute (College) of Integrated Medicine, Dalian Medical University
Email: info@benthamscience.net
Tengjun Man
Institute (College) of Integrated Medicine, Dalian Medical University
Email: info@benthamscience.net
Zihan Xu
Institute (College) of Integrated Medicine,, Dalian Medical University
Email: info@benthamscience.net
Hong Tang
Department of Oncology, The First Affiliated Hospital of Dalian Medical University
Email: info@benthamscience.net
Jia Li
Department of Oncology, The First Affiliated Hospital of Dalian Medical University
Author for correspondence.
Email: info@benthamscience.net
Zheng Sun
Institute (College) of Integrated Medicine, Dalian Medical University
Author for correspondence.
Email: info@benthamscience.net
References
- Chua, M.L.K.; Wee, J.T.S.; Hui, E.P.; Chan, A.T.C. Nasopharyngeal carcinoma. Lancet, 2016, 387(10022), 1012-1024. doi: 10.1016/S0140-6736(15)00055-0 PMID: 26321262
- Wong, K.C.W.; Hui, E.P.; Lo, K.W.; Lam, W.K.J.; Johnson, D.; Li, L.; Tao, Q.; Chan, K.C.A.; To, K.F.; King, A.D.; Ma, B.B.Y.; Chan, A.T.C. Nasopharyngeal carcinoma: An evolving paradigm. Nat. Rev. Clin. Oncol., 2021, 18(11), 679-695. doi: 10.1038/s41571-021-00524-x PMID: 34194007
- Bossi, P.; Chan, A.T.; Licitra, L.; Trama, A.; Orlandi, E.; Hui, E.P.; Halámková, J.; Mattheis, S.; Baujat, B.; Hardillo, J.; Smeele, L.; van Herpen, C.; Castro, A.; Machiels, J.P. Nasopharyngeal carcinoma: ESMO-EURACAN clinical practice guidelines for diagnosis, treatment and follow-up. Ann. Oncol., 2021, 32(4), 452-465. doi: 10.1016/j.annonc.2020.12.007 PMID: 33358989
- Tang, L.L.; Chen, Y.P.; Chen, C.B.; Chen, M.Y.; Chen, N.Y.; Chen, X.Z.; Du, X.J.; Fang, W.F.; Feng, M.; Gao, J.; Han, F.; He, X.; Hu, C.S.; Hu, D.; Hu, G.Y.; Jiang, H.; Jiang, W.; Jin, F.; Lang, J.Y.; Li, J.G.; Lin, S.J.; Liu, X.; Liu, Q.F.; Ma, L.; Mai, H.Q.; Qin, J.Y.; Shen, L.F.; Sun, Y.; Wang, P.G.; Wang, R.S.; Wang, R.Z.; Wang, X.S.; Wang, Y.; Wu, H.; Xia, Y.F.; Xiao, S.W.; Yang, K.Y.; Yi, J.L.; Zhu, X.D.; Ma, J. The Chinese Society of Clinical Oncology (CSCO) clinical guidelines for the diagnosis and treatment of nasopharyngeal carcinoma. Cancer Commun. (Lond.), 2021, 41(11), 1195-1227. doi: 10.1002/cac2.12218 PMID: 34699681
- Huang, T.; Ploner, A.; Chang, E.T.; Liu, Q.; Cai, Y.; Zhang, Z.; Chen, G.; Huang, Q.; Xie, S.; Cao, S.; Jia, W.; Zheng, Y.; Liao, J.; Chen, Y.; Lin, L.; Ernberg, I.; Huang, G.; Zeng, Y.; Zeng, Y.; Adami, H.O.; Ye, W. Dietary patterns and risk of nasopharyngeal carcinoma: A population-based case-control study in southern China. Am. J. Clin. Nutr., 2021, 114(2), 462-471. doi: 10.1093/ajcn/nqab114 PMID: 33963745
- Chen, Y.; Chang, E.T.; Liu, Z.; Liu, Q.; Cai, Y.; Zhang, Z.; Chen, G.; Huang, Q.H.; Xie, S.H.; Cao, S.M.; Jia, W.H.; Zheng, Y.; Li, Y.; Lin, L.; Ernberg, I.; Zhao, H.; Feng, R.; Huang, G.; Zeng, Y.; Zeng, Y.X.; Adami, H.O.; Ye, W. Residence characteristics and risk of nasopharyngeal carcinoma in southern China: A population-based case-control study. Environ. Int., 2021, 151, 106455. doi: 10.1016/j.envint.2021.106455 PMID: 33652252
- Chen, Y.; Chang, E.T.; Liu, Q.; Cai, Y.; Zhang, Z.; Chen, G.; Huang, Q.H.; Xie, S.H.; Cao, S.M.; Jia, W.H.; Zheng, Y.; Li, Y.; Lin, L.; Ernberg, I.; Wang, D.; Chen, W.; Feng, R.; Huang, G.; Zeng, Y.X.; Adami, H.O.; Ye, W. Occupational exposures and risk of nasopharyngeal carcinoma in a high-risk area: A population-based case-control study. Cancer, 2021, 127(15), 2724-2735. doi: 10.1002/cncr.33536 PMID: 33823062
- Argirion, I.; Zarins, K.R.; Ruterbusch, J.J.; Vatanasapt, P.; Sriplung, H.; Seymour, E.K.; Rozek, L.S. Increasing incidence of epstein-barr virusrelated nasopharyngeal carcinoma in the united states. Cancer, 2020, 126(1), 121-130. doi: 10.1002/cncr.32517 PMID: 31524955
- Su, Z.Y.; Siak, P.Y.; Leong, C.O.; Cheah, S.C. The role of EpsteinBarr virus in nasopharyngeal carcinoma. Front. Microbiol., 2023, 14, 1116143. doi: 10.3389/fmicb.2023.1116143 PMID: 36846758
- Zhang, Y.; Rumgay, H.; Li, M.; Cao, S.; Chen, W. Nasopharyngeal cancer incidence and mortality in 185 countries in 2020 and the projected burden in 2040: Population-based global epidemiological profiling. JMIR Public Health Surveill., 2023, 9, e49968. doi: 10.2196/49968 PMID: 37728964
- Su, Z.Y.; Siak, P.Y.; Leong, C.O.; Cheah, S.C. Nasopharyngeal carcinoma and its microenvironment: Past, current, and future perspectives. Front. Oncol., 2022, 12, 840467. doi: 10.3389/fonc.2022.840467 PMID: 35311066
- Toumi, N.; Ennouri, S.; Charfeddine, I.; Daoud, J.; Khanfir, A. Prognostic factors in metastatic nasopharyngeal carcinoma. Rev. Bras. Otorrinolaringol., 2022, 88(2), 212-219. doi: 10.1016/j.bjorl.2020.05.022 PMID: 32690385
- Guan, S.; Wei, J.; Huang, L.; Wu, L. Chemotherapy and chemo-resistance in nasopharyngeal carcinoma. Eur. J. Med. Chem., 2020, 207, 112758. doi: 10.1016/j.ejmech.2020.112758 PMID: 32858472
- Hashem, S.; Ali, T.A.; Akhtar, S.; Nisar, S.; Sageena, G.; Ali, S.; Al-Mannai, S.; Therachiyil, L.; Mir, R.; Elfaki, I.; Mir, M.M.; Jamal, F.; Masoodi, T.; Uddin, S.; Singh, M.; Haris, M.; Macha, M.; Bhat, A.A. Targeting cancer signaling pathways by natural products: Exploring promising anti-cancer agents. Biomed. Pharmacother., 2022, 150, 113054. doi: 10.1016/j.biopha.2022.113054 PMID: 35658225
- Ren, X.; Xie, X.; Chen, B.; Liu, L.; Jiang, C.; Qian, Q. Marine natural products: A potential source of anti-hepatocellular carcinoma drugs. J. Med. Chem., 2021, 64(12), 7879-7899. doi: 10.1021/acs.jmedchem.0c02026 PMID: 34128674
- Ma, L.; Zhang, M.; Zhao, R.; Wang, D.; Ma, Y.; Ai, L. Plant natural products: Promising resources for cancer chemoprevention. Molecules, 2021, 26(4), 933. doi: 10.3390/molecules26040933 PMID: 33578780
- Gallego-Jara, J.; Lozano-Terol, G.; Sola-Martínez, R.A.; Cánovas-Díaz, M.; de Diego Puente, T. A compressive review about taxol®: History and future challenges. Molecules, 2020, 25(24), 5986. doi: 10.3390/molecules25245986 PMID: 33348838
- Sharifi-Rad, J.; Quispe, C.; Patra, J.K.; Singh, Y.D.; Panda, M.K.; Das, G.; Adetunji, C.O.; Michael, O.S.; Sytar, O.; Polito, L.; ivković, J.; Cruz-Martins, N.; Klimek-Szczykutowicz, M.; Ekiert, H.; Choudhary, M.I.; Ayatollahi, S.A.; Tynybekov, B.; Kobarfard, F.; Muntean, A.C.; Grozea, I.; Daştan, S.D.; Butnariu, M.; Szopa, A.; Calina, D. Paclitaxel: Application in modern oncology and nanomedicine-based cancer therapy. Oxid. Med. Cell. Longev., 2021, 2021, 1-24. doi: 10.1155/2021/3687700 PMID: 34707776
- Yu, D.L.; Lou, Z.P.; Ma, F.Y.; Najafi, M. The interactions of paclitaxel with tumour microenvironment. Int. Immunopharmacol., 2022, 105, 108555. doi: 10.1016/j.intimp.2022.108555 PMID: 35121223
- Kumar, S.; Chang, Y-C.; Lai, K-H.; Hwang, T-L. Resveratrol, a molecule with anti-inflammatory and anti-cancer activities: Natural product to chemical synthesis. Curr. Med. Chem., 2021, 28(19), 3773-3786. doi: 10.2174/1875533XMTEwrMDQh5 PMID: 32957870
- Yang, J.; Wang, Y.; Cai, X.; Qu, B.; Zhang, Y.; Sun, Z.; Yan, J. Comparative pharmacokinetics and tissue distribution of polydatin, resveratrol, and emodin after oral administration of Huzhang and Huzhang-Guizhi herb-pair extracts to rats. J. Ethnopharmacol., 2024, 318(Pt B), 117010. doi: 10.1016/j.jep.2023.117010 PMID: 37557937
- Bang, T.H.; Park, B.S.; Kang, H.M.; Kim, J.H.; Kim, I.R. Polydatin, a glycoside of resveratrol, induces apoptosis and inhibits metastasis oral squamous cell carcinoma cells in vitro. Pharmaceuticals (Basel), 2021, 14(9), 902. doi: 10.3390/ph14090902 PMID: 34577602
- Hu, H.C.; Lei, Y.H.; Zhang, W.H.; Luo, X.Q. antioxidant and anti-inflammatory properties of resveratrol in diabetic nephropathy: A systematic review and meta-analysis of animal studies. Front. Pharmacol., 2022, 13, 841818. doi: 10.3389/fphar.2022.841818 PMID: 35355720
- Wang, Q.; Yu, Q.; Wu, M. Antioxidant and neuroprotective actions of resveratrol in cerebrovascular diseases. Front. Pharmacol., 2022, 13, 948889. doi: 10.3389/fphar.2022.948889 PMID: 36133823
- Bartra, C.; Yuan, Y.; Vuraić, K.; Valdés-Quiroz, H.; Garcia-Baucells, P.; Slevin, M.; Pastorello, Y.; Suñol, C.; Sanfeliu, C. Resveratrol activates antioxidant protective mechanisms in cellular models of alzheimers disease inflammation. Antioxidants, 2024, 13(2), 177. doi: 10.3390/antiox13020177 PMID: 38397775
- Zhang, B.; Zhang, Y.; Liu, X.; Zhao, C.; Yin, J.; Li, X.; Zhang, X.; Wang, J.; Wang, S. Distinctive anti-inflammatory effects of resveratrol, dihydroresveratrol, and 3-(4-hydroxyphenyl)-propionic acid on DSS-induced colitis in pseudo-germ-free mice. Food Chem., 2023, 400, 133904. doi: 10.1016/j.foodchem.2022.133904 PMID: 36055136
- Hu, L.F.; Lan, H.R.; Li, X.M.; Jin, K.T. A systematic review of the potential chemoprotective effects of resveratrol on doxorubicin-induced cardiotoxicity: Focus on the antioxidant, antiapoptotic, and anti-inflammatory activities. Oxid. Med. Cell. Longev., 2021, 2021, 1-19. doi: 10.1155/2021/2951697 PMID: 34471463
- Chen, L.; Musa, A.E. Boosting immune system against cancer by resveratrol. Phytother. Res., 2021, 35(10), 5514-5526. doi: 10.1002/ptr.7189 PMID: 34101276
- Zucchi, A.; Claps, F.; Pastore, A.L.; Perotti, A.; Biagini, A.; Sallicandro, L.; Gentile, R.; Caglioti, C.; Palazzetti, F.; Fioretti, B. Focus on the use of resveratrol in bladder cancer. Int. J. Mol. Sci., 2023, 24(5), 4562. doi: 10.3390/ijms24054562 PMID: 36901993
- Nadile, M.; Retsidou, M.I.; Gioti, K.; Beloukas, A.; Tsiani, E. Resveratrol against cervical cancer: Evidence from in vitro and in vivo studies. Nutrients, 2022, 14(24), 5273. doi: 10.3390/nu14245273 PMID: 36558430
- Fukuda, M.; Ogasawara, Y.; Hayashi, H.; Inoue, K.; Sakashita, H. Resveratrol inhibits proliferation and induces autophagy by blocking SREBP1 expression in oral cancer cells. Molecules, 2022, 27(23), 8250. doi: 10.3390/molecules27238250 PMID: 36500345
- Huang, T.T.; Lin, H.C.; Chen, C.C.; Lu, C.C.; Wei, C.F.; Wu, T.S.; Liu, F.G.; Lai, H.C. Resveratrol induces apoptosis of human nasopharyngeal carcinoma cells via activation of multiple apoptotic pathways. J. Cell. Physiol., 2011, 226(3), 720-728. doi: 10.1002/jcp.22391 PMID: 20717957
- Yang, H.Y.; Liu, M.L.; Luo, P.; Yao, X.S.; Zhou, H. Network pharmacology provides a systematic approach to understanding the treatment of ischemic heart diseases with traditional Chinese medicine. Phytomedicine, 2022, 104, 154268. doi: 10.1016/j.phymed.2022.154268 PMID: 35777118
- Nogales, C.; Mamdouh, Z.M.; List, M.; Kiel, C.; Casas, A.I.; Schmidt, H.H.H.W. Network pharmacology: Curing causal mechanisms instead of treating symptoms. Trends Pharmacol. Sci., 2022, 43(2), 136-150. doi: 10.1016/j.tips.2021.11.004 PMID: 34895945
- Zhang, P.; Zhang, D.; Zhou, W.; Wang, L.; Wang, B.; Zhang, T.; Li, S. Network pharmacology: Towards the artificial intelligence-based precision traditional Chinese medicine. Brief. Bioinform., 2023, 25(1), bbad518. doi: 10.1093/bib/bbad518
- Gao, F.; Niu, Y.; Sun, L.; Li, W.; Xia, H.; Zhang, Y.; Geng, S.; Guo, Z.; Lin, H.; Du, G. Integrating network pharmacology and transcriptomic validation to investigate the efficacy and mechanism of Mufangji decoction preventing lung cancer. J. Ethnopharmacol., 2022, 298, 115573. doi: 10.1016/j.jep.2022.115573 PMID: 35917893
- Zheng, Y.; Zhong, Z.; Guo, X. Network pharmacology-based and molecular docking analysis of resveratrols pharmacological effects on type I endometrial cancer. Anticancer. Agents Med. Chem., 2022, 22(10), 1933-1944. doi: 10.2174/1871520621666211015140455 PMID: 34773964
- Lin, F.; Zhang, G.; Yang, X.; Wang, M.; Wang, R.; Wan, M.; Wang, J.; Wu, B.; Yan, T.; Jia, Y. A network pharmacology approach and experimental validation to investigate the anticancer mechanism and potential active targets of ethanol extract of Wei-Tong-Xin against colorectal cancer through induction of apoptosis via PI3K/AKT signaling pathway. J. Ethnopharmacol., 2023, 303, 115933. doi: 10.1016/j.jep.2022.115933 PMID: 36403742
- Wang, Z.; Xie, J.; Yan, M.; Wang, J.; Wang, X.; Zhang, J.; Zhang, Y.; Li, P.; Lei, X.; Huang, Q.; Lin, S.; Guo, X.; Liu, Q. Downregulation of ATOH8 induced by EBV-encoded LMP1 contributes to the malignant phenotype of nasopharyngeal carcinoma. Oncotarget, 2016, 7(18), 26765-26779. doi: 10.18632/oncotarget.8503 PMID: 27049918
- Guan, Z.; Zhang, J.; Wang, J.; Wang, H.; Zheng, F.; Peng, J.; Xu, Y.; Yan, M.; Liu, B.; Cui, B.; Huang, Y.; Liu, Q. SOX1 down-regulates β-catenin and reverses malignant phenotype in nasopharyngeal carcinoma. Mol. Cancer, 2014, 13(1), 257. doi: 10.1186/1476-4598-13-257 PMID: 25427424
- Yan, M.; Zhang, Y.; He, B.; Xiang, J.; Wang, Z.; Zheng, F.; Xu, J.; Chen, M.; Zhu, Y.; Wen, H.; Wan, X.; Yue, C.; Yang, N.; Zhang, W.; Zhang, J.; Wang, J.; Wang, Y.; Li, L.; Zeng, Y.; Lam, E.W.F.; Hung, M.C.; Liu, Q. IKKα restoration via EZH2 suppression induces nasopharyngeal carcinoma differentiation. Nat. Commun., 2014, 5(1), 3661. doi: 10.1038/ncomms4661 PMID: 24739462
- Ru, J.; Li, P.; Wang, J.; Zhou, W.; Li, B.; Huang, C.; Li, P.; Guo, Z.; Tao, W.; Yang, Y.; Xu, X.; Li, Y.; Wang, Y.; Yang, L. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. J. Cheminform., 2014, 6(1), 13. doi: 10.1186/1758-2946-6-13 PMID: 24735618
- Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.A.; Thiessen, P.A.; Yu, B.; Zaslavsky, L.; Zhang, J.; Bolton, E.E. PubChem in 2021: new data content and improved web interfaces. Nucleic Acids Res., 2021, 49(D1), D1388-D1395. doi: 10.1093/nar/gkaa971 PMID: 33151290
- Daina, A.; Michielin, O.; Zoete, V. SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res., 2019, 47(W1), W357-W364. doi: 10.1093/nar/gkz382 PMID: 31106366
- Wishart, D.S.; Feunang, Y.D.; Guo, A.C.; Lo, E.J.; Marcu, A.; Grant, J.R.; Sajed, T.; Johnson, D.; Li, C.; Sayeeda, Z.; Assempour, N.; Iynkkaran, I.; Liu, Y.; Maciejewski, A.; Gale, N.; Wilson, A.; Chin, L.; Cummings, R.; Le, D.; Pon, A.; Knox, C.; Wilson, M. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Res., 2018, 46(D1), D1074-D1082. doi: 10.1093/nar/gkx1037 PMID: 29126136
- Wang, X.; Shen, Y.; Wang, S.; Li, S.; Zhang, W.; Liu, X.; Lai, L.; Pei, J.; Li, H. PharmMapper 2017 update: A web server for potential drug target identification with a comprehensive target pharmacophore database. Nucleic Acids Res., 2017, 45(W1), W356-W360. doi: 10.1093/nar/gkx374 PMID: 28472422
- McGarvey, P.B.; Nightingale, A.; Luo, J.; Huang, H.; Martin, M.J.; Wu, C.; Consortium, U.P. UniProt genomic mapping for deciphering functional effects of missense variants. Hum. Mutat., 2019, 40(6), 694-705. doi: 10.1002/humu.23738 PMID: 30840782
- Piñero, J.; Ramírez-Anguita, J.M.; Saüch-Pitarch, J.; Ronzano, F.; Centeno, E.; Sanz, F.; Furlong, L.I. The DisGeNET knowledge platform for disease genomics: 2019 update. Nucleic Acids Res., 2019, 48(D1), gkz1021. doi: 10.1093/nar/gkz1021 PMID: 31680165
- Fishilevich, S.; Zimmerman, S.; Kohn, A.; Iny Stein, T.; Olender, T.; Kolker, E.; Safran, M.; Lancet, D. Genic insights from integrated human proteomics in GeneCards. Database (Oxford), 2016, 2016, baw030. doi: 10.1093/database/baw030 PMID: 27048349
- Zhou, Y.; Zhang, Y.; Zhao, D.; Yu, X.; Shen, X.; Zhou, Y.; Wang, S.; Qiu, Y.; Chen, Y.; Zhu, F. TTD: Therapeutic target database describing target druggability information. Nucleic Acids Res., 2024, 52(D1), D1465-D1477. doi: 10.1093/nar/gkad751 PMID: 37713619
- Amberger, J.S.; Bocchini, C.A.; Schiettecatte, F.; Scott, A.F.; Hamosh, A. OMIM.org: Online Mendelian Inheritance in Man (OMIM®), an online catalog of human genes and genetic disorders. Nucleic Acids Res., 2015, 43(D1), D789-D798. doi: 10.1093/nar/gku1205 PMID: 25428349
- Davis, A.P.; Grondin, C.J.; Johnson, R.J.; Sciaky, D.; Wiegers, J.; Wiegers, T.C.; Mattingly, C.J. Comparative Toxicogenomics Database (CTD): update 2021. Nucleic Acids Res., 2021, 49(D1), D1138-D1143. doi: 10.1093/nar/gkaa891 PMID: 33068428
- Szklarczyk, D.; Kirsch, R.; Koutrouli, M.; Nastou, K.; Mehryary, F.; Hachilif, R.; Gable, A.L.; Fang, T.; Doncheva, N.T.; Pyysalo, S.; Bork, P.; Jensen, L.J.; von Mering, C. The STRING database in 2023: proteinprotein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res., 2023, 51(D1), D638-D646. doi: 10.1093/nar/gkac1000 PMID: 36370105
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res., 2003, 13(11), 2498-2504. doi: 10.1101/gr.1239303 PMID: 14597658
- Sk, B. Impact of Structural Biologists and theProtein Data Bank, 2021.
- Seeliger, D.; de Groot, B.L. Ligand docking and binding site analysis with PyMOL and Autodock/Vina. J. Comput. Aided Mol. Des., 2010, 24(5), 417-422. doi: 10.1007/s10822-010-9352-6 PMID: 20401516
- Singh, A.P.; Singh, R.; Verma, S.S.; Rai, V.; Kaschula, C.H.; Maiti, P.; Gupta, S.C. Health benefits of resveratrol: Evidence from clinical studies. Med. Res. Rev., 2019, 39(5), 1851-1891. doi: 10.1002/med.21565 PMID: 30741437
- Ren, B.; Kwah, M.X.Y.; Liu, C.; Ma, Z.; Shanmugam, M.K.; Ding, L.; Xiang, X.; Ho, P.C.L.; Wang, L.; Ong, P.S.; Goh, B.C. Resveratrol for cancer therapy: Challenges and future perspectives. Cancer Lett., 2021, 515, 63-72. doi: 10.1016/j.canlet.2021.05.001 PMID: 34052324
- Tinworth, C.P.; Young, R.J. Facts, patterns, and principles in drug discovery: Appraising the rule of 5 with measured physicochemical data. J. Med. Chem., 2020, 63(18), 10091-10108. doi: 10.1021/acs.jmedchem.9b01596 PMID: 32324397
- Chimento, A.; De Amicis, F.; Sirianni, R.; Sinicropi, M.S.; Puoci, F.; Casaburi, I.; Saturnino, C.; Pezzi, V. Progress to improve oral bioavailability and beneficial effects of resveratrol. Int. J. Mol. Sci., 2019, 20(6), 1381. doi: 10.3390/ijms20061381 PMID: 30893846
- Li, Y.; Zhang, R.; Zhang, Q.; Luo, M.; Lu, F.; He, Z.; Jiang, Q.; Zhang, T. Dual strategy for improving the oral bioavailability of resveratrol: Enhancing water solubility and inhibiting glucuronidation. J. Agric. Food Chem., 2021, 69(32), 9249-9258. doi: 10.1021/acs.jafc.1c02602 PMID: 34357767
- Pannu, N.; Bhatnagar, A. Resveratrol: from enhanced biosynthesis and bioavailability to multitargeting chronic diseases. Biomed. Pharmacother., 2019, 109, 2237-2251. doi: 10.1016/j.biopha.2018.11.075 PMID: 30551481
- Katila, N.; Duwa, R.; Bhurtel, S.; Khanal, S.; Maharjan, S.; Jeong, J.H.; Lee, S.; Choi, D.Y.; Yook, S. Enhancement of bloodbrain barrier penetration and the neuroprotective effect of resveratrol. J. Control. Release, 2022, 346, 1-19. doi: 10.1016/j.jconrel.2022.04.003 PMID: 35398173
- Velásquez-Jiménez, D.; Corella-Salazar, D.A.; Zuñiga-Martínez, B.S.; Domínguez-Avila, J.A.; Montiel-Herrera, M.; Salazar-López, N.J.; Rodrigo-Garcia, J.; Villegas-Ochoa, M.A.; González-Aguilar, G.A. Phenolic compounds that cross the bloodbrain barrier exert positive health effects as central nervous system antioxidants. Food Funct., 2021, 12(21), 10356-10369. doi: 10.1039/D1FO02017J PMID: 34608925
- Kiskova, T.; Kubatka, P.; Büsselberg, D.; Kassayova, M. The plant-derived compound resveratrol in brain cancer: A review. Biomolecules, 2020, 10(1), 161. doi: 10.3390/biom10010161 PMID: 31963897
- Angellotti, G.; Di Prima, G.; Belfiore, E.; Campisi, G.; De Caro, V. Chemopreventive and anticancer role of resveratrol against oral squamous cell carcinoma. Pharmaceutics, 2023, 15(1), 275. doi: 10.3390/pharmaceutics15010275 PMID: 36678905
- Mikami, S.; Ota, I.; Masui, T.; Uchiyama, T.; Okamoto, H.; Kimura, T.; Takasawa, S.; Kitahara, T. Resveratrol induced REG III expression enhances chemo and radiosensitivity in head and neck cancer in xenograft mice. Oncol. Rep., 2019, 42(1), 436-442. doi: 10.3892/or.2019.7137 PMID: 31059079
- Yue, J.; López, J.M. Understanding MAPK Signaling Pathways in Apoptosis. Int. J. Mol. Sci., 2020, 21(7), 2346. doi: 10.3390/ijms21072346 PMID: 32231094
- Ronkina, N.; Gaestel, M. MAPK-Activated Protein Kinases: Servant or Partner? Annu. Rev. Biochem., 2022, 91(1), 505-540. doi: 10.1146/annurev-biochem-081720-114505 PMID: 35303787
- Yuan, J.; Dong, X.; Yap, J.; Hu, J. The MAPK and AMPK signalings: interplay and implication in targeted cancer therapy. J. Hematol. Oncol., 2020, 13(1), 113. doi: 10.1186/s13045-020-00949-4 PMID: 32807225
- Lee, S.; Rauch, J.; Kolch, W. Targeting MAPK signaling in cancer: mechanisms of drug resistance and sensitivity. Int. J. Mol. Sci., 2020, 21(3), 1102. doi: 10.3390/ijms21031102 PMID: 32046099
- Rezatabar, S.; Karimian, A.; Rameshknia, V.; Parsian, H.; Majidinia, M.; Kopi, T.A.; Bishayee, A.; Sadeghinia, A.; Yousefi, M.; Monirialamdari, M.; Yousefi, B. RAS/MAPK signaling functions in oxidative stress, DNA damage response and cancer progression. J. Cell. Physiol., 2019, 234(9), 14951-14965. doi: 10.1002/jcp.28334 PMID: 30811039
- Tan, G.X.; Wang, X.N.; Tang, Y.Y.; Cen, W.J.; Li, Z.H.; Wang, G.C.; Jiang, J.W.; Wang, X.C. PP-22 promotes autophagy and apoptosis in the nasopharyngeal carcinoma cell line CNE-2 by inducing endoplasmic reticulum stress, downregulating STAT3 signaling, and modulating the MAPK pathway. J. Cell. Physiol., 2019, 234(3), 2618-2630. doi: 10.1002/jcp.27076 PMID: 30191969
- Pua, L.J.W.; Mai, C.W.; Chung, F.F.L.; Khoo, A.S.B.; Leong, C.O.; Lim, W.M.; Hii, L.W. Functional roles of JNK and p38 MAPK signaling in nasopharyngeal carcinoma. Int. J. Mol. Sci., 2022, 23(3), 1108. doi: 10.3390/ijms23031108 PMID: 35163030
- Jiang, X.; Yang, X.; Shi, Y.; Long, Y.; Su, W.; He, W.; Wei, K.; Miao, J. Maackiain inhibits proliferation and promotes apoptosis of nasopharyngeal carcinoma cells by inhibiting the MAPK/Ras signaling pathway. Chin. J. Nat. Med., 2023, 21(3), 185-196. doi: 10.1016/S1875-5364(23)60420-0 PMID: 37003641
- Hankittichai, P.; Thaklaewphan, P.; Wikan, N.; Ruttanapattanakul, J.; Potikanond, S.; Smith, D.R.; Nimlamool, W. Resveratrol enhances cytotoxic effects of cisplatin by inducing cell cycle arrest and apoptosis in ovarian adenocarcinoma SKOV-3 cells through activating the p38 MAPK and suppressing AKT. Pharmaceuticals (Basel), 2023, 16(5), 755. doi: 10.3390/ph16050755 PMID: 37242538
- Yang, M.D.; Sun, Y.; Zhou, W.J.; Xie, X.Z.; Zhou, Q.M.; Lu, Y.Y.; Su, S.B. Resveratrol enhances inhibition effects of cisplatin on cell migration and invasion and tumor growth in breast cancer mda-mb-231 cell models in vivo and in vitro. Molecules, 2021, 26(8), 2204. doi: 10.3390/molecules26082204 PMID: 33921192
- Ren, M.; Zhou, X.; Gu, M.; Jiao, W.; Yu, M.; Wang, Y.; Liu, S.; Yang, J.; Ji, F. Resveratrol synergizes with cisplatin in antineoplastic effects against AGS gastric cancer cells by inducing endoplasmic reticulum stress mediated apoptosis and G2/M phase arrest. Oncol. Rep., 2020, 44(4), 1605-1615. doi: 10.3892/or.2020.7708 PMID: 32945472
- Xiong, H.; Cheng, J.; Jiang, S.; Wen, J.; Jian, Y.; Wei, L.; Zhe, Z.; Fu-Qiang, J.; Peng, X. The antitumor effect of resveratrol on nasopharyngeal carcinoma cells. Front. Biosci., 2019, 24(5), 961-970. doi: 10.2741/4761 PMID: 30844723
- Kohandel, Z.; Farkhondeh, T.; Aschner, M.; Pourbagher-Shahri, A.M.; Samarghandian, S. STAT3 pathway as a molecular target for resveratrol in breast cancer treatment. Cancer Cell Int., 2021, 21(1), 468. doi: 10.1186/s12935-021-02179-1 PMID: 34488773
- Fu, X.; Li, M.; Tang, C.; Huang, Z.; Najafi, M. Targeting of cancer cell death mechanisms by resveratrol: A review. Apoptosis, 2021, 26(11-12), 561-573. doi: 10.1007/s10495-021-01689-7 PMID: 34561763
- Khan, H.; Reale, M.; Ullah, H.; Sureda, A.; Tejada, S.; Wang, Y.; Zhang, Z.J.; Xiao, J. Anti-cancer effects of polyphenols via targeting p53 signaling pathway: Updates and future directions. Biotechnol. Adv., 2020, 38, 107385. doi: 10.1016/j.biotechadv.2019.04.007 PMID: 31004736
- Almatroodi, S.A.; A. Alsahli, M.; S.M. Aljohani, A.; Alhumaydhi, F.A.; Babiker, A.Y.; Khan, A.A.; Rahmani, A.H. Potential therapeutic targets of resveratrol, a plant polyphenol, and its role in the therapy of various types of cancer. Molecules, 2022, 27(9), 2665. doi: 10.3390/molecules27092665 PMID: 35566016
- Shen, Y.A.; Lin, C.H.; Chi, W.H.; Wang, C.Y.; Hsieh, Y.T.; Wei, Y.H.; Chen, Y.J. Resveratrol impedes the stemness, epithelial-mesenchymal transition, and metabolic reprogramming of cancer stem cells in nasopharyngeal carcinoma through p53 activation. Evid. Based Complement. Alternat. Med., 2013, 2013, 1-13. doi: 10.1155/2013/590393 PMID: 23737838
- Zhang, M.; Zhou, X.; Zhou, K. Resveratrol inhibits human nasopharyngeal carcinoma cell growth via blocking pAkt/p70S6K signaling pathways. Int. J. Mol. Med., 2013, 31(3), 621-627. doi: 10.3892/ijmm.2013.1237 PMID: 23314035
Supplementary files
