Natural Compounds as Protease Inhibitors in Therapeutic Focus on Cancer Therapy


Cite item

Full Text

Abstract

:Proteases are implicated in every hallmark of cancer and have complicated functions. For cancer cells to survive and thrive, the process of controlling intracellular proteins to keep the balance of the cell proteome is essential. Numerous natural compounds have been used as ligands/ small molecules to target various proteases that are found in the lysosomes, mitochondria, cytoplasm, and extracellular matrix, as possible anticancer therapeutics. Promising protease modulators have been developed for new drug discovery technology through recent breakthroughs in structural and chemical biology. The protein structure, function of significant tumor-related proteases, and their natural compound inhibitors have been briefly included in this study. This review highlights the most current frontiers and future perspectives for novel therapeutic approaches associated with the list of anticancer natural compounds targeting protease and the mode and mechanism of proteinase-mediated molecular pathways in cancer.

About the authors

Bhadra Kakali

Department of Zoology, University of Kalyani

Author for correspondence.
Email: info@benthamscience.net

References

  1. Beynon, R.J.; Bond, J.S. Proteolytic Enzymes: A Practical Approach; Oxford University Press: London, 2001. doi: 10.1093/oso/9780199636631.001.0001
  2. López-Otín, C.; Matrisian, L.M. Emerging roles of proteases in tumour suppression. Nat. Rev. Cancer, 2007, 7(10), 800-808. doi: 10.1038/nrc2228 PMID: 17851543
  3. Proteases: Multifunctional enzymes in life and disease. Lo´ pez-Otín, C.; Judith, S.B., Eds.; The J Biol. Chem., 2008, 283(45), 30433-30437.
  4. Chakraborti, S.; Chakraborti, T.; Dhalla, N.S. Eds.; Advances in Biochemistry in health and disease, proteases in human diseases; Springer Nature, 2013. doi: 10.1007/978-1-4614-9233-7
  5. García-Lorenzo, M.; Sjödin, A.; Jansson, S.; Funk, C. Protease gene families in Populus and Arabidopsis. BMC Plant Biol., 2006, 6(1), 30. doi: 10.1186/1471-2229-6-30 PMID: 17181860
  6. Voshavar, C. Protease inhibitors for the treatment of HIV/AIDS: Recent advances and future challenges. Curr. Top. Med. Chem., 2019, 19(18), 1571-1598. doi: 10.2174/1568026619666190619115243 PMID: 31237209
  7. Ang, D.; Kendall, R.; Atamian, H. Virtual and in vitro screening of natural products identifies indole and benzene derivatives as inhibitors of SARS-CoV-2 Main Protease (Mpro). Biology, 2023, 12(4), 519. doi: 10.3390/biology12040519 PMID: 37106720
  8. Wadanambi, P.M.; Jayathilaka, N.; Seneviratne, K.N. A computational study of carbazole alkaloids from Murraya koenigii as potential SARS-CoV-2 main protease inhibitors. Appl. Biochem. Biotechnol., 2023, 195(1), 573-596. doi: 10.1007/s12010-022-04138-6 PMID: 36107386
  9. Rakash, S.; Rana, F.; Rafiq, S.; Masood, A.; Amin, S. Role of proteases in cancer: A review. Biotechnol. Mol. Biol. Rev., 2012, 7(4), 90-101. doi: 10.5897/BMBR11.027
  10. Veltri, C.A. Proteases: Nature’s destroyers and the drugs that stop them. Pharm. Pharmacol. Int. J., 2015, 2(6), 1-11. doi: 10.15406/ppij.2015.02.00044
  11. Quintero-Fabián, S.; Arreola, R.; Becerril-Villanueva, E.; Torres-Romero, J.C.; Arana-Argáez, V.; Lara-Riegos, J.; Ramírez-Camacho, M.A.; Alvarez-Sánchez, M.E. Role of matrix metalloproteinases in angiogenesis and cancer. Front. Oncol., 2019, 9, 1370. doi: 10.3389/fonc.2019.01370 PMID: 31921634
  12. Tagirasa, R.; Yoo, E. Role of serine proteases at the tumor-stroma interface. Front. Immunol., 2022, 13, 832418. doi: 10.3389/fimmu.2022.832418 PMID: 35222418
  13. Sarkar, S.; Bhattacharjee, P.; Bhadra, K. DNA binding and apoptotic induction ability of harmalol in HepG2: Biophysical and biochemical approaches. Chem. Biol. Interact., 2016, 258, 142-152. doi: 10.1016/j.cbi.2016.08.024 PMID: 27590872
  14. Bhattacharjee, P.; Sarkar, S.; Ghosh, T.; Bhadra, K. Therapeutic potential of harmaline, a novel alkaloid, against cervical cancer cells in vitro: Apoptotic induction and DNA interaction study. J. Appl. Biol. Biotechnol., 2018, 6(4), 1-8.
  15. Sarkar, S.; Trebedi, P.; Bhadra, K. Structure-activity insights of harmine targeting DNA, ROS inducing cytotoxicity with PARP mediated apoptosis against cervical cancer, anti-biofilm formation and in vivo therapeutic study. J. Biomol. Struct. Dyn., 2022, 40(13), 5880-5902. doi: 10.1080/07391102.2021.1874533 PMID: 33480316
  16. Li, Y.Y.; Bao, Y.L.; Song, Z.B.; Sun, L.G.; Wu, P.; Zhang, Y.; Fan, C.; Huang, Y.X.; Wu, Y.; Yu, C.L.; Sun, Y.; Zheng, L.H.; Wang, G.N.; Li, Y.X. The threonine protease activity of testes-specific protease 50 (TSP50) is essential for its function in cell proliferation. PLoS One, 2012, 7(5), e35030. doi: 10.1371/journal.pone.0035030 PMID: 22574111
  17. Ueno, T.; Elmberger, G.; Weaver, T.E.; Toi, M.; Linder, S. The aspartic protease napsin A suppresses tumor growth independent of its catalytic activity. Lab. Invest., 2008, 88(3), 256-263. doi: 10.1038/labinvest.3700718 PMID: 18195689
  18. Dudani, J.S.; Warren, A.D.; Bhatia, S.N. Harnessing protease activity to Improve cancer care. Annu. Rev. Cancer Biol., 2018, 2(1), 353-376. doi: 10.1146/annurev-cancerbio-030617-050549
  19. Olson, O.C.; Joyce, J.A. Cysteine cathepsin proteases: regulators of cancer progression and therapeutic response. Nat. Rev. Cancer, 2015, 15(12), 712-729. doi: 10.1038/nrc4027 PMID: 26597527
  20. Kessenbrock, K.; Plaks, V.; Werb, Z. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell, 2010, 141(1), 52-67. doi: 10.1016/j.cell.2010.03.015 PMID: 20371345
  21. Barreira da Silva, R.; Laird, M.E.; Yatim, N.; Fiette, L.; Ingersoll, M.A.; Albert, M.L. Dipeptidylpeptidase 4 inhibition enhances lymphocyte trafficking, improving both naturally occurring tumor immunity and immunotherapy. Nat. Immunol., 2015, 16(8), 850-858. doi: 10.1038/ni.3201 PMID: 26075911
  22. Tehreem, M.; Maimoona, Q.; Asimur, R.; Mohamad, T.; Naveed, A.; Abdelhamid, E. Exploiting proteases for cancer theranostic through molecular imaging and drug delivery. Int. J. Pharm., 2020, 587, 119712.
  23. Trezza, A.; Cicaloni, V.; Pettini, F.; Spiga, O. Potential roles of protease inhibitors in anticancer therapy. In: Cancer-Leading Proteases; Elsevier, 2020; pp. 13-49. doi: 10.1016/B978-0-12-818168-3.00002-4
  24. Turk, B. Targeting proteases: successes, failures and future prospects. Nat. Rev. Drug Discov., 2006, 5(9), 785-799. doi: 10.1038/nrd2092 PMID: 16955069
  25. Ahmad, B.; Batool, M.; Ain, Q.; Kim, M.S.; Choi, S. Exploring the binding mechanism of PF-07321332 SARS-CoV-2 protease inhibitor through molecular dynamics and binding free energy simulations. Int. J. Mol. Sci., 2021, 22(17), 9124. doi: 10.3390/ijms22179124 PMID: 34502033
  26. Gills, J.J. A Lead HIV protease inhibitor, is a broad-spectrum, anticancer agent that induces endoplasmic reticulum stress, autophagy, and apoptosis in vitro and in vivo. Clin. Cancer Res., 2007, 13(17), 5183-5194.
  27. Rudzińska, M.; Daglioglu, C.; Savvateeva, L.V.; Kaci, F.N.; Antoine, R.; Zamyatnin, A.A., Jr; Zamyatnin, A.A., Jr Current status and perspectives of protease inhibitors and their combination with nanosized drug delivery systems for targeted cancer therapy. Drug Des. Devel. Ther., 2021, 15, 9-20. doi: 10.2147/DDDT.S285852 PMID: 33442233
  28. Rudzińska, M.; Parodi, A.; Soond, S.M.; Vinarov, A.Z.; Korolev, D.O.; Morozov, A.O.; Daglioglu, C.; Tutar, Y.; Zamyatnin, A.A., Jr The role of cysteine cathepsins in cancer progression and drug resistance. Int. J. Mol. Sci., 2019, 20(14), 3602. doi: 10.3390/ijms20143602 PMID: 31340550
  29. Petushkova, A.I.; Zamyatnin, A.A., Jr Redox-mediated post-translational modifications of proteolytic enzymes and their role in protease functioning. Biomolecules, 2020, 10(4), 650. doi: 10.3390/biom10040650 PMID: 32340246
  30. WHO. Guidelines for the assessment of herbal medicines; World Health Organization: Geneva, 1991.
  31. Gahtori, R.; Tripathi, A.H.; Kumari, A.; Negi, N.; Paliwal, A.; Tripathi, P.; Joshi, P.; Rai, R.C.; Upadhyay, S.K. Anticancer plant-derivatives: deciphering their oncopreventive and therapeutic potential in molecular terms. Fut. J. Pharmac. Sci., 2023, 9(1), 14. doi: 10.1186/s43094-023-00465-5
  32. Bhadra, K. Handbook of smart materials, technologies, and devices. In: Applications of Industry 4.0; Springer: Cham, 2023. doi: 10.1007/978-3-030-58675-1
  33. Carbone, D.; De Franco, M.; Pecoraro, C.; Bassani, D.; Pavan, M.; Cascioferro, S.; Parrino, B.; Cirrincione, G.; Dall’Acqua, S.; Sut, S.; Moro, S.; Gandin, V.; Diana, P. Structural manipulations of marine natural products inspire a new library of 3-amino-1,2,4-triazine PDK inhibitors endowed with antitumor activity in pancreatic ductal adenocarcinoma. Mar. Drugs, 2023, 21(5), 288. doi: 10.3390/md21050288 PMID: 37233482
  34. Nan, Y.; Su, H.; Zhou, B.; Liu, S. The function of natural compounds in important anticancer mechanisms. Front. Oncol., 2023, 12, 1049888. doi: 10.3389/fonc.2022.1049888 PMID: 36686745
  35. Luo, Y.; Yin, S.; Lu, J.; Zhou, S.; Shao, Y.; Bao, X.; Wang, T.; Qiu, Y.; Yu, H. Tumor microenvironment: A prospective target of natural alkaloids for cancer treatment. Cancer Cell Int., 2021, 21(1), 386. doi: 10.1186/s12935-021-02085-6 PMID: 34284780
  36. Naman, C.B.; Benatrehina, P.A.; Kinghorn, A.D.; Ohio, T. Pharmaceuticals, plant drugs, 2nd ed; Elsevier: New York, 2017. doi: 10.1016/B978-0-12-394807-6.00163-5
  37. Mukeshwar, P.; Mousumi, D.; Shobit, G.; Surender, K.C. Phytomedicine: An ancient approach turning into future potential source of therapeutics. J. Pharmacogn. Phytother., 2011, 3(2), 27-37.
  38. Chunarkar-Patil, P.; Kaleem, M.; Mishra, R.; Ray, S.; Ahmad, A.; Verma, D.; Bhayye, S.; Dubey, R.; Singh, H.; Kumar, S. Anticancer drug discovery based on natural products: From computational approaches to clinical studies. Biomedicines, 2024, 12(1), 201. doi: 10.3390/biomedicines12010201 PMID: 38255306
  39. Li, X.; Yu, N.; Li, J.; Bai, J.; Ding, D.; Tang, Q.; Xu, H. Novel "carrier-free" nanofiber codelivery systems with the synergistic antitumor effect of paclitaxel and tetrandrine through the enhancement of mitochondrial apoptosis. ACS Appl. Mater. Interfaces, 2020, 12(9), 10096-10106. doi: 10.1021/acsami.9b17363 PMID: 32027119
  40. Laskar, P.; Somani, S.; Campbell, S.J.; Mullin, M.; Keating, P.; Tate, R.J.; Irving, C.; Leung, H.Y.; Dufès, C. Camptothecin-based dendrimersomes for gene delivery and redox-responsive drug delivery to cancer cells. Nanoscale, 2019, 11(42), 20058-20071. doi: 10.1039/C9NR07254C PMID: 31612185
  41. Ishii, N.; Araki, K.; Yokobori, T.; Hagiwara, K.; Gantumur, D.; Yamanaka, T.; Handa, T.; Tsukagoshi, M.; Igarashi, T.; Watanabe, A.; Kubo, N.; Harimoto, N.; Masamune, A.; Umezawa, K.; Kuwano, H.; Shirabe, K. Conophylline suppresses pancreatic cancer desmoplasia and cancer‐promoting cytokines produced by cancer‐associated fibroblasts. Cancer Sci., 2019, 110(1), 334-344. doi: 10.1111/cas.13847 PMID: 30353606
  42. Antropow, A.H.; Xu, K.; Buchsbaum, R.J.; Movassaghi, M. Synthesis and evaluation of agelastatin derivatives as potent modulators for cancer invasion and metastasis. J. Org. Chem., 2017, 82(15), 7720-7731. doi: 10.1021/acs.joc.7b01162 PMID: 28696693
  43. Weng, T.Y.; Wu, H.F.; Li, C.Y.; Hung, Y.H.; Chang, Y.W.; Chen, Y.L.; Hsu, H.P.; Chen, Y.H.; Wang, C.Y.; Chang, J.Y.; Lai, M.D. Homoharringtonine induced immune alteration for an efcient anti-tumor response in mouse models of non-small cell lung adenocarcinoma expressing Kras mutation. Sci. Rep., 2018, 8(1), 8216. doi: 10.1038/s41598-018-26454-w PMID: 29844447
  44. Hock, B.D.; MacPherson, S.A.; McKenzie, J.L. Idelalisib and caffeine reduce suppression of T cell responses mediated by activated chronic lymphocytic leukemia cells. PLoS One, 2017, 12(3), e0172858. doi: 10.1371/journal.pone.0172858 PMID: 28257435
  45. Choi, D.W.; Jung, S.Y.; Shon, D.H.; Shin, H.S. PiperineAmeliorates Trimellitic anhydride-induced atopic dermatitis-like symptoms by suppressing Th2-mediated immune responses via inhibition of STAT6 phosphorylation. Molecules, 2020, 25(9), 2186. doi: 10.3390/molecules25092186 PMID: 32392825
  46. Liu, H.; Zou, M.; Li, P.; Wang, H.; Lin, X.; Ye, J. Oxymatrine mediated maturation of dendritic cells leads to activation of FOXP3+/CD4+ Treg cells and reversal of cisplatin resistance in lung cancer cells. Mol. Med. Rep., 2019, 19(5), 4081-4090. doi: 10.3892/mmr.2019.10064 PMID: 30896871
  47. Guo, G.; Shi, F.; Zhu, J.; Shao, Y.; Gong, W.; Zhou, G.; Wu, H.; She, J.; Shi, W. Piperine, a functional food alkaloid, exhibits inhibitory potential against TNBS-induced colitis via the inhibition of IκB-α/NF-κB and induces tight junction protein (claudin-1, occludin, and ZO-1) signaling pathway in experimental mice. Hum. Exp. Toxicol., 2020, 39(4), 477-491. doi: 10.1177/0960327119892042 PMID: 31835924
  48. Yao, M.; Fan, X.; Yuan, B.; Takagi, N.; Liu, S.; Han, X.; Ren, J.; Liu, J. Berberine inhibits NLRP3 inflammasome pathway in human triple-negative breast cancer MDA-MB-231 cell. BMC Complement. Altern. Med., 2019, 19(1), 216. doi: 10.1186/s12906-019-2615-4 PMID: 31412862
  49. Zhu, L.; Huang, S.; Li, J.; Chen, J.; Yao, Y.; Li, L.; Guo, H.; Xiang, X.; Deng, J.; Xion, J. Sophoridine inhibits lung cancer cell growth and enhances cisplatin sensitivity through activation of the p53 and Hippo signaling pathways. Gene, 2020, 742, 144556. doi: 10.1016/j.gene.2020.144556
  50. Zhao, L.; Wang, L.; Di, S.N.; Xu, Q.; Ren, Q.C.; Chen, S.Z.; Huang, N.; Jia, D.; Shen, X.F. Steroidal alkaloid solanine A from Solanum nigrum Linn. Exhibits anti-inflammatory activity in lipopolysaccharide/interferon gamma activated murine macrophages and animal models of inflammation. Pharmacotherapy, 2018, 105, 606-615.
  51. Pang, L.; Liu, C.Y.; Gong, G.H.; Quan, Z.S. Synthesis, in vitro and in vivo biological evaluation of novel lappaconitine derivatives as potential anti-inflammatory agents. Acta Pharm. Sin. B, 2020, 10(4), 628-645. doi: 10.1016/j.apsb.2019.09.002
  52. Wang, X.; Gao, J.Q.; Ouyang, X.; Wang, J.; Sun, X.; Lv, Y. Mesenchymal stem cells loaded with paclitaxel–poly(lactic-co-glycolic acid) nanoparticles for glioma-targeting therapy. Int. J. Nanomedicine, 2018, 13, 5231-5248. doi: 10.2147/IJN.S167142 PMID: 30237710
  53. Li, H.; Guo, L.; Jie, S.; Liu, W.; Zhu, J.; Du, W.; Fan, L.; Wang, X.; Fu, B.; Huang, S. Berberine inhibits SDF-1-induced AML cells and leukemic stem cells migration via regulation of SDF-1 level in bone marrow stromal cells. Biomed. Pharmacother., 2008, 62(9), 573-578. doi: 10.1016/j.biopha.2008.08.003 PMID: 18805669
  54. Chakravarthy, D.; Muñoz, A.R.; Su, A.; Hwang, R.F.; Keppler, B.R.; Chan, D.E.; Halff, G.; Ghosh, R.; Kumar, A.P. Palmatine suppresses glutamine-mediated interaction between pancreatic cancer and stellate cells through simultaneous inhibition of survivin and COL1A1. Cancer Lett., 2018, 419, 103-115. doi: 10.1016/j.canlet.2018.01.057 PMID: 29414301
  55. Jie, S.; Li, H.; Tian, Y.; Guo, D.; Zhu, J.; Gao, S.; Jiang, L. Berberine inhibits angiogenic potential of Hep G2 cell line through VEGF down‐regulation in vitro. J. Gastroenterol. Hepatol., 2011, 26(1), 179-185. doi: 10.1111/j.1440-1746.2010.06389.x PMID: 21175812
  56. Wen, Z.; Huang, C.; Xu, Y.; Xiao, Y.; Tang, L.; Dai, J.; Sun, H.; Chen, B.; Zhou, M. α-Solanine inhibits vascular endothelial growth factor expression by down-regulating the ERK1/2-HIF-1α and STAT3 signaling pathways. Eur. J. Pharmacol., 2016, 771, 93-98. doi: 10.1016/j.ejphar.2015.12.020 PMID: 26688571
  57. Zhang, H.; Ren, Y.; Tang, X.; Wang, K.; Liu, Y.; Zhang, L.; Li, X.; Liu, P.; Zhao, C.; He, J. Vascular normalization induced by sinomenine hydrochloride results in suppressed mammary tumor growth and metastasis. Sci. Rep., 2015, 5(1), 8888. doi: 10.1038/srep08888 PMID: 25749075
  58. Guo, X.X.; Li, X.P.; Zhou, P.; Li, D.Y.; Lyu, X.T.; Chen, Y.; Lyu, Y.W.; Tian, K.; Yuan, D.Z.; Ran, J.H.; Chen, D.L.; Jiang, R.; Li, J. Evodiamine induces apoptosis in SMMC-7721 and HepG2 cells by suppressing NOD1 signal pathway. Int. J. Mol. Sci., 2018, 19(11), 3419. doi: 10.3390/ijms19113419 PMID: 30384473
  59. Bräutigam, J.; Bischoff, I.; Schürmann, C.; Buchmann, G.; Epah, J.; Fuchs, S.; Heiss, E.; Brandes, R.P.; Fürst, R. Narciclasine inhibits angiogenic processes by activation of Rho kinase and by downregulation of the VEGF receptor 2. J. Mol. Cell. Cardiol., 2019, 135, 97-108. doi: 10.1016/j.yjmcc.2019.08.001 PMID: 31381906
  60. Yuan, Z.; Liang, Z.; Yi, J.; Chen, X.; Li, R.; Wu, Y.; Wu, J.; Sun, Z. Protective effect of koumine, an alkaloid from gelsemium sempervirens, on injury induced by H2O2 in IPEC-J2 cells. Int. J. Mol. Sci., 2019, 20(3), 754. doi: 10.3390/ijms20030754 PMID: 30754638
  61. Yang, M.H.; Jung, S.H.; Sethi, G.; Ahn, K.S. Pleiotropic pharmacological actions of capsazepine, a synthetic analogue of capsaicin, against various cancers and infammatory diseases. Molecules, 2019, 24(5), 995. doi: 10.3390/molecules24050995 PMID: 30871017
  62. Xu, Z.; Zhang, F.; Bai, C.; Yao, C.; Zhong, H.; Zou, C.; Chen, X. Sophoridine induces apoptosis and S phase arrest via ROS-dependent JNK and ERK activation in human pancreatic cancer cells. J. Exp. Clin. Cancer Res., 2017, 36(1), 124. doi: 10.1186/s13046-017-0590-5 PMID: 28893319
  63. Bhattacharjee, P.; Sarkar, P.; Bhadra, K. Evaluation of chemotherapeutic role of harmaline: In vitro cytotoxicity targeting nucleic acids. J. Asian Nat. Prod. Res., 2024, 26(4), 519-533. doi: 10.1080/10286020.2023.2251116
  64. Awale, S.; Dibwe, D.F.; Balachandran, C.; Fayez, S.; Feineis, D.; Lombe, B.K.; Bringmann, G. Ancistrolikokine E3, a 5,8′-coupled naphthylisoquinoline alkaloid, eliminates the tolerance of cancer cells to nutrition starvation by inhibition of the Akt/mTOR/autophagy signaling pathway. J. Nat. Prod., 2018, 81(10), 2282-2291. doi: 10.1021/acs.jnatprod.8b00733 PMID: 30303002
  65. Song, L.; Wang, Y.; Zhen, Y.; Li, D.; He, X.; Yang, H.; Zhang, H.; Liu, Q. Piperine inhibits colorectal cancer migration and invasion by regulating STAT3/Snail-mediated epithelial–mesenchymal transition. Biotechnol. Lett., 2020, 42(10), 2049-2058. doi: 10.1007/s10529-020-02923-z PMID: 32500474
  66. Su, Q.; Fan, M.; Wang, J.; Ullah, A.; Ghauri, M.A.; Dai, B.; Zhan, Y.; Zhang, D.; Zhang, Y. Sanguinarine inhibits epithelial–mesenchymal transition via targeting HIF-1α/TGF-β feed-forward loop in hepatocellular carcinoma. Cell Death Dis., 2019, 10(12), 939. doi: 10.1038/s41419-019-2173-1 PMID: 31819036
  67. Huang, C.; Wang, X.; Qi, F.; Pang, Z. Berberine inhibits epithelial-mesenchymal transition and promotes apoptosis of tumour-associated fibroblast-induced colonic epithelial cells through regulation of TGF-β signalling. J. Cell Commun. Signal., 2020, 14(1), 53-66. doi: 10.1007/s12079-019-00525-7 PMID: 31399854
  68. Deng, G.; Zeng, S.; Ma, J.; Zhang, Y.; Qu, Y.; Han, Y.; Yin, L.; Cai, C.; Guo, C.; Shen, H. The anti-tumor activities of Neferine on cell invasion and oxaliplatin sensitivity regulated by EMT via Snail signaling in hepatocellular carcinoma. Sci. Rep., 2017, 7(1), 41616. doi: 10.1038/srep41616 PMID: 28134289
  69. Jiang, Y.; Jiao, Y.; Liu, Y.; Zhang, M.; Wang, Z.; Li, Y.; Li, T.; Zhao, X.; Wang, D. Sinomenine hydrochloride inhibits the metastasis of human glioblastoma cells by suppressing the expression of matrix metalloproteinase-2/-9 and reversing the endogenous and exogenous epithelial mesenchymal transition. Int. J. Mol. Sci., 2018, 19(3), 844. doi: 10.3390/ijms19030844 PMID: 29538296
  70. Kim, J.H.; Cho, E.B.; Lee, J.; Jung, O.; Ryu, B.J.; Kim, S.H.; Cho, J.Y.; Ryou, C.; Lee, S.Y. Emetine inhibits migration and invasion of human non-small-cell lung cancer cells via regulation of ERK and p38 signaling pathways. Chem. Biol. Interact., 2015, 242, 25-33. doi: 10.1016/j.cbi.2015.08.014 PMID: 26332055
  71. Rahim, N.F.C.; Hussin, Y.; Aziz, M.N.M.; Mohamad, N.E.; Yeap, S.K.; Masarudin, M.J.; Abdullah, R.; Akhtar, M.N.; Alitheen, N.B. Cytotoxicity and apoptosis effects of curcumin analogue (2E, 6E)-2, 6-bis (2,3-dimethoxybenzylidine) cyclohexanone (DMCH) on human colon cancer cells HT29 and SW620 in vitro. Molecules, 2021, 26(5), 1261. doi: 10.3390/molecules26051261 PMID: 33652694
  72. Ferhi, S.; Santaniello, S.; Zerizer, S.; Cruciani, S.; Fadda, A.; Sanna, D.; Dore, A.; Maioli, M.; D’hallewin, G. Total phenols from grape leaves counteract cell proliferation and modulate apoptosis related gene expression in MCF-7 and HepG2 human cancer cell lines. Molecules, 2019, 24(3), 612. doi: 10.3390/molecules24030612 PMID: 30744145
  73. Yu, Y.; Zhang, C.; Liu, L.; Li, X. Hepatic arterial administration of ginsenoside Rg3 and transcatheter arterial embolization for the treatment of VX2 liver carcinomas. Exp. Ther. Med., 2013, 5(3), 761-766. doi: 10.3892/etm.2012.873 PMID: 23404440
  74. Wu, L.; Wang, L.; Tian, X.; Zhang, J.; Feng, H. Germacrone exerts anti-cancer effects on gastric cancer through induction of cell cycle arrest and promotion of apoptosis. BMC Complement. Med. Ther., 2020, 20(1), 21. doi: 10.1186/s12906-019-2810-3
  75. Lau, T.S.; Chan, L.K.Y.; Man, G.C.W.; Wong, C.H.; Lee, J.H.S.; Yim, S.F.; Cheung, T.H.; McNeish, I.A.; Kwong, J. Paclitaxel induces immunogenic cell death in ovarian cancer via TLR4/IKK2/SNARE dependent Exocytosis Paclitaxel induces ICD via TLR4 in cancer cells. Cancer Immunol. Res., 2020, 8(8), 1099-1111. doi: 10.1158/2326-6066.CIR-19-0616 PMID: 32354736
  76. Sun, Y.; Zhou, Q.M.; Lu, Y.Y.; Zhang, H.; Chen, Q.L.; Zhao, M.; Su, S.B. Resveratrol inhibits the migration and metastasis of MDA-MB-231 human breast cancer by reversing TGF-b1-induced epithelial-mesenchymal transition. Molecules, 2019, 24(6), 1131. doi: 10.3390/molecules24061131 PMID: 30901941
  77. Wang, Y.; Ren, X.; Deng, C.; Yang, L.; Yan, E.; Guo, T.; Li, Y.; Xu, M.X. Mechanism of the inhibition of the STAT3 signaling pathway by EGCG. Oncol. Rep., 2013, 30(6), 2691-2696. doi: 10.3892/or.2013.2743 PMID: 24065300
  78. Ghasemi, F.; Shafiee, M.; Banikazemi, Z.; Pourhanifeh, M.H.; Khanbabaei, H.; Shamshirian, A.; Amiri Moghadam, S. ArefNezhad, R.; Sahebkar, A.; Avan, A.; Mirzaei, H. Curcumin inhibits NF-kB and Wnt/β-catenin pathways in cervical cancer cells. Pathol. Res. Pract., 2019, 215(10), 152556. doi: 10.1016/j.prp.2019.152556 PMID: 31358480
  79. Fan, H.; Jiang, C.; Zhong, B.; Sheng, J.; Chen, T.; Chen, Q.; Li, J.; Zhao, H. Matrine ameliorates colorectal cancer in rats via inhibition of HMGB1 signalling and downregulation of IL-6, TNF-a, and HMGB1. J. Immunol. Res., 2018, 2018, 1-8. doi: 10.1155/2018/5408324 PMID: 29546074
  80. Zhao, L.; Zhang, C. Berberine inhibits MDA-MB-231 cells by attenuating their inflammatory responses. BioMed Res. Int., 2020, 2020, 1-6. doi: 10.1155/2020/3617514 PMID: 32258115
  81. Prabhu, K.S.; Bhat, A.A.; Siveen, K.S.; Kuttikrishnan, S.; Raza, S.S.; Raheed, T.; Jochebeth, A.; Khan, A.Q.; Chawdhery, M.Z.; Haris, M.; Kulinski, M.; Dermime, S.; Steinhoff, M.; Uddin, S. Sanguinarine mediated apoptosis in non-small cell lung cancer via generation of reactive oxygen species and suppression of JAK/STAT pathway. Biomed. Pharmacother., 2021, 144, 112358. doi: 10.1016/j.biopha.2021.112358 PMID: 34794241
  82. Zhang, W.; Gou, P.; Dupret, J.M.; Chomienne, C.; Rodrigues-Lima, F. Etoposide, an anticancer drug involved in therapy-related secondary leukemia: Enzymes at play. Transl. Oncol., 2021, 14(10), 101169. doi: 10.1016/j.tranon.2021.101169 PMID: 34243013
  83. Syed, R.; Rani, R. Sabeena; Masoodi, T.A.; Shafi, G.; Alharbi, K. Functional analysis and structure determination of alkaline protease from Aspergillus flavus. Bioinformation, 2012, 8(4), 175-180. doi: 10.6026/97320630008175 PMID: 22419836
  84. Kent, S.; Marshall, G.R.; Wlodawer, A. Determining the 3D structure of HIV-1 protease. Science, 2000, 288(5471), 1590. doi: 10.1126/science.288.5471.1590a PMID: 10858137
  85. Overall, C.M.; López-Otín, C. Strategies for MMP inhibition in cancer: innovations for the post-trial era. Nat. Rev. Cancer, 2002, 2(9), 657-672. doi: 10.1038/nrc884 PMID: 12209155
  86. Yan, C.; Boyd, D.D. Regulation of matrix metalloproteinase gene expression. J. Cell. Physiol., 2007, 211(1), 19-26. doi: 10.1002/jcp.20948 PMID: 17167774
  87. Riedl, S.J.; Salvesen, G.S. The apoptosome: signalling platform of cell death. Nat. Rev. Mol. Cell Biol., 2007, 8(5), 405-413. doi: 10.1038/nrm2153 PMID: 17377525
  88. Versteeg, H.H.; Ruf, W. Emerging insights in tissue factor-dependent signaling events. Semin. Thromb. Hemost., 2006, 32(1), 024-032. doi: 10.1055/s-2006-933337 PMID: 16479459
  89. Fu, X.; Parks, W.C.; Heinecke, J.W. RETRACTED: Activation and silencing of matrix metalloproteinases. Semin. Cell Dev. Biol., 2008, 19(1), 2-13. doi: 10.1016/j.semcdb.2007.06.005 PMID: 17689277
  90. Bode, W.; Huber, R. Structural basis of the endoproteinase–protein inhibitor interaction. Biochim. Biophys. Acta Protein Struct. Mol. Enzymol., 2000, 1477(1-2), 241-252. doi: 10.1016/S0167-4838(99)00276-9 PMID: 10708861
  91. Hashem, S.; Ali, T.A.; Akhtar, S.; Nisar, S.; Sageena, G.; Ali, S.; Al-Mannai, S.; Therachiyil, L.; Mir, R.; Elfaki, I.; Mir, M.M.; Jamal, F.; Masoodi, T.; Uddin, S.; Singh, M.; Haris, M.; Macha, M.; Bhat, A.A. Targeting cancer signaling pathways by natural products: Exploring promising anti-cancer agents. Biomed. Pharmacother., 2022, 150, 113054. doi: 10.1016/j.biopha.2022.113054 PMID: 35658225
  92. Hedstrom, L. Serine protease mechanism and specificity. Chem. Rev., 2002, 102(12), 4501-4524. doi: 10.1021/cr000033x PMID: 12475199
  93. Jedinak, A.; Maliar, T. Inhibitors of proteases as anticancer drugs. Neoplasma, 2005, 52(3), 185-192. PMID: 15875078
  94. Al-Awadhi, F.; Salvador, L.; Law, B.; Paul, V.; Luesch, H. Kempopeptin C, a novel marine-derived serine protease inhibitor targeting invasive breast cancer. Mar. Drugs, 2017, 15(9), 290-307. doi: 10.3390/md15090290 PMID: 28926939
  95. Al-Awadhi, F.H.; Luesch, H. Targeting eukaryotic proteases for natural products-based drug development. Nat. Prod. Rep., 2020, 37(6), 827-860. doi: 10.1039/C9NP00060G PMID: 32519686
  96. Kuo, C.L.; Chi, C.W.; Liu, T.Y. Modulation of apoptosis by berberine through inhibition of cyclooxygenase-2 and Mcl-1 expression in oral cancer cells. in vivo 2005, 19(1), 247-252. PMID: 15796182
  97. Kim, J.S.; Oh, D.; Yim, M.J.; Park, J.J.; Kang, K.R.; Cho, I.A.; Moon, S.M.; Oh, J.S.; You, J.S.; Kim, C.S.; Kim, D.K.; Lee, S.Y.; Lee, G.J. Im, H.J.; Kim, S.G. Berberine induces FasL-related apoptosis through p38 activation in KB human oral cancer cells. Oncol. Rep., 2015, 33(4), 1775-1782. doi: 10.3892/or.2015.3768 PMID: 25634589
  98. Jagetia, G.C. Anticancer potential of natural isoquinoline alkaloid berberine. J. Explorat. Res. Pharmacol., 2021, 6(3), 105-133. doi: 10.14218/JERP.2021.00005
  99. Lee, S.L.; Dickson, R.B.; Lin, C.Y. Activation of hepatocyte growth factor and urokinase/plasminogen activator by matriptase, an epithelial membrane serine protease. J. Biol. Chem., 2000, 275(47), 36720-36725. doi: 10.1074/jbc.M007802200 PMID: 10962009
  100. Bhatt, A.S.; Erdjument-Bromage, H.; Tempst, P.; Craik, C.S.; Moasser, M.M. Adhesion signaling by a novel mitotic substrate of src kinases. Oncogene, 2005, 24(34), 5333-5343. doi: 10.1038/sj.onc.1208582 PMID: 16007225
  101. Uhland, K. Matriptase and its putative role in cancer. Cell. Mol. Life Sci., 2006, 63(24), 2968-2978. doi: 10.1007/s00018-006-6298-x PMID: 17131055
  102. List, K. Matriptase: A culprit in cancer? Future Oncol., 2009, 5(1), 97-104. doi: 10.2217/14796694.5.1.97 PMID: 19243302
  103. Li, P.; Jiang, S.; Lee, S.L.; Lin, C.Y.; Johnson, M.D.; Dickson, R.B.; Michejda, C.J.; Roller, P.P. Design and synthesis of novel and potent inhibitors of the type II transmembrane serine protease, matriptase, based upon the sunflower trypsin inhibitor-1. J. Med. Chem., 2007, 50(24), 5976-5983. doi: 10.1021/jm0704898 PMID: 17985858
  104. Law, M.E.; Corsino, P.E.; Jahn, S.C.; Davis, B.J.; Chen, S.; Patel, B.; Pham, K.; Lu, J.; Sheppard, B.; Nørgaard, P.; Hong, J.; Higgins, P.; Kim, J-S.; Luesch, H.; Law, B.K. Glucocorticoids and histone deacetylase inhibitors cooperate to block the invasiveness of basal-like breast cancer cells through novel mechanisms. Oncogene, 2013, 32(10), 1316-1329. doi: 10.1038/onc.2012.138 PMID: 22543582
  105. Nguyen, H.H.; Aronchik, I.; Brar, G.A.; Nguyen, D.H.H.; Bjeldanes, L.F.; Firestone, G.L. The dietary phytochemical indole-3-carbinol is a natural elastase enzymatic inhibitor that disrupts cyclin E protein processing. Proc. Natl. Acad. Sci., 2008, 105(50), 19750-19755. doi: 10.1073/pnas.0806581105 PMID: 19064917
  106. Aronchik, I.; Bjeldanes, L.F.; Firestone, G.L. Direct inhibition of elastase activity by indole-3-carbinol triggers a CD40-TRAF regulatory cascade that disrupts NF-kappaB transcriptional activity in human breast cancer cells. Cancer Res., 2010, 70(12), 4961-4971. doi: 10.1158/0008-5472.CAN-09-3349 PMID: 20530686
  107. Crocetti, L.; Quinn, M.T.; Schepetkin, I.A.; Giovannoni, M.P. A patenting perspective on human neutrophil elastase (HNE) inhibitors (2014-2018) and their therapeutic applications. Expert Opin. Ther. Pat., 2019, 29(7), 555-578. doi: 10.1080/13543776.2019.1630379 PMID: 31204543
  108. Akizuki, M.; Fukutomi, T.; Takasugi, M.; Takahashi, S.; Sato, T.; Harao, M.; Mizumoto, T.; Yamashita, J. Prognostic significance of immunoreactive neutrophil elastase in human breast cancer: long-term follow-up results in 313 patients. Neoplasia, 2007, 9(3), 260-264. doi: 10.1593/neo.06808 PMID: 17401466
  109. Sato, T.; Takahashi, S.; Mizumoto, T.; Harao, M.; Akizuki, M.; Takasugi, M.; Fukutomi, T.; Yamashita, J. Neutrophil elastase and cancer. Surg. Oncol., 2006, 15(4), 217-222. doi: 10.1016/j.suronc.2007.01.003 PMID: 17320378
  110. Mittendorf, E.A.; Alatrash, G.; Qiao, N.; Wu, Y.; Sukhumalchandra, P.; St John, L.S.; Philips, A.V.; Xiao, H.; Zhang, M.; Ruisaard, K.; Clise-Dwyer, K.; Lu, S.; Molldrem, J.J. Breast cancer cell uptake of the inflammatory mediator neutrophil elastase triggers an anticancer adaptive immune response. Cancer Res., 2012, 72(13), 3153-3162. doi: 10.1158/0008-5472.CAN-11-4135 PMID: 22564522
  111. Nawa, M.; Osada, S.; Morimitsu, K.; Nonaka, K.; Futamura, M.; Kawaguchi, Y.; Yoshida, K. Growth effect of neutrophil elastase on breast cancer: favorable action of sivelestat and application to anti-HER2 therapy. Anticancer Res., 2012, 32(1), 13-19. PMID: 22213283
  112. Porter, D.C.; Zhang, N.; Danes, C.; McGahren, M.J.; Harwell, R.M.; Faruki, S.; Keyomarsi, K. Tumor-specific proteolytic processing of cyclin E generates hyperactive lower-molecular-weight forms. Mol. Cell. Biol., 2001, 21(18), 6254-6269. doi: 10.1128/MCB.21.18.6254-6269.2001 PMID: 11509668
  113. Akli, S.; Keyomarsi, K. Cyclin E and its low molecular weight forms in human cancer and as targets for cancer therapy. Cancer Biol. Ther., 2003, 2(sup1)(1), 37-46. doi: 10.4161/cbt.201 PMID: 14508079
  114. Hunt, K.K.; Keyomarsi, K. Cyclin E as a prognostic and predictive marker in breast cancer. Semin. Cancer Biol., 2005, 15(4), 319-326. doi: 10.1016/j.semcancer.2005.04.007 PMID: 16043362
  115. Loeb, K.R.; Chen, X. Too much cleavage of cyclin E promotes breast tumorigenesis. PLoS Genet., 2012, 8(3), e1002623. doi: 10.1371/journal.pgen.1002623 PMID: 22479209
  116. Hess, S.; Engelmann, H. A novel function of CD40: Induction of cell death in transformed cells. J. Exp. Med., 1996, 183(1), 159-167. doi: 10.1084/jem.183.1.159 PMID: 8551219
  117. Wingett, D.G.; Vestal, R.E.; Forcier, K.; Hadjokas, N.; Nielson, C.P. CD40 is functionally expressed on human breast carcinomas: Variable inducibility by cytokines and enhancement of Fas-mediated apoptosis. Breast Cancer Res. Treat., 1998, 50(1), 27-36. doi: 10.1023/A:1006012607452 PMID: 9802617
  118. Hirano, A.; Longo, D.L.; Taub, D.D.; Ferris, D.K.; Young, L.S.; Eliopoulos, A.G.; Agathanggelou, A.; Cullen, N.; Macartney, J.; Fanslow, W.C.; Murphy, W.J. Inhibition of human breast carcinoma growth by a soluble recombinant human CD40 ligand. Blood, 1999, 93(9), 2999-3007. doi: 10.1182/blood.V93.9.2999 PMID: 10216096
  119. Al-Awadhi, F.H.; Paul, V.J.; Luesch, H. Structural diversity and anticancer activity of marine‐derived elastase inhibitors: Key features and mechanisms mediating the antimetastatic effects in invasive breast cancer. ChemBioChem, 2018, 19(8), 815-825. doi: 10.1002/cbic.201700627 PMID: 29405541
  120. Di, D.; Chen, L.; Wang, L.; Sun, P.; Liu, Y.; Xu, Z.; Ju, J. Downregulation of human intercellular adhesion molecule-1 attenuates the metastatic ability in human breast cancer cell lines. Oncol. Rep., 2016, 35(3), 1541-1548. doi: 10.3892/or.2016.4543 PMID: 26751847
  121. Gitlin-Domagalska, A.; Maciejewska, A.; Dębowski, D. Bowman-birk inhibitors: Insights into family of multifunctional proteins and peptides with potential therapeutical applications. Pharmaceuticals, 2020, 13(12), 421. doi: 10.3390/ph13120421 PMID: 33255583
  122. Srikanth, S.; Chen, Z. Plant protease inhibitors in therapeutics-focus on cancer therapy. Front. Pharmacol., 2016, 7, 470-489. doi: 10.3389/fphar.2016.00470 PMID: 28008315
  123. Armstrong, W.B.; Kennedy, A.R.; Wan, X.S.; Atiba, J.; McLaren, C.E.; Meyskens, F.L. Jr Single-dose administration of Bowman-Birk inhibitor concentrate in patients with oral leukoplakia. Cancer Epidemiol. Biomarkers Prev., 2000, 9(1), 43-47. PMID: 10667462
  124. Manasanch, E.E.; Orlowski, R.Z. Proteasome inhibitors in cancer therapy. Nat. Rev. Clin. Oncol., 2017, 14(7), 417-433. doi: 10.1038/nrclinonc.2016.206 PMID: 28117417
  125. Bibo-Verdugo, B.; Jiang, Z.; Caffrey, C.R.; O’Donoghue, A.J. Targeting proteasomes in infectious organisms to combat disease. FEBS J., 2017, 284(10), 1503-1517. doi: 10.1111/febs.14029 PMID: 28122162
  126. Della Sala, G.; Agriesti, F.; Mazzoccoli, C.; Tataranni, T.; Costantino, V.; Piccoli, C. Clogging the ubiquitin-proteasome machinery with marine natural products: last decade update. Mar. Drugs, 2018, 16(12), 467. doi: 10.3390/md16120467 PMID: 30486251
  127. Hanada, M.; Sugawara, K.; Kaneta, K.; Toda, S.; Nishiyama, Y.; Tomita, K.; Yamamoto, H.; Konishi, M.; Oki, T. Epoxomicin, a new antitumor agent of microbial origin. J. Antibiot., 1992, 45(11), 1746-1752. doi: 10.7164/antibiotics.45.1746 PMID: 1468981
  128. Meng, L.; Mohan, R.; Kwok, B.H.B.; Elofsson, M.; Sin, N.; Crews, C.M. Epoxomicin, a potent and selective proteasome inhibitor, exhibits in vivo antiinflammatory activity. Proc. Natl. Acad. Sci., 1999, 96(18), 10403-10408. doi: 10.1073/pnas.96.18.10403 PMID: 10468620
  129. Groll, M.; Huber, R.; Potts, B.C.M. Crystal structures of Salinosporamide A (NPI-0052) and B (NPI-0047) in complex with the 20S proteasome reveal important consequences of β-lactone ring opening and a mechanism for irreversible binding. J. Am. Chem. Soc., 2006, 128(15), 5136-5141. doi: 10.1021/ja058320b PMID: 16608349
  130. Macherla, V.R.; Mitchell, S.S.; Manam, R.R.; Reed, K.A.; Chao, T.H.; Nicholson, B.; Deyanat-Yazdi, G.; Mai, B.; Jensen, P.R.; Fenical, W.F.; Neuteboom, S.T.C.; Lam, K.S.; Palladino, M.A.; Potts, B.C.M. Structure-activity relationship studies of salinosporamide A (NPI-0052), a novel marine derived proteasome inhibitor. J. Med. Chem., 2005, 48(11), 3684-3687. doi: 10.1021/jm048995+ PMID: 15916417
  131. Manam, R.R.; McArthur, K.A.; Chao, T.H.; Weiss, J.; Ali, J.A.; Palombella, V.J.; Groll, M.; Lloyd, G.K.; Palladino, M.A.; Neuteboom, S.T.C.; Macherla, V.R.; Potts, B.C.M. Leaving groups prolong the duration of 20S proteasome inhibition and enhance the potency of salinosporamides. J. Med. Chem., 2008, 51(21), 6711-6724. doi: 10.1021/jm800548b PMID: 18939815
  132. Potts, B.C.; Lam, K.S. Generating a generation of proteasome inhibitors: from microbial fermentation to total synthesis of salinosporamide a (marizomib) and other salinosporamides. Mar. Drugs, 2010, 8(4), 835-880. doi: 10.3390/md8040835 PMID: 20479958
  133. Ma, L.; Diao, A. Marizomib, a potent second generation proteasome inhibitor from natural origin. Anticancer. Agents Med. Chem., 2015, 15(3), 298-306. doi: 10.2174/1871520614666141114202606 PMID: 25403165
  134. Pereira, R.B.; Evdokimov, N.M.; Lefranc, F.; Valentão, P.; Kornienko, A.; Pereira, D.M.; Andrade, P.B.; Gomes, N.G.M. Marine-derived anticancer agents: Clinical benefits, innovative mechanisms, and new targets. Mar. Drugs, 2019, 17(6), 329. doi: 10.3390/md17060329 PMID: 31159480
  135. Pereira, A.R.; Kale, A.J.; Fenley, A.T.; Byrum, T.; Debonsi, H.M.; Gilson, M.K.; Valeriote, F.A.; Moore, B.S.; Gerwick, W.H. The carmaphycins: new proteasome inhibitors exhibiting an α,β-epoxyketone warhead from a marine cyanobacterium. ChemBioChem, 2012, 13(6), 810-817. doi: 10.1002/cbic.201200007 PMID: 22383253
  136. Rawat, A.; Roy, M.; Jyoti, A.; Kaushik, S.; Verma, K.; Srivastava, V.K. Cysteine proteases: Battling pathogenic parasitic protozoans with omnipresent enzymes. Microbiol. Res., 2021, 249, 126784. doi: 10.1016/j.micres.2021.126784 PMID: 33989978
  137. Verma, S.; Dixit, R.; Pandey, K.C. Cysteine proteases: Modes of activation and future prospects as pharmacological targets. Front. Pharmacol., 2016, 7, 107. doi: 10.3389/fphar.2016.00107 PMID: 27199750
  138. Turk, V.; Stoka, V.; Vasiljeva, O.; Renko, M.; Sun, T.; Turk, B.; Turk, D. Cysteine cathepsins: From structure, function and regulation to new frontiers. Biochim. Biophys. Acta. Proteins Proteomics, 2012, 1824(1), 68-88. doi: 10.1016/j.bbapap.2011.10.002
  139. Sudhan, D.R.; Siemann, D.W.; Cathepsin, L. Cathepsin L targeting in cancer treatment. Pharmacol. Ther., 2015, 155, 105-116. doi: 10.1016/j.pharmthera.2015.08.007 PMID: 26299995
  140. Fujishima, A.; Imai, Y.; Nomura, T.; Fujisawa, Y.; Yamamoto, Y.; Sugawara, T. The crystal structure of human cathepsin L complexed with E‐64. FEBS Lett., 1997, 407(1), 47-50. doi: 10.1016/S0014-5793(97)00216-0 PMID: 9141479
  141. Ono, Y.; Saido, T.C.; Sorimachi, H. Calpain research for drug discovery: Challenges and potential nature reviews drug discovery. Nat. Publis. Gr., 2016, 11(29), 854-876.
  142. Saatman, K.E.; Creed, J.; Raghupathi, R. Calpain as a therapeutic target in traumatic brain injury. Neurotherapeutics, 2010, 7(1), 31-42. doi: 10.1016/j.nurt.2009.11.002 PMID: 20129495
  143. Leloup, L.; Wells, A. Calpains as potential anti-cancer targets. Expert Opin. Ther. Targets, 2011, 15(3), 309-323. doi: 10.1517/14728222.2011.553611 PMID: 21244345
  144. Potz, B.A.; Abid, M.R.; Sellke, F.W. Role of calpain in pathogenesis of human disease processes. J. Nat. Sci., 2016, 2(9), e218. PMID: 27747292
  145. Barnard, D.L.; Hubbard, V.D.; Burton, J.; Smee, D.F.; Morrey, J.D.; Otto, M.J.; Sidwell, R.W. Inhibition of severe acute respiratory syndrome-associated coronavirus (SARSCoV) by calpain inhibitors and β-D-N4-hydroxycytidine. Antivir. Chem. Chemother., 2004, 15(1), 15-22. doi: 10.1177/095632020401500102 PMID: 15074711
  146. Schneider, M.; Ackermann, K.; Stuart, M.; Wex, C.; Protzer, U.; Schätzl, H.M.; Gilch, S. Severe acute respiratory syndrome coronavirus replication is severely impaired by MG132 due to proteasome-independent inhibition of M-calpain. J. Virol., 2012, 86(18), 10112-10122. doi: 10.1128/JVI.01001-12 PMID: 22787216
  147. Taori, K.; Liu, Y.; Paul, V.J.; Luesch, H. Combinatorial strategies by marine cyanobacteria: symplostatin 4, an antimitotic natural dolastatin 10/15 hybrid that synergizes with the coproduced HDAC inhibitor largazole. ChemBioChem, 2009, 10(10), 1634-1639. doi: 10.1002/cbic.200900192 PMID: 19514039
  148. Liu, S.; Gao, X.; Zhang, L.; Qin, S.; Wei, M.; Liu, N.; Zhao, R.; Li, B.; Meng, Y.; Lin, G.; Lu, C.; Liu, X.; Xie, M.; Liu, T.; Zhou, H.; Qi, M.; Yang, G.; Yang, C. A novel Anti-Cancer Stem Cells compound optimized from the natural symplostatin 4 scaffold inhibits Wnt/β-catenin signaling pathway. Eur. J. Med. Chem., 2018, 156, 21-42. doi: 10.1016/j.ejmech.2018.06.046 PMID: 30006166
  149. White, J.B.; Beckford, J.; Yadegarynia, S.; Ngo, N.; Lialiutska, T.; d’Alarcao, M. Some natural flavonoids are competitive inhibitors of caspase-1, -3, and -7 despite their cellular toxicity. Food Chem., 2012, 131(4), 1453-1459. doi: 10.1016/j.foodchem.2011.10.026 PMID: 22140296
  150. Yadav, P.; Yadav, R.; Jain, S.; Vaidya, A. Caspase‐3: A primary target for natural and synthetic compounds for cancer therapy. Chem. Biol. Drug Des., 2021, 98(1), 144-165. doi: 10.1111/cbdd.13860 PMID: 33963665
  151. Al-Awadhi, F.H.; Law, B.K.; Paul, V.J.; Luesch, H. Grassystatins D–F, potent aspartic protease inhibitors from marine cyanobacteria as potential antimetastatic agents targeting invasive breast cancer. J. Nat. Prod., 2017, 80(11), 2969-2986. doi: 10.1021/acs.jnatprod.7b00551 PMID: 29087712
  152. Cerdà-Costa, N.; Xavier Gomis-Rüth, F. Architecture and function of metallopeptidase catalytic domains. Protein Sci., 2014, 23(2), 123-144. doi: 10.1002/pro.2400 PMID: 24596965
  153. Kumar, G.B.; Nair, B.G.; Perry, J.J.P.; Martin, D.B.C. Recent insights into natural product inhibitors of matrix metalloproteinases. MedChemComm, 2019, 10(12), 2024-2037. doi: 10.1039/C9MD00165D PMID: 32904148
  154. Gupta, P. Natural products as inhibitors of matrix metalloproteinases. Nat. Prod. Chem. Res., 2016, 4(1), 1. doi: 10.4172/2329-6836.1000e114
  155. Cathcart, J.; Pulkoski-Gross, A.; Cao, J. Targeting matrix metalloproteinases in cancer: Bringing new life to old ideas genes and diseases. Chongq. Med. Univ., 2015, 3(1), 26-34.
  156. Mannello, F.; Tonti, G.; Papa, S. Matrix metalloproteinase inhibitors as anticancer therapeutics. Curr. Cancer Drug Targets, 2005, 5(4), 285-298. doi: 10.2174/1568009054064615 PMID: 15975049
  157. Peng, P.L.; Hsieh, Y.S.; Wang, C.J.; Hsu, J.L.; Chou, F.P. Inhibitory effect of berberine on the invasion of human lung cancer cells via decreased productions of urokinase-plasminogen activator and matrix metalloproteinase-2. Toxicol. Appl. Pharmacol., 2006, 214(1), 8-15. doi: 10.1016/j.taap.2005.11.010 PMID: 16387334
  158. James, M.A.; Fu, H.; Liu, Y.; Chen, D.R.; You, M. Dietary administration of berberine or Phellodendron amurense extract inhibits cell cycle progression and lung tumorigenesis. Mol. Carcinog., 2011, 50(1), 1-7. doi: 10.1002/mc.20690 PMID: 21061266
  159. Ling, X.H.; Wang, S.K.; Huang, Y.H.; Huang, M.J.; Duh, C.Y. A high-content screening assay for the discovery of novel proteasome inhibitors from formosan soft corals. Mar. Drugs, 2018, 16(10), 395. doi: 10.3390/md16100395 PMID: 30347865
  160. Majumdar, D.D. Recent updates on pharmaceutical potential of plant protease inhibitors. Int. J. Med. Pharm. Sci., 2013, 3, 101-120.
  161. Clemente, A.; Arques, M.C. Bowman-Birk inhibitors from legumes as colorectal chemopreventive agents. World J. Gastroenterol., 2014, 20(30), 10305-10315. doi: 10.3748/wjg.v20.i30.10305 PMID: 25132747
  162. Morrison, K.C.; Hergenrother, P.J. Natural products as starting points for the synthesis of complex and diverse compounds. Nat. Prod. Rep., 2014, 31(1), 6-14. doi: 10.1039/C3NP70063A PMID: 24219884
  163. Hashmi, M.A.; Andreassend, S.K.; Keyzers, R.A.; Lein, M. Accurate prediction of the optical rotation and NMR properties for highly flexible chiral natural products. Phys. Chem. Chem. Phys., 2016, 18(35), 24506-24510. doi: 10.1039/C6CP04828E PMID: 27539138
  164. Adelusi, T.I.; Oyedele, A.Q.K.; Boyenle, I.D.; Ogunlana, A.T.; Adeyemi, R.O.; Ukachi, C.D.; Idris, M.O.; Olaoba, O.T.; Adedotun, I.O.; Kolawole, O.E.; Xiaoxing, Y.; Abdul-Hammed, M. Molecular modeling in drug discovery. Informatics in Medicine Unlocked, 2022, 29, 100880. doi: 10.1016/j.imu.2022.100880
  165. Baxi, S.M.; Beall, R.; Yang, J.; Mackey, T.K. A multidisciplinary review of the policy, intellectual property rights, and international trade environment for access and affordability to essential cancer medications. Global. Health, 2019, 15(1), 57. doi: 10.1186/s12992-019-0497-3 PMID: 31533850
  166. Liu, G.H.; Chen, T.; Zhang, X.; Ma, X.L.; Shi, H.S. Small molecule inhibitors targeting the cancers. MedComm, 2022, 3(4), e181. doi: 10.1002/mco2.181 PMID: 36254250
  167. Bedard, P.L.; Hyman, D.M.; Davids, M.S.; Siu, L.L. Small molecules, big impact: 20 years of targeted therapy in oncology. Lancet, 2020, 395(10229), 1078-1088. doi: 10.1016/S0140-6736(20)30164-1 PMID: 32222192

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers