The Potential Role of Non-coding RNAs in Regulating Ferroptosis in Cancer: Mechanisms and Application Prospects


Цитировать

Полный текст

Аннотация

:Cancer is the second leading cause of death globally. Despite some successes, conventional cancer treatments are insufficient to address the growing problem of drug resistance in tumors and to achieve efficient treatment outcomes. Therefore, there is an urgent need to explore new therapeutic options. Ferroptosis, a type of iron- and reactive oxygen species-dependent regulated cell death, has been closely associated with cancer development and progression. Non-coding RNAs (ncRNAs) are a class of RNAs that do not code for proteins, and studies have demonstrated their involvement in the regulation of ferroptosis in cancer. This review aims to explore the molecular regulatory mechanisms of ncRNAs involved in ferroptosis in cancer and to emphasize the feasibility of ferroptosis and ncRNAs as novel therapeutic strategies for cancer. We conducted a systematic and extensive literature review using PubMed, Google Scholar, Web of Science, and various other sources to identify relevant studies on ferroptosis, ncRNAs, and cancer. A deeper understanding of ferroptosis and ncRNAs could facilitate the development of new cancer treatment strategies.

Об авторах

Ming-Yuan Cao

School of Medicine, Xizang Minzu University

Email: info@benthamscience.net

Zhen-Dong Zhang

School of Medicine, Xizang Minzu University

Email: info@benthamscience.net

Xin-Rui Hou

School of Medicine, Xizang Minzu University

Email: info@benthamscience.net

Xiao-Ping Wang

School of Medicine, Xizang Minzu University

Автор, ответственный за переписку.
Email: info@benthamscience.net

Список литературы

  1. Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249. doi: 10.3322/caac.21660 PMID: 33538338
  2. Nave, O.P.; Hareli, S.; Elbaz, M.; Hayim Iluz, I.; Bunimovich-Mendrazitsky, S. BCG and IL − 2 model for bladder cancer treatment with fast and slow dynamics based on SPVF method—stability analysis. Math. Biosci. Eng., 2019, 16(5), 5346-5379. doi: 10.3934/mbe.2019267 PMID: 31499716
  3. Dixon, S.J.; Lemberg, K.M.; Lamprecht, M.R.; Skouta, R.; Zaitsev, E.M.; Gleason, C.E.; Patel, D.N.; Bauer, A.J.; Cantley, A.M.; Yang, W.S.; Morrison, B., III; Stockwell, B.R. Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell, 2012, 149(5), 1060-1072. doi: 10.1016/j.cell.2012.03.042 PMID: 22632970
  4. Yan, H.; Zou, T.; Tuo, Q.; Xu, S.; Li, H.; Belaidi, A.A.; Lei, P. Ferroptosis: mechanisms and links with diseases. Signal Transduct. Target. Ther., 2021, 6(1), 49. doi: 10.1038/s41392-020-00428-9 PMID: 33536413
  5. Liu, X.; Chen, C.; Han, D.; Zhou, W.; Cui, Y.; Tang, X.; Xiao, C.; Wang, Y.; Gao, Y. SLC7A11/GPX4 inactivation-mediated ferroptosis contributes to the pathogenesis of triptolide-induced cardiotoxicity. Oxid. Med. Cell. Longev., 2022, 2022, 1-16. doi: 10.1155/2022/3192607 PMID: 35757509
  6. Tang, D.; Chen, X.; Kang, R.; Kroemer, G. Ferroptosis: Molecular mechanisms and health implications. Cell Res., 2021, 31(2), 107-125. doi: 10.1038/s41422-020-00441-1 PMID: 33268902
  7. Balihodzic, A.; Prinz, F.; Dengler, M.A.; Calin, G.A.; Jost, P.J.; Pichler, M. Non-coding RNAs and ferroptosis: Potential implications for cancer therapy. Cell Death Differ., 2022, 29(6), 1094-1106. doi: 10.1038/s41418-022-00998-x PMID: 35422492
  8. Kim, T.; Reitmair, A. Non-coding RNAs: Functional aspects and diagnostic utility in oncology. Int. J. Mol. Sci., 2013, 14(3), 4934-4968. doi: 10.3390/ijms14034934 PMID: 23455466
  9. Zuo, Y.B.; Zhang, Y.F.; Zhang, R.; Tian, J.W.; Lv, X.B.; Li, R.; Li, S.P.; Cheng, M.D.; Shan, J.; Zhao, Z.; Xin, H. Ferroptosis in cancer progression: Role of noncoding RNAs. Int. J. Biol. Sci., 2022, 18(5), 1829-1843. doi: 10.7150/ijbs.66917 PMID: 35342359
  10. Stockwell, B.R. Ferroptosis turns 10: Emerging mechanisms, physiological functions, and therapeutic applications. Cell, 2022, 185(14), 2401-2421. doi: 10.1016/j.cell.2022.06.003 PMID: 35803244
  11. Altamura, S.; Marques, O.; Colucci, S.; Mertens, C.; Alikhanyan, K.; Muckenthaler, M.U. Regulation of iron homeostasis: Lessons from mouse models. Mol. Aspects Med., 2020, 75, 100872. doi: 10.1016/j.mam.2020.100872 PMID: 32792212
  12. Zhao, L.; Zhou, X.; Xie, F.; Zhang, L.; Yan, H.; Huang, J.; Zhang, C.; Zhou, F.; Chen, J.; Zhang, L. Ferroptosis in cancer and cancer immunotherapy. Cancer Commun. (Lond.), 2022, 42(2), 88-116. doi: 10.1002/cac2.12250 PMID: 35133083
  13. Li, J.; Cao, F.; Yin, H.; Huang, Z.; Lin, Z.; Mao, N.; Sun, B.; Wang, G. Ferroptosis: Past, present and future. Cell Death Dis., 2020, 11(2), 88. doi: 10.1038/s41419-020-2298-2 PMID: 32015325
  14. Ryu, M.S.; Zhang, D.; Protchenko, O.; Shakoury-Elizeh, M.; Philpott, C.C. PCBP1 and NCOA4 regulate erythroid iron storage and heme biosynthesis. J. Clin. Invest., 2017, 127(5), 1786-1797. doi: 10.1172/JCI90519 PMID: 28375153
  15. Li, K.; Chen, B.; Xu, A.; Shen, J.; Li, K.; Hao, K.; Hao, R.; Yang, W.; Jiang, W.; Zheng, Y.; Ge, F.; Wang, Z. TRIM7 modulates NCOA4-mediated ferritinophagy and ferroptosis in glioblastoma cells. Redox Biol., 2022, 56, 102451. doi: 10.1016/j.redox.2022.102451 PMID: 36067704
  16. Camaschella, C.; Nai, A.; Silvestri, L. Iron metabolism and iron disorders revisited in the hepcidin era. Haematologica, 2020, 105(2), 260-272. doi: 10.3324/haematol.2019.232124 PMID: 31949017
  17. Feng, H.; Schorpp, K.; Jin, J.; Yozwiak, C.E.; Hoffstrom, B.G.; Decker, A.M.; Rajbhandari, P.; Stokes, M.E.; Bender, H.G.; Csuka, J.M.; Upadhyayula, P.S.; Canoll, P.; Uchida, K.; Soni, R.K.; Hadian, K.; Stockwell, B.R. Transferrin receptor Is a specific ferroptosis marker. Cell Rep., 2020, 30(10), 3411-3423.e7. doi: 10.1016/j.celrep.2020.02.049 PMID: 32160546
  18. Zhu, G.; Murshed, A.; Li, H.; Ma, J.; Zhen, N.; Ding, M.; Zhu, J.; Mao, S.; Tang, X.; Liu, L.; Sun, F.; Jin, L.; Pan, Q. O-GlcNAcylation enhances sensitivity to RSL3-induced ferroptosis via the YAP/TFRC pathway in liver cancer. Cell Death Discov., 2021, 7(1), 83. doi: 10.1038/s41420-021-00468-2 PMID: 33863873
  19. Liu, J.; Ren, Z.; Yang, L.; Zhu, L. li, Y.; Bie, C.; Liu, H.; Ji, Y.; Chen, D.; Zhu, M.; Kuang, W. The NSUN5-FTH1/FTL pathway mediates ferroptosis in bone marrow-derived mesenchymal stem cells. Cell Death Discov., 2022, 8(1), 99. doi: 10.1038/s41420-022-00902-z PMID: 35249107
  20. Qin, X.; Zhang, J.; Wang, B.; Xu, G.; Yang, X.; Zou, Z.; Yu, C. Ferritinophagy is involved in the zinc oxide nanoparticles-induced ferroptosis of vascular endothelial cells. Autophagy, 2021, 17(12), 4266-4285. doi: 10.1080/15548627.2021.1911016 PMID: 33843441
  21. Tang, Z.; Jiang, W.; Mao, M.; Zhao, J.; Chen, J.; Cheng, N. Deubiquitinase USP35 modulates ferroptosis in lung cancer via targeting ferroportin. Clin. Transl. Med., 2021, 11(4), e390. doi: 10.1002/ctm2.390 PMID: 33931967
  22. Jiang, X.; Stockwell, B.R.; Conrad, M. Ferroptosis: mechanisms, biology and role in disease. Nat. Rev. Mol. Cell Biol., 2021, 22(4), 266-282. doi: 10.1038/s41580-020-00324-8 PMID: 33495651
  23. Manz, D.H.; Blanchette, N.L.; Paul, B.T.; Torti, F.M.; Torti, S.V. Iron and cancer: Recent insights. Ann. N. Y. Acad. Sci., 2016, 1368(1), 149-161. doi: 10.1111/nyas.13008 PMID: 26890363
  24. Huang, Y.; Du, J.; Li, D.; He, W.; Liu, Z.; Liu, L.; Yang, X.; Cheng, X.; Chen, R.; Yang, Y. LASS2 suppresses metastasis in multiple cancers by regulating the ferroptosis signalling pathway through interaction with TFRC. Cancer Cell Int., 2024, 24(1), 87. doi: 10.1186/s12935-024-03275-8 PMID: 38419028
  25. Zhao, L.; Miao, H.; Quan, M.; Wang, S.; Zhang, Y.; Zhou, H.; Zhang, X.; Lin, Z.; Piao, J. β-Lapachone induces ferroptosis of colorectal cancer cells via NCOA4-mediated ferritinophagy by activating JNK pathway. Chem. Biol. Interact., 2024, 389, 110866. doi: 10.1016/j.cbi.2024.110866 PMID: 38218311
  26. Huang, Q.T.; Hu, Q.Q.; Wen, Z.F.; Li, Y.L. Iron oxide nanoparticles inhibit tumor growth by ferroptosis in diffuse large B-cell lymphoma. Am. J. Cancer Res., 2023, 13(2), 498-508. PMID: 36895978
  27. Kagan, V.E.; Mao, G.; Qu, F.; Angeli, J.P.F.; Doll, S.; Croix, C.S.; Dar, H.H.; Liu, B.; Tyurin, V.A.; Ritov, V.B.; Kapralov, A.A.; Amoscato, A.A.; Jiang, J.; Anthonymuthu, T.; Mohammadyani, D.; Yang, Q.; Proneth, B.; Klein-Seetharaman, J.; Watkins, S.; Bahar, I.; Greenberger, J.; Mallampalli, R.K.; Stockwell, B.R.; Tyurina, Y.Y.; Conrad, M.; Bayır, H. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat. Chem. Biol., 2017, 13(1), 81-90. doi: 10.1038/nchembio.2238 PMID: 27842066
  28. Zheng, J.; Conrad, M. The Metabolic Underpinnings of Ferroptosis. Cell Metab., 2020, 32(6), 920-937. doi: 10.1016/j.cmet.2020.10.011 PMID: 33217331
  29. Jiang, M.; Qiao, M.; Zhao, C.; Deng, J.; Li, X.; Zhou, C. Targeting ferroptosis for cancer therapy: Exploring novel strategies from its mechanisms and role in cancers. Transl. Lung Cancer Res., 2020, 9(4), 1569-1584. doi: 10.21037/tlcr-20-341 PMID: 32953528
  30. He, G.N.; Bao, N.R.; Wang, S.; Xi, M.; Zhang, T.H.; Chen, F.S. Ketamine induces ferroptosis of liver cancer cells by targeting lncRNA PVT1/miR-214-3p/GPX4. Drug Des. Devel. Ther., 2021, 15, 3965-3978. doi: 10.2147/DDDT.S332847 PMID: 34566408
  31. Yu, X.H.; Ren, X.H.; Liang, X.H.; Tang, Y.L. Roles of fatty acid metabolism in tumourigenesis: Beyond providing nutrition (Review). Mol. Med. Rep., 2018, 18(6), 5307-5316. doi: 10.3892/mmr.2018.9577 PMID: 30365095
  32. Tang, Y.; Zhou, J.; Hooi, S.; Jiang, Y.M.; Lu, G.D. Fatty acid activation in carcinogenesis and cancer development: Essential roles of long chain acyl CoA synthetases (Review).. Oncol. Lett., 2018, 16(2), 1390-1396. doi: 10.3892/ol.2018.8843 PMID: 30008815
  33. Cheng, J.; Fan, Y.Q.; Liu, B.H.; Zhou, H.; Wang, J.M.; Chen, Q.X. ACSL4 suppresses glioma cells proliferation via activating ferroptosis. Oncol. Rep., 2020, 43(1), 147-158. PMID: 31789401
  34. Feng, J.; Lu, P.; Zhu, G.; Hooi, S.C.; Wu, Y.; Huang, X.; Dai, H.; Chen, P.; Li, Z.; Su, W.; Han, C.; Ye, X.; Peng, T.; Zhou, J.; Lu, G. ACSL4 is a predictive biomarker of sorafenib sensitivity in hepatocellular carcinoma. Acta Pharmacol. Sin., 2021, 42(1), 160-170. doi: 10.1038/s41401-020-0439-x PMID: 32541921
  35. Liu, J.; Kang, R.; Tang, D. Signaling pathways and defense mechanisms of ferroptosis. FEBS J., 2022, 289(22), 7038-7050. doi: 10.1111/febs.16059 PMID: 34092035
  36. Lei, G.; Mao, C.; Yan, Y.; Zhuang, L.; Gan, B. Ferroptosis, radiotherapy, and combination therapeutic strategies. Protein Cell, 2021, 12(11), 836-857. doi: 10.1007/s13238-021-00841-y PMID: 33891303
  37. Kuang, F.; Liu, J.; Tang, D.; Kang, R. Oxidative Damage and Antioxidant Defense in Ferroptosis. Front. Cell Dev. Biol., 2020, 8, 586578. doi: 10.3389/fcell.2020.586578 PMID: 33043019
  38. Li, F.J.; Long, H.Z.; Zhou, Z.W.; Luo, H.Y.; Xu, S.G.; Gao, L.C.; System, X. System Xc−/GSH/GPX4 axis: An important antioxidant system for the ferroptosis in drug-resistant solid tumor therapy. Front. Pharmacol., 2022, 13, 910292. doi: 10.3389/fphar.2022.910292 PMID: 36105219
  39. Faraji, P.; Borchert, A.; Ahmadian, S.; Kuhn, H. Butylated hydroxytoluene (BHT) protects SH-SY5Y neuroblastoma cells from ferroptotic cell death: Insights from in vitro and in vivo studies. Antioxidants, 2024, 13(2), 242. doi: 10.3390/antiox13020242 PMID: 38397840
  40. Zhang, Y.; Song, Q.; Zhang, Y.; Xiao, J.; Deng, X.; Xing, X.; Hu, H.; Zhang, Y. Iron-based nanovehicle delivering Fin56 for hyperthermia-boosted ferroptosis therapy against osteosarcoma. Int. J. Nanomedicine, 2024, 19, 91-107. doi: 10.2147/IJN.S441112 PMID: 38192634
  41. Wang, Z.; Zhou, C.; Zhang, Y.; Tian, X.; Wang, H.; Wu, J.; Jiang, S. From synergy to resistance: Navigating the complex relationship between sorafenib and ferroptosis in hepatocellular carcinoma. Biomed. Pharmacother., 2024, 170, 116074.
  42. Koppula, P.; Lei, G.; Zhang, Y.; Yan, Y.; Mao, C.; Kondiparthi, L.; Shi, J.; Liu, X.; Horbath, A.; Das, M.; Li, W.; Poyurovsky, M.V.; Olszewski, K.; Gan, B. A targetable CoQ-FSP1 axis drives ferroptosis- and radiation-resistance in KEAP1 inactive lung cancers. Nat. Commun., 2022, 13(1), 2206. doi: 10.1038/s41467-022-29905-1 PMID: 35459868
  43. Kraft, V.A.N.; Bezjian, C.T.; Pfeiffer, S.; Ringelstetter, L.; Müller, C.; Zandkarimi, F.; Merl-Pham, J.; Bao, X.; Anastasov, N.; Kössl, J.; Brandner, S.; Daniels, J.D.; Schmitt-Kopplin, P.; Hauck, S.M.; Stockwell, B.R.; Hadian, K.; Schick, J.A. GTP cyclohydrolase 1/tetrahydrobiopterin counteract ferroptosis through lipid remodeling. ACS Cent. Sci., 2020, 6(1), 41-53. doi: 10.1021/acscentsci.9b01063 PMID: 31989025
  44. Liu, D.; Liang, C.; Huang, B.; Zhuang, X.; Cui, W.; Yang, L.; Yang, Y.; Zhang, Y.; Fu, X.; Zhang, X.; Du, L.; Gu, W.; Wang, X.; Yin, C.; Chai, R.; Chu, B. Tryptophan metabolism acts as a new anti‐ferroptotic pathway to mediate tumor growth. Adv. Sci. (Weinh.), 2023, 10(6), 2204006. doi: 10.1002/advs.202204006 PMID: 36627132
  45. Gao, M.; Monian, P.; Quadri, N.; Ramasamy, R.; Jiang, X. Glutaminolysis and transferrin regulate ferroptosis. Mol. Cell, 2015, 59(2), 298-308. doi: 10.1016/j.molcel.2015.06.011 PMID: 26166707
  46. Zhang, X.; Wang, L.; Li, H.; Zhang, L.; Zheng, X.; Cheng, W. Crosstalk between noncoding RNAs and ferroptosis: new dawn for overcoming cancer progression. Cell Death Dis., 2020, 11(7), 580. doi: 10.1038/s41419-020-02772-8 PMID: 32709863
  47. Pan, C.; Chen, G.; Zhao, X.; Xu, X.; Liu, J. lncRNA BBOX1-AS1 silencing inhibits esophageal squamous cell cancer progression by promoting ferroptosis via miR-513a-3p/SLC7A11 axis. Eur. J. Pharmacol., 2022, 934, 175317. doi: 10.1016/j.ejphar.2022.175317 PMID: 36216119
  48. Lin, Z.; Song, J.; Gao, Y.; Huang, S.; Dou, R.; Zhong, P.; Huang, G.; Han, L.; Zheng, J.; Zhang, X.; Wang, S.; Xiong, B. Hypoxia-induced HIF-1α/lncRNA-PMAN inhibits ferroptosis by promoting the cytoplasmic translocation of ELAVL1 in peritoneal dissemination from gastric cancer. Redox Biol., 2022, 52, 102312. doi: 10.1016/j.redox.2022.102312 PMID: 35447413
  49. Zhang, H.; Deng, T.; Liu, R.; Ning, T.; Yang, H.; Liu, D.; Zhang, Q.; Lin, D.; Ge, S.; Bai, M.; Wang, X.; Zhang, L.; Li, H.; Yang, Y.; Ji, Z.; Wang, H.; Ying, G.; Ba, Y. CAF secreted miR-522 suppresses ferroptosis and promotes acquired chemo-resistance in gastric cancer. Mol. Cancer, 2020, 19(1), 43. doi: 10.1186/s12943-020-01168-8 PMID: 32106859
  50. Toden, S.; Zumwalt, T.J.; Goel, A. Non-coding RNAs and potential therapeutic targeting in cancer. Biochim. Biophys. Acta Rev. Cancer, 2021, 1875(1), 188491. doi: 10.1016/j.bbcan.2020.188491 PMID: 33316377
  51. Babu, K.R.; Muckenthaler, M.U. miR-148a regulates expression of the transferrin receptor 1 in hepatocellular carcinoma. Sci. Rep., 2019, 9(1), 1518. doi: 10.1038/s41598-018-35947-7 PMID: 30728365
  52. Kindrat, I.; Tryndyak, V.; de Conti, A.; Shpyleva, S.; Mudalige, T.K.; Kobets, T.; Erstenyuk, A.M.; Beland, F.A.; Pogribny, I.P. MicroRNA-152-mediated dysregulation of hepatic transferrin receptor 1 in liver carcinogenesis. Oncotarget, 2016, 7(2), 1276-1287. doi: 10.18632/oncotarget.6004 PMID: 26657500
  53. Fu, Y.; Lin, L.; Xia, L. MiR-107 function as a tumor suppressor gene in colorectal cancer by targeting transferrin receptor 1. Cell. Mol. Biol. Lett., 2019, 24(1), 31. doi: 10.1186/s11658-019-0155-z PMID: 31131011
  54. Hamara, K.; Bielecka-Kowalska, A.; Przybylowska-Sygut, K.; Sygut, A.; Dziki, A.; Szemraj, J. Alterations in expression profile of iron-related genes in colorectal cancer. Mol. Biol. Rep., 2013, 40(10), 5573-5585. doi: 10.1007/s11033-013-2659-3 PMID: 24078156
  55. Chekhun, V.F.; Lukyanova, N.A.T.A.L.I.A.Y.; Burlaka, A.P.; Bezdenezhnykh, N.A.; Shpyleva, S.; Tryndyak, V.P.; Beland, F.A.; Pogribny, I.P. Iron metabolism disturbances in the MCF-7 human breast cancer cells with acquired resistance to doxorubicin and cisplatin. Int. J. Oncol., 2013, 43(5), 1481-1486. doi: 10.3892/ijo.2013.2063 PMID: 23969999
  56. Zhang, R.; Pan, T.; Xiang, Y.; Zhang, M.; Xie, H.; Liang, Z.; Chen, B.; Xu, C.; Wang, J.; Huang, X.; Zhu, Q.; Zhao, Z.; Gao, Q.; Wen, C.; Liu, W.; Ma, W.; Feng, J.; Sun, X.; Duan, T.; Lai-Han Leung, E.; Xie, T.; Wu, Q.; Sui, X. Curcumenol triggered ferroptosis in lung cancer cells via lncRNA H19/miR-19b-3p/FTH1 axis. Bioact. Mater., 2022, 13, 23-36. doi: 10.1016/j.bioactmat.2021.11.013 PMID: 35224289
  57. Lu, M.; Huang, J.; Deng, C.; Guo, T.; Chen, X.; Chen, P.; Du, S. Cinobufotalin induces ferroptosis to suppress lung cancer cell growth by lncRNA LINC00597/hsa-miR-367-3p/TFRC pathway via resibufogenin. Anticancer. Agents Med. Chem., 2023, 23(6), 717-725. doi: 10.2174/1871520622666221010092922 PMID: 36221890
  58. He, M.; Wang, Y.; Xie, J.; Pu, J.; Shen, Z.; Wang, A.; Li, T.; Wang, T.; Li, G.; Liu, Y.; Mei, Z.; Ren, Z.; Wang, W.; Liu, X.; Hong, J.; Liu, Q.; Lei, H.; He, X.; Du, W.; Yuan, Y.; Yang, L. M7G modification of FTH1 and pri-miR-26a regulates ferroptosis and chemotherapy resistance in osteosarcoma. Oncogene, 2024, 43(5), 341-353. doi: 10.1038/s41388-023-02882-5 PMID: 38040806
  59. Zheng, S.; Hu, L.; Song, Q.; Shan, Y.; Yin, G.; Zhu, H.; Kong, W.; Zhou, C. miR-545 promotes colorectal cancer by inhibiting transferring in the non-normal ferroptosis signaling. Aging (Albany NY), 2021, 13(24), 26137-26147. doi: 10.18632/aging.203801 PMID: 34954694
  60. Yang, G.; Pan, Q.; Lu, Y.; Zhu, J.; Gou, X. miR-29a-5p modulates ferroptosis by targeting ferritin heavy chain FTH1 in prostate cancer. Biochem. Biophys. Res. Commun., 2023, 652, 6-13. doi: 10.1016/j.bbrc.2023.02.030 PMID: 36806086
  61. Zhu, C.; Song, Z.; Chen, Z.; Lin, T.; Lin, H.; Xu, Z.; Ai, F.; Zheng, S. MicroRNA-4735-3p facilitates ferroptosis in clear Cell renal cell carcinoma by targeting SLC40A1. Anal. Cell. Pathol. (Amst.), 2022, 2022, 1-12. doi: 10.1155/2022/4213401 PMID: 35646516
  62. Xu, P.; Ge, F.H.; Li, W.X.; Xu, Z.; Wang, X.L.; Shen, J.L.; Xu, A.B.; Hao, R.R. MicroRNA-147a targets SLC40A1 to induce ferroptosis in human glioblastoma. Anal. Cell. Pathol. (Amst.), 2022, 2022, 1-14. doi: 10.1155/2022/2843990 PMID: 35942174
  63. Chen, X.; Kang, R.; Kroemer, G.; Tang, D. Broadening horizons: the role of ferroptosis in cancer. Nat. Rev. Clin. Oncol., 2021, 18(5), 280-296. doi: 10.1038/s41571-020-00462-0 PMID: 33514910
  64. Ma, L.L.; Liang, L.; Zhou, D.; Wang, S.W. Tumor suppressor miR-424-5p abrogates ferroptosis in ovarian cancer through targeting ACSL4. Neoplasma, 2021, 68(1), 165-173. doi: 10.4149/neo_2020_200707N705 PMID: 33038905
  65. Qi, R.; Bai, Y.; Li, K.; Liu, N.; Xu, Y.; Dal, E.; Wang, Y.; Lin, R.; Wang, H.; Liu, Z.; Li, X.; Wang, X.; Shi, B. Cancer-associated fibroblasts suppress ferroptosis and induce gemcitabine resistance in pancreatic cancer cells by secreting exosome-derived ACSL4-targeting miRNAs. Drug Resistance Updates. Reviews and Commentaries in Antimicrobial and Anticancer Chemotherapy, 2023, 68, 100960.
  66. Wang, W.; Wang, T.; Zhang, Y.; Deng, T.; Zhang, H.; Ba, Y. Gastric cancer secreted miR-214-3p inhibits the anti-angiogenesis effect of apatinib by suppressing ferroptosis in vascular endothelial cells. Oncol. Res., 2024, 32(3), 489-502. doi: 10.32604/or.2023.046676 PMID: 38370339
  67. Yang, H.; Sun, W.; Bi, T.; Sun, J.; Lu, Z.; Li, J.; Wei, H. ZNF8-miR-552-5p axis modulates ACSL4-mediated ferroptosis in hepatocellular carcinoma. DNA Cell Biol., 2023, 42(6), 336-347. doi: 10.1089/dna.2022.0582 PMID: 37126948
  68. Mashima, R.; Okuyama, T. The role of lipoxygenases in pathophysiology; new insights and future perspectives. Redox Biol., 2015, 6, 297-310. doi: 10.1016/j.redox.2015.08.006 PMID: 26298204
  69. Tomita, K.; Nagasawa, T.; Kuwahara, Y.; Torii, S.; Igarashi, K.; Roudkenar, M.H.; Roushandeh, A.M.; Kurimasa, A.; Sato, T. MiR-7-5p Is involved in ferroptosis signaling and radioresistance thru the generation of ROS in radioresistant HeLa and SAS cell lines. Int. J. Mol. Sci., 2021, 22(15), 8300. doi: 10.3390/ijms22158300 PMID: 34361070
  70. Yang, X.; Liu, J.; Wang, C.; Cheng, K.K.; Xu, H.; Li, Q.; Hua, T.; Jiang, X.; Sheng, L.; Mao, J.; Liu, Z. miR-18a promotes glioblastoma development by down-regulating ALOXE3-mediated ferroptotic and anti-migration activities. Oncogenesis, 2021, 10(2), 15. doi: 10.1038/s41389-021-00304-3 PMID: 33579899
  71. Gong, H.; Li, Z.; Wu, Z.; Lian, G.; Su, Z. Modulation of ferroptosis by non coding RNAs in cancers: Potential biomarkers for cancer diagnose and therapy. Pathol. Res. Pract., 2024, 253, 155042. doi: 10.1016/j.prp.2023.155042 PMID: 38184963
  72. Shao, C.J.; Zhou, H.L.; Gao, X.Z.; Xu, C.F. Downregulation of miR-221–3p promotes the ferroptosis in gastric cancer cells via upregulation of ATF3 to mediate the transcription inhibition of GPX4 and HRD1. Transl. Oncol., 2023, 32, 101649. doi: 10.1016/j.tranon.2023.101649 PMID: 36947996
  73. Yu, R.; Zhou, Y.; Shi, S.; Wang, X.; Huang, S.; Ren, Y. Icariside II induces ferroptosis in renal cell carcinoma cells by regulating the miR-324-3p/GPX4 axis. Phytomedicine, 2022, 102, 154182. doi: 10.1016/j.phymed.2022.154182 PMID: 35636172
  74. Hou, Y.; Cai, S.; Yu, S.; Lin, H. Metformin induces ferroptosis by targeting miR-324-3p/GPX4 axis in breast cancer. Acta Biochim. Biophys. Sin. (Shanghai), 2021, 53(3), 333-341. doi: 10.1093/abbs/gmaa180 PMID: 33522578
  75. Deng, S.; Wu, D.; Li, L.; Liu, T.; Zhang, T.; Li, J.; Yu, Y.; He, M.; Zhao, Y.Y.; Han, R.; Xu, Y. miR-324-3p reverses cisplatin resistance by inducing GPX4-mediated ferroptosis in lung adenocarcinoma cell line A549. Biochem. Biophys. Res. Commun., 2021, 549, 54-60. doi: 10.1016/j.bbrc.2021.02.077 PMID: 33662669
  76. Han, B.; Liu, Y.; Zhang, Q.; Liang, L. Propofol decreases cisplatin resistance of non-small cell lung cancer by inducing GPX4-mediated ferroptosis through the miR-744-5p/miR-615-3p axis. J. Proteomics, 2023, 274, 104777. doi: 10.1016/j.jprot.2022.104777 PMID: 36427803
  77. Hu, Z.; Yin, Y.; Jiang, J.; Yan, C.; Wang, Y.; Wang, D.; Li, L. Exosomal miR-142-3p secreted by hepatitis B virus (HBV)-hepatocellular carcinoma (HCC) cells promotes ferroptosis of M1-type macrophages through SLC3A2 and the mechanism of HCC progression. J. Gastrointest. Oncol., 2022, 13(2), 754-767. doi: 10.21037/jgo-21-916 PMID: 35557596
  78. Ni, H.; Qin, H.; Sun, C.; Liu, Y.; Ruan, G.; Guo, Q.; Xi, T.; Xing, Y.; Zheng, L. MiR-375 reduces the stemness of gastric cancer cells through triggering ferroptosis. Stem Cell Res. Ther., 2021, 12(1), 325. doi: 10.1186/s13287-021-02394-7 PMID: 34090492
  79. Elrebehy, M.A.; Abdelghany, T.M.; Elshafey, M.M.; Gomaa, M.H.; Doghish, A.S. miR-509–5p promotes colorectal cancer cell ferroptosis by targeting SLC7A11. Pathol. Res. Pract., 2023, 247, 154557. doi: 10.1016/j.prp.2023.154557 PMID: 37229918
  80. Sun, D.; Li, Y.C.; Zhang, X.Y. Lidocaine promoted ferroptosis by targeting miR-382-5p/SLC7A11 axis in ovarian and breast cancer. Front. Pharmacol., 2021, 12, 681223. doi: 10.3389/fphar.2021.681223 PMID: 34122108
  81. Yadav, P.; Sharma, P.; Sundaram, S.; Venkatraman, G.; Bera, A.K.; Karunagaran, D. SLC7A11/xCT is a target of miR-5096 and its restoration partially rescues miR-5096-mediated ferroptosis and anti-tumor effects in human breast cancer cells. Cancer Lett., 2021, 522, 211-224. doi: 10.1016/j.canlet.2021.09.033 PMID: 34571083
  82. Zhu, J.H.; De Mello, R.A.; Yan, Q.L.; Wang, J.W.; Chen, Y.; Ye, Q.H.; Wang, Z.J.; Tang, H.J.; Huang, T. MiR-139-5p/SLC7A11 inhibits the proliferation, invasion and metastasis of pancreatic carcinoma via PI3K/Akt signaling pathway. Biochim. Biophys. Acta Mol. Basis Dis., 2020, 1866(6), 165747. doi: 10.1016/j.bbadis.2020.165747 PMID: 32109492
  83. Lu, X.; Kang, N.; Ling, X.; Pan, M.; Du, W.; Gao, S. MiR-27a-3p promotes non-small cell lung cancer through SLC7A11-mediated-ferroptosis. Front. Oncol., 2021, 11, 759346. doi: 10.3389/fonc.2021.759346 PMID: 34722314
  84. Luo, M.; Wu, L.; Zhang, K.; Wang, H.; Zhang, T.; Gutierrez, L.; O’Connell, D.; Zhang, P.; Li, Y.; Gao, T.; Ren, W.; Yang, Y. miR-137 regulates ferroptosis by targeting glutamine transporter SLC1A5 in melanoma. Cell Death Differ., 2018, 25(8), 1457-1472. doi: 10.1038/s41418-017-0053-8 PMID: 29348676
  85. Zhang, K.; Wu, L.; Zhang, P.; Luo, M.; Du, J.; Gao, T.; O’Connell, D.; Wang, G.; Wang, H.; Yang, Y. miR‐9 regulates ferroptosis by targeting glutamic‐oxaloacetic transaminase GOT1 in melanoma. Mol. Carcinog., 2018, 57(11), 1566-1576. doi: 10.1002/mc.22878 PMID: 30035324
  86. Song, Z.; Jia, G.; Ma, P.; Cang, S. Exosomal miR-4443 promotes cisplatin resistance in non-small cell lung carcinoma by regulating FSP1 m6A modification-mediated ferroptosis. Life Sci., 2021, 276, 119399. doi: 10.1016/j.lfs.2021.119399 PMID: 33781830
  87. Statello, L.; Guo, C.J.; Chen, L.L.; Huarte, M. Gene regulation by long non-coding RNAs and its biological functions. Nat. Rev. Mol. Cell Biol., 2021, 22(2), 96-118. doi: 10.1038/s41580-020-00315-9 PMID: 33353982
  88. Luo, W.; Wang, J.; Xu, W.; Ma, C.; Wan, F.; Huang, Y.; Yao, M.; Zhang, H.; Qu, Y.; Ye, D.; Zhu, Y. LncRNA RP11-89 facilitates tumorigenesis and ferroptosis resistance through PROM2-activated iron export by sponging miR-129-5p in bladder cancer. Cell Death Dis., 2021, 12(11), 1043. doi: 10.1038/s41419-021-04296-1 PMID: 34728613
  89. Luo, Y.; Huang, S.; Wei, J.; Zhou, H.; Wang, W.; Yang, J.; Deng, Q.; Wang, H.; Fu, Z. Long noncoding RNA LINC01606 protects colon cancer cells from ferroptotic cell death and promotes stemness by SCD1–Wnt/β‐catenin–TFE3 feedback loop signalling. Clin. Transl. Med., 2022, 12(4), e752. doi: 10.1002/ctm2.752 PMID: 35485210
  90. Jiang, X.; Guo, S.; Zhang, Y.; Zhao, Y.; Li, X.; Jia, Y.; Xu, Y.; Ma, B. LncRNA NEAT1 promotes docetaxel resistance in prostate cancer by regulating ACSL4 via sponging miR-34a-5p and miR-204-5p. Cell. Signal., 2020, 65, 109422. doi: 10.1016/j.cellsig.2019.109422 PMID: 31672604
  91. Li, X.; Li, Y.; Lian, P. lv, Q.; Liu, F. Silencing lncRNA HCG18 regulates GPX4-inhibited ferroptosis by adsorbing miR-450b-5p to avert sorafenib resistance in hepatocellular carcinoma. Hum. Exp. Toxicol., 2023, 42. doi: 10.1177/09603271221142818 PMID: 36786348
  92. Lei, S.; Cao, W.; Zeng, Z.; Zhang, Z.; Jin, B.; Tian, Q.; Wu, Y.; Zhang, T.; Li, D.; Hu, C.; Lan, J.; Zhang, J.; Chen, T. JUND/linc00976 promotes cholangiocarcinoma progression and metastasis, inhibits ferroptosis by regulating the miR-3202/GPX4 axis. Cell Death Dis., 2022, 13(11), 967. doi: 10.1038/s41419-022-05412-5 PMID: 36400758
  93. Ma, Q.; Dai, X.; Lu, W.; Qu, X.; Liu, N.; Zhu, C. Silencing long non-coding RNA MEG8 inhibits the proliferation and induces the ferroptosis of hemangioma endothelial cells by regulating miR-497-5p/NOTCH2 axis. Biochem. Biophys. Res. Commun., 2021, 556, 72-78. doi: 10.1016/j.bbrc.2021.03.132 PMID: 33839417
  94. Li, Y.; Zhu, H.C.; Du, Y.; Zhao, H.; Wang, L. Silencing lncRNA SLC16A1-AS1 induced ferroptosis in renal cell carcinoma through miR-143-3p/SLC7A11 signaling. Technol. Cancer Res. Treat., 2022, 21. doi: 10.1177/15330338221077803 PMID: 35167383
  95. Jiang, X.; Guo, S.; Xu, M.; Ma, B.; Liu, R.; Xu, Y.; Zhang, Y. TFAP2C-mediated lncRNA PCAT1 inhibits ferroptosis in docetaxel-resistant prostate cancer through c-Myc/miR-25-3p/SLC7A11 signaling. Front. Oncol., 2022, 12, 862015. doi: 10.3389/fonc.2022.862015 PMID: 35402284
  96. Liu, L.; Su, S.; Ye, D.; Yu, Z.; Lu, W.; Li, X. Long non-coding RNA OGFRP1 regulates cell proliferation and ferroptosis by miR-299-3p/SLC38A1 axis in lung cancer. Anticancer Drugs, 2022, 33(9), 826-839. doi: 10.1097/CAD.0000000000001328 PMID: 36066402
  97. Kang, R.; Kroemer, G.; Tang, D. The tumor suppressor protein p53 and the ferroptosis network. Free Radic. Biol. Med., 2019, 133, 162-168. doi: 10.1016/j.freeradbiomed.2018.05.074 PMID: 29800655
  98. Mao, C.; Wang, X.; Liu, Y.; Wang, M.; Yan, B.; Jiang, Y.; Shi, Y.; Shen, Y.; Liu, X.; Lai, W.; Yang, R.; Xiao, D.; Cheng, Y.; Liu, S.; Zhou, H.; Cao, Y.; Yu, W.; Muegge, K.; Yu, H.; Tao, Y.A. G3BP1-interacting lncRNA promotes ferroptosis and apoptosis in cancer via nuclear sequestration of p53. Cancer Res., 2018, 78(13), 3484-3496. doi: 10.1158/0008-5472.CAN-17-3454 PMID: 29588351
  99. Fu, H.; Zhang, Z.; Li, D.; Lv, Q.; Chen, S.; Zhang, Z.; Wu, M. LncRNA Pelaton, a ferroptosis suppressor and prognositic sigNATURE for GBM. Front. Oncol., 2022, 12, 817737. doi: 10.3389/fonc.2022.817737 PMID: 35574340
  100. Han, Y.; Gao, X.; Wu, N.; Jin, Y.; Zhou, H.; Wang, W.; Liu, H.; Chu, Y.; Cao, J.; Jiang, M.; Yang, S.; Shi, Y.; Xie, X.; Chen, F.; Han, Y.; Qin, W.; Xu, B.; Liang, J. Long noncoding RNA LINC00239 inhibits ferroptosis in colorectal cancer by binding to Keap1 to stabilize Nrf2. Cell Death Dis., 2022, 13(8), 742. doi: 10.1038/s41419-022-05192-y PMID: 36038548
  101. Zheng, J.; Zhang, Q.; Zhao, Z.; Qiu, Y.; Zhou, Y.; Wu, Z.; Jiang, C.; Wang, X.; Jiang, X. Epigenetically silenced lncRNA SNAI3-AS1 promotes ferroptosis in glioma via perturbing the m6A-dependent recognition of Nrf2 mRNA mediated by SND1. J. Exp. Clin. Cancer Res., 2023, 42(1), 127. doi: 10.1186/s13046-023-02684-3 PMID: 37202791
  102. Zhang, B.; Bao, W.; Zhang, S.; Chen, B.; Zhou, X.; Zhao, J.; Shi, Z.; Zhang, T.; Chen, Z.; Wang, L.; Zheng, X.; Chen, G.; Wang, Y. LncRNA HEPFAL accelerates ferroptosis in hepatocellular carcinoma by regulating SLC7A11 ubiquitination. Cell Death Dis., 2022, 13(8), 734. doi: 10.1038/s41419-022-05173-1 PMID: 36008384
  103. Li, H.; Wei, Y.; Wang, J.; Yao, J.; Zhang, C.; Yu, C.; Tang, Y.; Zhu, D.; Yang, J.; Zhou, J. Long noncoding RNA LINC00578 inhibits ferroptosis in pancreatic cancer via regulating SLC7A11 ubiquitination. Oxid. Med. Cell. Longev., 2023, 2023, 1-17. doi: 10.1155/2023/1744102 PMID: 36846713
  104. Kristensen, L.S.; Hansen, T.B.; Venø, M.T.; Kjems, J. Circular RNAs in cancer: opportunities and challenges in the field. Oncogene, 2018, 37(5), 555-565. doi: 10.1038/onc.2017.361 PMID: 28991235
  105. Verduci, L.; Tarcitano, E.; Strano, S.; Yarden, Y.; Blandino, G. CircRNAs: role in human diseases and potential use as biomarkers. Cell Death Dis., 2021, 12(5), 468. doi: 10.1038/s41419-021-03743-3 PMID: 33976116
  106. Ou, R.; Lu, S.; Wang, L.; Wang, Y.; Lv, M.; Li, T.; Xu, Y.; Lu, J.; Ge, R. Circular RNA circLMO1 suppresses cervical cancer growth and metastasis by triggering miR-4291/ACSL4-mediated ferroptosis. Front. Oncol., 2022, 12, 858598. doi: 10.3389/fonc.2022.858598 PMID: 35321435
  107. Liu, Y.; Li, J. Circular RNA 0016142 knockdown induces ferroptosis in hepatocellular carcinoma cells via modulation of the microRNA-188-3p/glutathione peroxidase 4 axis. Biochem. Genet., 2024, 62(1), 333-351. doi: 10.1007/s10528-023-10417-6 PMID: 37344692
  108. Li, Z.; Luo, Y.; Wang, C.; Han, D.; Sun, W. Circular RNA circBLNK promotes osteosarcoma progression and inhibits ferroptosis in osteosarcoma cells by sponging miR 188 3p and regulating GPX4 expression. Oncol. Rep., 2023, 50(5), 192. doi: 10.3892/or.2023.8629 PMID: 37711054
  109. Tan, Y.R.; Jiang, B.H.; Feng, W.J.; He, Z.L.; Jiang, Y.L.; Xun, Y.; Wu, X.P.; Li, Y.H.; Zhu, H.B. Circ0060467 sponges miR-6805 to promote hepatocellular carcinoma progression through regulating AIFM2 and GPX4 expression. Aging (Albany NY), 2024, 16(2), 1796-1807. doi: 10.18632/aging.205460 PMID: 38244593
  110. Li, Z.; Fan, M.; Zhou, Z.; Sang, X. Circ_0082374 promotes the tumorigenesis and suppresses ferroptosis in non-small cell lung cancer by up-regulating GPX4 through sequestering miR-491-5p. Mol. Biotechnol., 2024. doi: 10.1007/s12033-024-01059-z PMID: 38438754
  111. Ma, Y.; Gao, J.; Guo, H. Circ_0000140 alters miR-527/SLC7A11-mediated ferroptosis to influence oral squamous cell carcinoma cell resistance to DDP. Pharm. Genomics Pers. Med., 2023, 16, 1079-1089. doi: 10.2147/PGPM.S426205 PMID: 38105907
  112. Li, Q.; Li, K.; Guo, Q.; Yang, T. CIRCRNA CIRCSTIL inhibits ferroptosis in colorectal cancer via MIR ‐431/SLC7A11 axis. Environ. Toxicol., 2023, 38(5), 981-989. doi: 10.1002/tox.23670 PMID: 36840697
  113. Jiang, Y.; Zhao, J.; Li, R.; Liu, Y.; Zhou, L.; Wang, C.; Lv, C.; Gao, L.; Cui, D. CircLRFN5 inhibits the progression of glioblastoma via PRRX2/GCH1 mediated ferroptosis. J. Exp. Clin. Cancer Res., 2022, 41(1), 307. doi: 10.1186/s13046-022-02518-8 PMID: 36266731
  114. Wang, L.; Wu, S.; He, H.; Ai, K.; Xu, R.; Zhang, L.; Zhu, X. CircRNA-ST6GALNAC6 increases the sensitivity of bladder cancer cells to erastin-induced ferroptosis by regulating the HSPB1/P38 axis. Lab. Invest., 2022, 102(12), 1323-1334. doi: 10.1038/s41374-022-00826-3 PMID: 35945269
  115. Liu, Z.; Wang, Q.; Wang, X.; Xu, Z.; Wei, X.; Li, J. Circular RNA cIARS regulates ferroptosis in HCC cells through interacting with RNA binding protein ALKBH5. Cell Death Discov., 2020, 6(1), 72. doi: 10.1038/s41420-020-00306-x PMID: 32802409
  116. Zhang, X.; Xu, Y.; Ma, L.; Yu, K.; Niu, Y.; Xu, X.; Shi, Y.; Guo, S.; Xue, X.; Wang, Y.; Qiu, S.; Cui, J.; Wang, H.; Tian, X.; Miao, Y.; Meng, F.; Qiao, Y.; Yu, Y.; Wang, J. Essential roles of exosome and circRNA_101093 on ferroptosis desensitization in lung adenocarcinoma. Cancer Commun. (Lond.), 2022, 42(4), 287-313. doi: 10.1002/cac2.12275 PMID: 35184419
  117. Viswanathan, V.S.; Ryan, M.J.; Dhruv, H.D.; Gill, S.; Eichhoff, O.M.; Seashore-Ludlow, B.; Kaffenberger, S.D.; Eaton, J.K.; Shimada, K.; Aguirre, A.J.; Viswanathan, S.R.; Chattopadhyay, S.; Tamayo, P.; Yang, W.S.; Rees, M.G.; Chen, S.; Boskovic, Z.V.; Javaid, S.; Huang, C.; Wu, X.; Tseng, Y.Y.; Roider, E.M.; Gao, D.; Cleary, J.M.; Wolpin, B.M.; Mesirov, J.P.; Haber, D.A.; Engelman, J.A.; Boehm, J.S.; Kotz, J.D.; Hon, C.S.; Chen, Y.; Hahn, W.C.; Levesque, M.P.; Doench, J.G.; Berens, M.E.; Shamji, A.F.; Clemons, P.A.; Stockwell, B.R.; Schreiber, S.L. Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway. Nature, 2017, 547(7664), 453-457. doi: 10.1038/nature23007 PMID: 28678785
  118. Hangauer, M.J.; Viswanathan, V.S.; Ryan, M.J.; Bole, D.; Eaton, J.K.; Matov, A.; Galeas, J.; Dhruv, H.D.; Berens, M.E.; Schreiber, S.L.; McCormick, F.; McManus, M.T. Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition. Nature, 2017, 551(7679), 247-250. doi: 10.1038/nature24297 PMID: 29088702
  119. Li, Z.; Dai, H.; Huang, X.; Feng, J.; Deng, J.; Wang, Z.; Yang, X.; Liu, Y.; Wu, Y.; Chen, P.; Shi, H.; Wang, J.; Zhou, J.; Lu, G. Artesunate synergizes with sorafenib to induce ferroptosis in hepatocellular carcinoma. Acta Pharmacol. Sin., 2021, 42(2), 301-310. doi: 10.1038/s41401-020-0478-3 PMID: 32699265
  120. Guo, J.; Xu, B.; Han, Q.; Zhou, H.; Xia, Y.; Gong, C.; Dai, X.; Li, Z.; Wu, G. Ferroptosis: A Novel Anti-tumor Action for Cisplatin. Cancer Res. Treat., 2018, 50(2), 445-460. doi: 10.4143/crt.2016.572 PMID: 28494534
  121. Slack, F.J.; Chinnaiyan, A.M. The Role of Non-coding RNAs in Oncology. Cell, 2019, 179(5), 1033-1055. doi: 10.1016/j.cell.2019.10.017 PMID: 31730848
  122. Winkle, M.; El-Daly, S.M.; Fabbri, M.; Calin, G.A. Noncoding RNA therapeutics — challenges and potential solutions. Nat. Rev. Drug Discov., 2021, 20(8), 629-651. doi: 10.1038/s41573-021-00219-z PMID: 34145432
  123. Wang, W.T.; Han, C.; Sun, Y.M.; Chen, T.Q.; Chen, Y.Q. Noncoding RNAs in cancer therapy resistance and targeted drug development. J. Hematol. Oncol., 2019, 12(1), 55. doi: 10.1186/s13045-019-0748-z PMID: 31174564

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Bentham Science Publishers, 2024