Том 24, № 1 (2024)

Oncology

Preface

Carradori S.
Anti-Cancer Agents in Medicinal Chemistry. 2024;24(1):1-2
pages 1-2 views

Matrix Metalloproteinases in Oral Cancer Pathogenesis and their Use in Therapy

Maurya S., Prasad D., Mukherjee S.

Аннотация

Matrix metalloproteinases (MMPs) are proteolytic enzymes that aid in extracellular matrix (ECM) remodeling. MMPs destroy the extracellular matrix, causing tumor growth and metastasis. MMPs are involved in the spread and metastasis of oral cancer. High levels of MMPs and oral squamous cell carcinoma have been linked to cancer prognosis. Modern medicine aims to prevent the illness from spreading through early intervention and examining changes in MMP genes. MMP gene polymorphism has recently been identified as one of the factors predicting susceptibility or risk in the development of oral carcinoma. This review aims to provide insight into the function of MMP subtypes involved in cancer. The genetic polymorphism in MMP genes and its predictive value in risk evaluation have been elaborated. Novel personalized therapeutic approaches for oral cancer, like the use of MMP inhibitors, nanoparticle-mediated targeting of MMP, or gene silencing by microRNA, can be designed.

Anti-Cancer Agents in Medicinal Chemistry. 2024;24(1):3-17
pages 3-17 views

Coumarin-derived Hydroxamic Acids as Histone Deacetylase Inhibitors: A Review of Anti-cancer Activities

Khai N., Vu T.

Аннотация

Since coumarin and hydroxamic acid compounds are well-known in medicinal chemistry, a variety of their derivatives have been highlighted due to their potential uses for plentiful treatments. Different compounds of their derivatives acting through diverse activities, such as anti-tumor, anti-cancer, anti-inflammation, and histone deacetylase inhibition, have been comprehensively investigated by many researchers over the years. This present review provides the latest literature and knowledge on hydroxamic acids derived from coumarin. Overall, some recent advancements in biological activities of hybrid derivatives of hydroxamic acids containing coumarin moieties in medicinal chemistry are discussed.

Anti-Cancer Agents in Medicinal Chemistry. 2024;24(1):18-29
pages 18-29 views

Tumor-associated Macrophages Mediate Gefitinib Resistance in Lung Cancer through HGF/c-met Signaling Pathway

Tang X., Chen Y., Jiao D., Liu X., Chen J., Liu Y., Jiang C., Chen Q.

Аннотация

Background::The biological behavior of cells changes after they develop drug resistance, and the degree of resistance will be affected by the tumor microenvironment. In this study, we aimed to study the effects of M2 macrophages on gefitinib resistance.

Methods:We polarized THP-1 cells into M0 and M2 macrophages, and conducted various experiments to investigate the effects of M2 macrophages on gefitinib resistance in lung cancer.

Results:We found that M2 macrophages promote gefitinib resistance in HCC827 and PC9 cells. In addition, we used ELISA to measure the secretion level of HGF. HGF secretion levels were significantly increased in M2 macrophages. Exogenous HGF remarkably increased the proliferation and invasion in HCC827 and PC9 cells. However, the addition of anti-HGF antibodies abolished the proliferation and invasion of both HCC827 and PC9 cells promoted by M2 macrophages. Furthermore, M2 macrophages or exogenous HGF significantly increased the expression of p-met and p-ERK in HCC827 and PC9 cells, while anti-HGF antibodies diminished the expression of p-met and p-ERK by neutralizing HGF in M2 macrophages.

Conclusion::Our results revealed that M2 macrophages promote gefitinib resistance by activating ERK and HGF/c-met signaling pathways in HCC827 and PC9 cells. Our findings provide a new therapeutic strategy for gefitinib resistance in lung cancer.

Anti-Cancer Agents in Medicinal Chemistry. 2024;24(1):30-38
pages 30-38 views

Anticancer Potential of Novel Cinnamoyl Derivatives against U87MG and SHSY-5Y Cell Lines

Gouleni N., Di Rienzo A., Oner S., Karagöz C., Arslan M., Mardinoglu A., Turkez H., Di Stefano A., Vassiliou S., Cacciatore I.

Аннотация

Background:Glioblastoma multiforme (GBM) is probably the most malignant and aggressive brain tumor belonging to the class of astrocytomas. The considerable aggressiveness and high malignancy of GBM make it a tumor that is difficult to treat. Here, we report the synthesis and biological evaluation of eighteen novel cinnamoyl derivatives (3a-i and 4a-i) to obtain more effective antitumor agents against GBM.

Methods:The chemical structures of novel cinnamoyl derivatives (3a-i and 4a-i) were confirmed by NMR and MS analyses. The physicochemical properties and evaluation of the ADME profile of 3a-i and 4a-i were performed by the preADMETlab2.0 web program. Cinnamoyl derivatives 3a-i and 4a-i were tested in vitro for their cytotoxicity against the human healthy fibroblast (HDFa) cells using an MTT cell viability assay. Derivatives with no toxicity on HDFa cells were tested both on human glioblastoma (U87MG) and neuroblastoma (SHSY- 5Y) cells, chosen as an experimental model of brain tumors. Cell death mechanisms were analyzed by performing flow cytometry analyses.

Results:Cinnamoyl derivatives 3a-i and 4a-i showed good physicochemical and ADME properties suggesting that these compounds could be developed as oral drugs endowed with a high capability to cross the blood-brain barrier. Compounds (E)-1-methoxy-4-(2-(phenylsulfonyl)vinyl)benzene (2c) and (E)-N-benzyl-N-(2- (cyclohexylamino)-2-oxoethyl)-3-(3,4,5-trimethoxyphenyl)acrylamide (3e) did not show cytotoxicity on healthy human fibroblast cells up to 100 µg/mL. The most anticarcinogenic molecule, compound 3e, emerged as the most potent anticancer candidate in this study. Flow cytometry results showed that compound 3e (25 µg/mL) application resulted in nearly 86% and 84% cytotoxicity in the U87MG and the SHSY-5Y cell lines, respectively. Compound 2c (25 µg/mL) resulted in 81% and 82% cytotoxicity in the U87MG and the SHSY-5Y cell lines, respectively.

Conclusion:Cinnamoyl derivative 3e inhibits the proliferation of cultured U87MG and SHSY-5Y cells by inducing apoptosis. Further detailed research will be conducted to confirm these data in in vivo experimental animal models.

Anti-Cancer Agents in Medicinal Chemistry. 2024;24(1):39-49
pages 39-49 views

Cell Death Induced by the Combination of Ephedra sinica Extract and Radiation in HNSCC is Positively Related to BAX and p-MLKL Expression

Woo S., Noh J., Ahn S., Lee M., Yu H., Min S., Kong M., Lee J., Lee Y., Ko S., Eun Y.

Аннотация

Background:Numerous studies have proven the efficacy and safety of natural products, and are widely used as attractive cancer treatments. The investigation of effective natural products for improving cancer treatment is a promising strategy. Combination treatment with radiosensitizers and radiotherapy (RT) is considered necessary for therapeutic improvement in head and neck squamous cell carcinoma(HNSCC).

Objective:This study aims to investigate whether Ephedra sinica (ES) extract could induce selective cell death in cancer cells and serve as a radiosensitizer for HNSCC.

Methods:HNSCC cells were pretreated with ES extract before radiation, and the radiosensitizing activity was assessed using a colony formation assay. Radiation-induced cell death was evaluated using an annexinV-FITC assay. Western blotting was performed to confirm cell death-related gene expression, including apoptosis and necrosis markers.

Results:ES extract significantly inhibited HNSCC cell viability (FaDu and SNU1076), while having minimal effect on normal HaCaT cells. When HNSCC cells were irradiated with 2, 4, or 8 Gy and cultured with ES extract (25 µg/mL), they exhibited increased radiation sensitivity compared to non-treated cells. The combination of ES extract and radiation resulted in increased cell death compared to non-treated, ES-treated, or irradiated cells. The apoptosis marker BAX and necrosis marker p-MLKL expression levels were also elevated following the combination treatment.

Conclusion:ES extract demonstrated significant cytotoxic potential in HNSCC cells without affecting normal cells. It enhanced the radiosensitivity of HNSCC cells by upregulating BAX and p-MLKL expression, leading to increased cell death. These results suggest ES extract exhibits a potential radiosensitizing capacity in HNSCC.

Anti-Cancer Agents in Medicinal Chemistry. 2024;24(1):50-57
pages 50-57 views

Cellular and DNA Toxicity Study of Triphenyltin Ethyl Phenyl Dithiocarbamate and Triphenyltin Butyl Phenyl Dithiocarbamate on K562, Leukemia Cell Line

Hamid A., Rajab N., Charmagne Y., Awang N., Jufri N., Rasli N.

Аннотация

Introduction:Continuous research for new effective drugs to treat cancer has improved our understanding on the mechanism of action of these drugs and paved new potential for their application in cancer treatments. In this study, organotin compounds known as triphenyltin ethyl phenyl dithiocarbamate and triphenyltin butyl phenyl dithiocarbamate were investigated for their toxicity on leukemia cell line (K562) and non-cancerous cell line (Chang liver cell and lung fibroblast, V79 cell).

Methods:MTT assay was performed to evaluate the cytotoxic effects of both compounds toward the cells after 24, 48 and 72 hours of exposure or treatment. The alkaline comet assay was conducted to determine the DNA damage on K562 cells after been exposed to both compounds for 30, 60 and 90 minutes.

Results:The IC50 values obtained from K562 cells ranged from 0.01 to 0.30 µM, whereas for both Chang liver cell and lung fibroblast V79 cell, the values ranged from 0.10 to 0.40 µM. For genotoxicity evaluation, the percentage of damaged DNA is measured as an average of tail moment, and was found to be within 1.20 to 2.20 A.U while the percentage of DNA intensity ranging from 1.50 to 3.50% indicating no genotoxic effects.

Conclusion:Both compounds are cytotoxic toward leukemia cells and non-cancerous cells but do not exert their genotoxic effects towards leukemia cell.

Anti-Cancer Agents in Medicinal Chemistry. 2024;24(1):58-65
pages 58-65 views

Green Synthesis of a Novel Phytoalexin Derivative: In Silico Profiling, Apoptotic Induction, and Antiproliferative Activity against MCF-7 cells - From Vineyards to Potent Anticancer Drug Molecule

Roy L., Kumar J.

Аннотация

Background::Resveratrol's structural similarity to commercialized anti-breast cancer medications such as Tamoxifen underlines its potential as a promising option for developing successful anti-breast cancer drugs. However, the pharmacokinetic issues associated with resveratrol, such as its low bioavailability, have piqued the attention of researchers in developing novel derivatives.

Methods:A novel phytoalexin derivative, RsvD1, was successfully synthesized using resveratrol extracted from green grape peels as a precursor to investigate its anti-breast cancer efficacy on Estrogen receptor (ER) positive and negative breast cancer cells.

Results:The comparative analysis revealed that RsvD1 exhibited remarkable radical scavenging ability (IC50 = 2.21 µg/mL), surpassing the control, Trolox (IC50 = 6.3 µg/mL). Furthermore, RsvD1 demonstrated enhanced and selective antiproliferative activity against ER-positive MCF-7 cells (IC50 = 20.09 µg/mL) compared to resveratrol, the parent molecule (IC50 = 30.90 µg/mL). Further investigations unveiled that RsvD1 induced apoptosis and DNA damage in MCF-7 cells, leading to cell cycle arrest at the G0/G1 phase after 24 hours of incubation. RTqPCR gene expression analysis indicated that RsvD1 down-regulated the CAXII (ER-dependent) genes. In silico predictions demonstrated that RsvD1 possesses promising potential as a drug candidate due to its drug-like characteristics and favourable ADMET profile. Moreover, molecular docking studies provided insights into the theoretical binding mode between RsvD1 and ERα protein.

Conclusion::The study highlights the therapeutic potential of the synthesized resveratrol derivative, RsvD1, positioning it as a promising scaffold for developing novel analogues with improved therapeutic properties and selectivity, specifically targeting ER+ breast cancer cells. Moreover, the compound's non-cytotoxic yet antiproliferative properties, coupled with its capability to induce programmed cell death and cell cycle arrest, enhance its potential as a highly effective drug candidate. As a result, this paves a promising path for the development of innovative and selective inhibitors targeting ER+ breast cancer with enhanced efficacy.

Anti-Cancer Agents in Medicinal Chemistry. 2024;24(1):66-76
pages 66-76 views