Matrix Metalloproteinases in Oral Cancer Pathogenesis and their Use in Therapy


Cite item

Full Text

Abstract

Matrix metalloproteinases (MMPs) are proteolytic enzymes that aid in extracellular matrix (ECM) remodeling. MMPs destroy the extracellular matrix, causing tumor growth and metastasis. MMPs are involved in the spread and metastasis of oral cancer. High levels of MMPs and oral squamous cell carcinoma have been linked to cancer prognosis. Modern medicine aims to prevent the illness from spreading through early intervention and examining changes in MMP genes. MMP gene polymorphism has recently been identified as one of the factors predicting susceptibility or risk in the development of oral carcinoma. This review aims to provide insight into the function of MMP subtypes involved in cancer. The genetic polymorphism in MMP genes and its predictive value in risk evaluation have been elaborated. Novel personalized therapeutic approaches for oral cancer, like the use of MMP inhibitors, nanoparticle-mediated targeting of MMP, or gene silencing by microRNA, can be designed.

About the authors

Stuti Maurya

Amity Institute of Biotechnology, Amity University Uttar Pradesh Lucknow Campus

Email: info@benthamscience.net

Divya Prasad

Amity Institute of Biotechnology, Amity University Uttar Pradesh Lucknow Campus

Email: info@benthamscience.net

Sayali Mukherjee

Amity Institute of Biotechnology, Amity University Uttar Pradesh Lucknow Campus

Author for correspondence.
Email: info@benthamscience.net

References

  1. Ali, J.; Sabiha, B.; Jan, H.U.; Haider, S.A.; Khan, A.A.; Ali, S.S. Genetic etiology of oral cancer. Oral Oncol., 2017, 70, 23-28. doi: 10.1016/j.oraloncology.2017.05.004 PMID: 28622887
  2. Irani, S.; Barati, I.; Badiei, M. Periodontitis and oral cancer - current concepts of the etiopathogenesis. Oncol. Rev., 2020, 14(1), 465. doi: 10.4081/oncol.2020.465 PMID: 32231765
  3. Marsh, D.; Suchak, K.; Moutasim, K.A.; Vallath, S.; Hopper, C.; Jerjes, W.; Upile, T.; Kalavrezos, N.; Violette, S.M.; Weinreb, P.H.; Chester, K.A.; Chana, J.S.; Marshall, J.F.; Hart, I.R.; Hackshaw, A.K.; Piper, K.; Thomas, G.J. Stromal features are predictive of disease mortality in oral cancer patients. J. Pathol., 2011, 223(4), 470-481. doi: 10.1002/path.2830 PMID: 21294121
  4. Geum, D.H.; Roh, Y.C.; Yoon, S.Y.; Kim, H.G.; Lee, J.H.; Song, J.M.; Lee, J.Y.; Hwang, D.S.; Kim, Y.D.; Shin, S.H.; Chung, I.K.; Kim, U.K. The impact factors on 5-year survival rate in patients operated with oral cancer. J. Korean Assoc. Oral Maxillofac. Surg., 2013, 39(5), 207-216. doi: 10.5125/jkaoms.2013.39.5.207 PMID: 24471047
  5. Huang, S.H.; Sullivan, O. B. Oral cancer: Current role of radiotherapy and chemotherapy. Med. Oral Patol. Oral Cir. Bucal, 2013, 18(2), e233-e240. doi: 10.4317/medoral.18772 PMID: 23385513
  6. Ma, J.; Liu, Y.; Huang, X.L.; Zhang, Z.Y.; Myers, J.N.; Neskey, D.M.; Zhong, L.P. Induction chemotherapy decreases the rate of distant metastasis in patients with head and neck squamous cell carcinoma but does not improve survival or locoregional control: A meta-analysis. Oral Oncol., 2012, 48(11), 1076-1084. doi: 10.1016/j.oraloncology.2012.06.014 PMID: 22800881
  7. McLean, N.; Tighiouart, M.; Muller, S. Primary mucosal melanoma of the head and neck. Comparison of clinical presentation and histopathologic features of oral and sinonasal melanoma. Oral Oncol., 2008, 44(11), 1039-1046. doi: 10.1016/j.oraloncology.2008.01.014 PMID: 18396446
  8. Caruntu, A.; Caruntu, C. Recent advances in oral squamous cell carcinoma. J. Clin. Med., 2022, 11(21), 6406. doi: 10.3390/jcm11216406 PMID: 36362637
  9. Monea, M.; Pop, A.M. The use of salivary levels of matrix metalloproteinases as an adjuvant method in the early diagnosis of oral squamous cell carcinoma: A narrative literature review. Curr. Issues Mol. Biol., 2022, 44(12), 6306-6322. doi: 10.3390/cimb44120430 PMID: 36547091
  10. McRae, M.P.; Modak, S.S.; Simmons, G.W.; Trochesset, D.A.; Kerr, A.R.; Thornhill, M.H.; Redding, S.W.; Vigneswaran, N.; Kang, S.K.; Christodoulides, N.J.; Murdoch, C.; Dietl, S.J.; Markham, R.; McDevitt, J.T. Point-of-care oral cytology tool for the screening and assessment of potentially malignant oral lesions. Cancer Cytopathol., 2020, 128(3), 207-220. doi: 10.1002/cncy.22236 PMID: 32032477
  11. Messadi, D.V. Diagnostic aids for detection of oral precancerous conditions. Int. J. Oral Sci., 2013, 5(2), 59-65. doi: 10.1038/ijos.2013.24 PMID: 23743617
  12. Javaid, M.A.; Ahmed, A.S.; Durand, R.; Tran, S.D. Saliva as a diagnostic tool for oral and systemic diseases. J. Oral Biol. Craniofac. Res., 2016, 6(1), 67-76. doi: 10.1016/j.jobcr.2015.08.006 PMID: 26937373
  13. Singh, S.; Krishna, A.; Kumar, V.; Pal, U.S. Molecular concept in human oral cancer. Natl. J. Maxillofac. Surg., 2015, 6(1), 9-15. doi: 10.4103/0975-5950.168235 PMID: 26668446
  14. McAllister, S.S.; Weinberg, R.A. The tumour-induced systemic environment as a critical regulator of cancer progression and metastasis. Nat. Cell Biol., 2014, 16(8), 717-727. doi: 10.1038/ncb3015 PMID: 25082194
  15. Vilen, S.T.; Salo, T.; Sorsa, T.; Nyberg, P. Fluctuating roles of matrix metalloproteinase-9 in oral squamous cell carcinoma. ScientificWorldJournal, 2013, 2013, 1-11. doi: 10.1155/2013/920595 PMID: 23365550
  16. Iozzo, R.V.; Sanderson, R.D. Proteoglycans in cancer biology, tumour microenvironment and angiogenesis. J. Cell. Mol. Med., 2011, 15(5), 1013-1031. doi: 10.1111/j.1582-4934.2010.01236.x PMID: 21155971
  17. Fanjul-Fernández, M.; Folgueras, A.R.; Cabrera, S.; López-Otín, C. Matrix metalloproteinases: Evolution, gene regulation and functional analysis in mouse models. Biochim. Biophys. Acta Mol. Cell Res., 2010, 1803(1), 3-19. doi: 10.1016/j.bbamcr.2009.07.004 PMID: 19631700
  18. McCawley, L.J.; Matrisian, L.M. Matrix metalloproteinases: Multifunctional contributors to tumor progression. Mol. Med. Today, 2000, 6(4), 149-156. doi: 10.1016/S1357-4310(00)01686-5 PMID: 10740253
  19. Hofmann, L.; Medyany, V. Ezić J.; Lotfi, R.; Niesler, B.; Röth, R.; Engelhardt, D.; Laban, S.; Schuler, P.J.; Hoffmann, T.K.; Brunner, C.; Jackson, E.K.; Theodoraki, M.N. Cargo and functional profile of saliva-derived exosomes reveal biomarkers specific for head and neck cancer. Front. Med., 2022, 9, 904295. doi: 10.3389/fmed.2022.904295 PMID: 35899209
  20. Fields, G.B. The rebirth of matrix metalloproteinase inhibitors: Moving beyond the dogma. Cells, 2019, 8(9), 984. doi: 10.3390/cells8090984 PMID: 31461880
  21. Itoh, Y. Membrane-type matrix metalloproteinases: Their functions and regulations. Matrix Biol., 2015, 44-46, 207-223. doi: 10.1016/j.matbio.2015.03.004 PMID: 25794647
  22. Amălinei, C.; Căruntu, I.D. Bălan, R.A. Biology of metalloproteinases. Rom. J. Morphol. Embryol., 2007, 48(4), 323-334. PMID: 18060181
  23. Laronha, H.; Caldeira, J. Structure and function of human matrix metalloproteinases. Cells, 2020, 9(5), 1076. doi: 10.3390/cells9051076 PMID: 32357580
  24. Hannocks, M.J.; Zhang, X.; Gerwien, H.; Chashchina, A.; Burmeister, M.; Korpos, E.; Song, J.; Sorokin, L. The gelatinases, MMP-2 and MMP-9, as fine tuners of neuroinflammatory processes. Matrix Biol., 2019, 75-76, 102-113. doi: 10.1016/j.matbio.2017.11.007 PMID: 29158162
  25. Hadi, T.; Boytard, L.; Silvestro, M.; Alebrahim, D.; Jacob, S.; Feinstein, J.; Barone, K.; Spiro, W.; Hutchison, S.; Simon, R.; Rateri, D.; Pinet, F.; Fenyo, D.; Adelman, M.; Moore, K.J.; Eltzschig, H.K.; Daugherty, A.; Ramkhelawon, B. Macrophage-derived netrin-1 promotes abdominal aortic aneurysm formation by activating MMP3 in vascular smooth muscle cells. Nat. Commun., 2018, 9(1), 5022. doi: 10.1038/s41467-018-07495-1 PMID: 30479344
  26. Rath, T.; Roderfeld, M.; Halwe, J.M.; Tschuschner, A.; Roeb, E.; Graf, J. Cellular sources of MMP-7, MMP-13 and MMP-28 in ulcerative colitis. Scand. J. Gastroenterol., 2010, 45(10), 1186-1196. doi: 10.3109/00365521.2010.499961 PMID: 20568971
  27. Craig, V.J.; Polverino, F.; Laucho-Contreras, M.E.; Shi, Y.; Liu, Y.; Osorio, J.C.; Tesfaigzi, Y.; Pinto-Plata, V.; Gochuico, B.R.; Rosas, I.O.; Owen, C.A. Mononuclear phagocytes and airway epithelial cells: Novel sources of matrix metalloproteinase-8 (MMP-8) in patients with idiopathic pulmonary fibrosis. PLoS One, 2014, 9(5), e97485. doi: 10.1371/journal.pone.0097485 PMID: 24828408
  28. Bradley, L.M.; Douglass, M.F.; Chatterjee, D.; Akira, S.; Baaten, B.J.G. Matrix metalloprotease 9 mediates neutrophil migration into the airways in response to influenza virus-induced toll-like receptor signaling. PLoS Pathog., 2012, 8(4), e1002641. doi: 10.1371/journal.ppat.1002641 PMID: 22496659
  29. McMahan, R.S.; Birkland, T.P.; Smigiel, K.S.; Vandivort, T.C.; Rohani, M.G.; Manicone, A.M.; McGuire, J.K.; Gharib, S.A.; Parks, W.C. Stromelysin-2 (MMP10) moderates inflammation by controlling macrophage activation. J. Immunol., 2016, 197(3), 899-909. doi: 10.4049/jimmunol.1600502 PMID: 27316687
  30. Zhong, J.; Shan, W.; Zuo, Z. Norepinephrine inhibits migration and invasion of human glioblastoma cell cultures possibly via MMP-11 inhibition. Brain Res., 2021, 1756, 147280. doi: 10.1016/j.brainres.2021.147280 PMID: 33515535
  31. Suh, H.S.; Choi, N.; Tarassishin, L.; Lee, S.C. Regulation of progranulin expression in human microglia and proteolysis of progranulin by matrix metalloproteinase-12 (MMP-12). PLoS One, 2012, 7(4), e35115. doi: 10.1371/journal.pone.0035115 PMID: 22509390
  32. Jones, S.W.; Watkins, G.; Le Good, N.; Roberts, S.; Murphy, C.L.; Brockbank, S.M.V.; Needham, M.R.C.; Read, S.J.; Newham, P. The identification of differentially expressed microRNA in osteoarthritic tissue that modulate the production of TNF-α and MMP13. Osteoarthritis Cartilage, 2009, 17(4), 464-472. doi: 10.1016/j.joca.2008.09.012 PMID: 19008124
  33. Cork, S.M.; Kaur, B.; Devi, N.S.; Cooper, L.; Saltz, J.H.; Sandberg, E.M.; Kaluz, S.; Van Meir, E.G. A proprotein convertase/MMP-14 proteolytic cascade releases a novel 40 kDa vasculostatin from tumor suppressor BAI1. Oncogene, 2012, 31(50), 5144-5152. doi: 10.1038/onc.2012.1 PMID: 22330140
  34. Kaitu’u-Lino, T.J.; Palmer, K.; Tuohey, L.; Ye, L.; Tong, S. MMP-15 is upregulated in preeclampsia, but does not cleave endoglin to produce soluble endoglin. PLoS One, 2012, 7(6), e39864. doi: 10.1371/journal.pone.0039864 PMID: 22768148
  35. Cao, L.; Chen, C.; Zhu, H.; Gu, X.; Deng, D.; Tian, X.; Liu, J.; Xiao, Q. MMP16 is a marker of poor prognosis in gastric cancer promoting proliferation and invasion. Oncotarget, 2016, 7(32), 51865-51874. doi: 10.18632/oncotarget.10177 PMID: 27340864
  36. Sohail, A.; Sun, Q.; Zhao, H.; Bernardo, M.M.; Cho, J.A.; Fridman, R. MT4-(MMP17) and MT6-MMP (MMP25), A unique set of membrane-anchored matrix metalloproteinases: Properties and expression in cancer. Cancer Metastasis Rev., 2008, 27(2), 289-302. doi: 10.1007/s10555-008-9129-8 PMID: 18286233
  37. Sugimoto, W.; Itoh, K.; Hirata, H.; Abe, Y.; Torii, T.; Mitsui, Y.; Budirahardja, Y.; Tanaka, N.; Kawauchi, K. MMP24 as a target of YAP is a potential prognostic factor in cancer patients. Bioengineering, 2020, 7(1), 18. doi: 10.3390/bioengineering7010018 PMID: 32093160
  38. Bassiouni, W.; Ali, M.A.M.; Schulz, R. Multifunctional intracellular matrix metalloproteinases: Implications in disease. FEBS J., 2021, 288(24), 7162-7182. doi: 10.1111/febs.15701 PMID: 33405316
  39. Fu, L.; Das, B.; Mathew, S.; Shi, Y.B. Genome-wide identification of Xenopus matrix metalloproteinases: Conservation and unique duplications in amphibians. BMC Genomics, 2009, 10(1), 81. doi: 10.1186/1471-2164-10-81 PMID: 19222855
  40. Sainio, A.; Järveläinen, H. Extracellular matrix-cell interactions: Focus on therapeutic applications. Cell. Signal., 2020, 66, 109487. doi: 10.1016/j.cellsig.2019.109487 PMID: 31778739
  41. Vincenti, M.P.; Brinckerhoff, C.E. Signal transduction and cell-type specific regulation of matrix metalloproteinase gene expression: Can MMPs be good for you? J. Cell. Physiol., 2007, 213(2), 355-364. doi: 10.1002/jcp.21208 PMID: 17654499
  42. Cooper, S.; Bowden, G. Ultraviolet B regulation of transcription factor families: roles of nuclear factor-kappa B (NF-kappaB) and activator protein-1 (AP-1) in UVB-induced skin carcinogenesis. Curr. Cancer Drug Targets, 2007, 7(4), 325-334. doi: 10.2174/156800907780809714 PMID: 17979627
  43. Theocharis, A.D.; Gialeli, C.; Bouris, P.; Giannopoulou, E.; Skandalis, S.S.; Aletras, A.J.; Iozzo, R.V.; Karamanos, N.K. Cell–matrix interactions: Focus on proteoglycan-proteinase interplay and pharmacological targeting in cancer. FEBS J., 2014, 281(22), 5023-5042. doi: 10.1111/febs.12927 PMID: 25333340
  44. Polette, M.; Nawrocki-Raby, B.; Gilles, C.; Clavel, C.; Birembaut, P. Tumour invasion and matrix metalloproteinases. Crit. Rev. Oncol. Hematol., 2004, 49(3), 179-186. doi: 10.1016/j.critrevonc.2003.10.008 PMID: 15036258
  45. Hornebeck, W.; Emonard, H.; Monboisse, J.C.; Bellon, G. Matrix-directed regulation of pericellular proteolysis and tumor progression. Semin. Cancer Biol., 2002, 12(3), 231-241. doi: 10.1016/S1044-579X(02)00026-3 PMID: 12083853
  46. Jabłońska-Trypuć, A.; Matejczyk, M.; Rosochacki, S. Matrix metalloproteinases (MMPs), the main extracellular matrix (ECM) enzymes in collagen degradation, as a target for anticancer drugs. J. Enzyme Inhib. Med. Chem., 2016, 31(S1), 177-183.
  47. McCarrel, T.; Fortier, L. Temporal growth factor release from platelet-rich plasma, trehalose lyophilized platelets, and bone marrow aspirate and their effect on tendon and ligament gene expression. J. Orthop. Res., 2009, 27(8), 1033-1042. doi: 10.1002/jor.20853 PMID: 19170097
  48. Sternlicht, M.D.; Werb, Z. How matrix metalloproteinases regulate cell behavior. Annu. Rev. Cell Dev. Biol., 2001, 17(1), 463-516. doi: 10.1146/annurev.cellbio.17.1.463 PMID: 11687497
  49. Bernardo, M.M.; Fridman, R. TIMP-2 (tissue inhibitor of metalloproteinase-2) regulates MMP-2 (matrix metalloproteinase-2) activity in the extracellular environment after pro-MMP-2 activation by MT1 (membrane type 1)-MMP. Biochem. J., 2003, 374(3), 739-745. doi: 10.1042/bj20030557 PMID: 12755684
  50. Joo, C.K.; Seomun, Y. Matrix metalloproteinase (MMP) and TGF-β1-stimulated cell migration in skin and cornea wound healing. Cell Adhes. Migr., 2008, 2(4), 252-253. doi: 10.4161/cam.2.4.6772 PMID: 19262153
  51. Koivisto, L.; Heino, J.; Häkkinen, L.; Larjava, H. Integrins in wound healing. Adv. Wound Care, 2014, 3(12), 762-783. doi: 10.1089/wound.2013.0436 PMID: 25493210
  52. Brzozowska, E.; Deshmukh, S. Integrin Alpha v Beta 6 (αvβ6) and its implications in cancer treatment. Int. J. Mol. Sci., 2022, 23(20), 12346. doi: 10.3390/ijms232012346 PMID: 36293202
  53. Schultz, G.S.; Wysocki, A. Interactions between extracellular matrix and growth factors in wound healing. Wound Repair Regen., 2009, 17(2), 153-162. doi: 10.1111/j.1524-475X.2009.00466.x PMID: 19320882
  54. Stamenkovic, I. Extracellular matrix remodelling: The role of matrix metalloproteinases. J. Pathol., 2003, 200(4), 448-464. doi: 10.1002/path.1400 PMID: 12845612
  55. John, A.; Tuszynski, G. The role of matrix metalloproteinases in tumor angiogenesis and tumor metastasis. Pathol. Oncol. Res., 2001, 7(1), 14-23. doi: 10.1007/BF03032599 PMID: 11349215
  56. Bissell, M.J.; Kenny, P.A.; Radisky, D.C. Microenvironmental regulators of tissue structure and function also regulate tumor induction and progression: The role of extracellular matrix and its degrading enzymes. Cold Spring Harb. Symp. Quant. Biol., 2005, 70(0), 343-356. doi: 10.1101/sqb.2005.70.013 PMID: 16869771
  57. Jiang, Y.; Goldberg, I.D.; Shi, Y.E. Complex roles of tissue inhibitors of metalloproteinases in cancer. Oncogene, 2002, 21(14), 2245-2252. doi: 10.1038/sj.onc.1205291 PMID: 11948407
  58. Luchian, I.; Goriuc, A.; Sandu, D.; Covasa, M. The role of matrix metalloproteinases (MMP-8, MMP-9, MMP-13) in periodontal and peri-implant pathological processes. Int. J. Mol. Sci., 2022, 23(3), 1806. doi: 10.3390/ijms23031806 PMID: 35163727
  59. Reunanen, N.; Kähäri, V. Matrix metalloproteinases in cancer cell invasion. InMadame Curie Bioscience Database; Landes Bioscience, 2013.
  60. Meng, W.; Hao, Y.; He, C.; Li, L.; Zhu, G. Exosome-orchestrated hypoxic tumor microenvironment. Mol. Cancer, 2019, 18(1), 57. doi: 10.1186/s12943-019-0982-6 PMID: 30925935
  61. Nowacka, M.M.; Obuchowicz, E. Vascular endothelial growth factor (VEGF) and its role in the central nervous system: A new element in the neurotrophic hypothesis of antidepressant drug action. Neuropeptides, 2012, 46(1), 1-10. doi: 10.1016/j.npep.2011.05.005 PMID: 21719103
  62. Yuan, Y.; Jiang, Y.C.; Sun, C.K.; Chen, Q.M. Role of the tumor microenvironment in tumor progression and the clinical applications. Oncol. Rep., 2016, 35(5), 2499-2515.
  63. Kuczynski, E.A.; Vermeulen, P.B.; Pezzella, F.; Kerbel, R.S.; Reynolds, A.R. Vessel co-option in cancer. Nat. Rev. Clin. Oncol., 2019, 16(8), 469-493. doi: 10.1038/s41571-019-0181-9 PMID: 30816337
  64. Tanis, T.; Cincin, Z.B.; Gokcen-Rohlig, B.; Bireller, E.S.; Ulusan, M.; Tanyel, C.R.; Cakmakoglu, B. The role of components of the extracellular matrix and inflammation on oral squamous cell carcinoma metastasis. Arch. Oral Biol., 2014, 59(11), 1155-1163. doi: 10.1016/j.archoralbio.2014.07.005 PMID: 25090271
  65. Singer, C.F.; Kronsteiner, N.; Marton, E.; Kubista, M.; Cullen, K.J.; Hirtenlehner, K.; Seifert, M.; Kubista, E. MMP-2 and MMP-9 expression in breast cancer-derived human fibroblasts is differentially regulated by stromal-epithelial interactions. Breast Cancer Res. Treat., 2002, 72(1), 69-77. doi: 10.1023/A:1014918512569 PMID: 12000221
  66. Kerkelä, E.; Saarialho-Kere, U. Matrix metalloproteinases in tumor progression: Focus on basal and squamous cell skin cancer. Exp. Dermatol., 2003, 12(2), 109-125. doi: 10.1034/j.1600-0625.2003.120201.x PMID: 12702139
  67. Lynch, C.C.; Matrisian, L.M. Matrix metalloproteinases in tumor-host cell communication. Differentiation, 2002, 70(9-10), 561-573. doi: 10.1046/j.1432-0436.2002.700909.x PMID: 12492497
  68. Juarez, J.; Clayman, G.; Nakajima, M.; Tanabe, K.K.; Saya, H.; Nicolson, G.L.; Boyd, D. Role and regulation of expression of 92-kDa type-IV collagenase (MMP-9) in 2 invasive squamous-cell-carcinoma cell lines of the oral cavity. Int. J. Cancer, 1993, 55(1), 10-18. doi: 10.1002/ijc.2910550104 PMID: 7688350
  69. Chandolia, B.; Basu, S.K.; Kumar, M. Can MMP-9 be a prognosticator marker for oral squamous cell carcinoma? J. Clin. Diagn. Res., 2016, 10(1), ZC09-ZC13. doi: 10.7860/JCDR/2016/14128.7034 PMID: 26894167
  70. Lawal, A.; Adisa, A.; Kolude, B.; Adeyemi, B. Immunohistochemical expression of MMP-2 and MMP-8 in oral squamous cell carcinoma. J. Clin. Exp. Dent., 2015, 7(2), e203-e207. doi: 10.4317/jced.52047 PMID: 26155333
  71. Nabeshima, K.; Inoue, T.; Shimao, Y.; Sameshima, T. Matrix metalloproteinases in tumor invasion: Role for cell migration. Pathol. Int., 2002, 52(4), 255-264. doi: 10.1046/j.1440-1827.2002.01343.x PMID: 12031080
  72. Pittayapruek, P.; Meephansan, J.; Prapapan, O.; Komine, M.; Ohtsuki, M. Role of matrix metalloproteinases in photoaging and photocarcinogenesis. Int. J. Mol. Sci., 2016, 17(6), 868. doi: 10.3390/ijms17060868 PMID: 27271600
  73. Kajdaniuk, D.; Marek, B.; Borgiel-Marek, H. Kos-Kudła, B. Transforming growth factor β1 (TGFbeta1) in physiology and pathology. Endokrynol. Pol., 2013, 64(5), 384-396. doi: 10.5603/EP.2013.0022 PMID: 24186596
  74. Kusukawa, J.; Sasaguri, Y.; Morimatsu, M.; Kameyama, T. Expression of matrix metalloproteinase-3 in stage I and II squamous cell carcinoma of the oral cavity. J. Oral Maxillofac. Surg., 1995, 53(5), 530-534. doi: 10.1016/0278-2391(95)90065-9 PMID: 7722722
  75. Pozo, P.; Valenzuela, M.A.; Melej, C.; Zaldívar, M.; Puente, J.; Martínez, B.; Gamonal, J. Longitudinal analysis of metalloproteinases, tissue inhibitors of metalloproteinases and clinical parameters in gingival crevicular fluid from periodontitis-affected patients. J. Periodontal Res., 2005, 40(3), 199-207. doi: 10.1111/j.1600-0765.2005.00786.x PMID: 15853964
  76. Giannobile, W.V.; Beikler, T.; Kinney, J.S.; Ramseier, C.A.; Morelli, T.; Wong, D.T. Saliva as a diagnostic tool for periodontal disease: Current state and future directions. Periodontol. 2000, 2009, 50(1), 52-64. doi: 10.1111/j.1600-0757.2008.00288.x PMID: 19388953
  77. Sahingur, S.E.; Yeudall, W.A. Chemokine function in periodontal disease and oral cavity cancer. Front. Immunol., 2015, 6, 214. doi: 10.3389/fimmu.2015.00214 PMID: 25999952
  78. Yu, Saliva protein biomarkers to detect oral squamous cell carcinoma in a high-risk population in Taiwan. Proc. Natl. Acad. Sci., 2016, 113(45)
  79. Bourboulia, D.; Stetler-Stevenson, W.G. Matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs): Positive and negative regulators in tumor cell adhesion. Semin. Cancer Biol., 2010, 20(3), 161-168. doi: 10.1016/j.semcancer.2010.05.002 PMID: 20470890
  80. Kudo, Y.; Iizuka, S.; Yoshida, M.; Tsunematsu, T.; Kondo, T.; Subarnbhesaj, A.; Deraz, E.M.; Siriwardena, S.B.S.M.; Tahara, H.; Ishimaru, N.; Ogawa, I.; Takata, T. Matrix metalloproteinase-13 (MMP-13) directly and indirectly promotes tumor angiogenesis. J. Biol. Chem., 2012, 287(46), 38716-38728. doi: 10.1074/jbc.M112.373159 PMID: 22992737
  81. Ezhilarasan, D.; Lakshmi, T.; Subha, M.; Deepak, N.V.; Raghunandhakumar, S. The ambiguous role of sirtuins in head and neck squamous cell carcinoma. Oral Dis., 2022, 28(3), 559-567. doi: 10.1111/odi.13798 PMID: 33570800
  82. Calderwood, S.K.; Khaleque, M.A.; Sawyer, D.B.; Ciocca, D.R. Heat shock proteins in cancer: Chaperones of tumorigenesis. Trends Biochem. Sci., 2006, 31(3), 164-172. doi: 10.1016/j.tibs.2006.01.006 PMID: 16483782
  83. Poincloux, R.; Lizárraga, F.; Chavrier, P. Matrix invasion by tumour cells: A focus on MT1-MMP trafficking to invadopodia. J. Cell Sci., 2009, 122(17), 3015-3024. doi: 10.1242/jcs.034561 PMID: 19692588
  84. Chakraborty, S.; Suresh, T.N.R.; Mohiyuddin, A.S. Role of matrix metalloproteinase 9 in predicting lymph node metastases in oral squamous cell carcinoma. Cureus, 2023, 15(1), e33495. doi: 10.7759/cureus.33495 PMID: 36756017
  85. Ribatti, D.; Nico, B.; Crivellato, E.; Vacca, A. Macrophages and tumor angiogenesis. Leukemia, 2007, 21(10), 2085-2089. doi: 10.1038/sj.leu.2404900 PMID: 17878921
  86. Singh, R.D.; Haridas, N.; Patel, J.B.; Shah, F.D.; Shukla, S.N.; Shah, P.M.; Patel, P.S. Matrix metalloproteinases and their inhibitors: Correlation with invasion and metastasis in oral cancer. Indian J. Clin. Biochem., 2010, 25(3), 250-259. doi: 10.1007/s12291-010-0060-8 PMID: 21731196
  87. Wróbel-Roztropiński, A.; Zieliińska-Kaźmierska, B.; Roztropiński, H.; Lucas-Grzelczyk, W.; Szemraj, J.; Józefowicz-Korczyńska, M. Expression of matrix metalloproteinases (MMPs) and their inhibitor (TIMP) genes on mRNA and protein levels in oral squamous cell carcinoma. Nowotwory. J. Oncol., 2021, 71(1), 1-8. doi: 10.5603/NJO.2021.0003
  88. Deryugina, E.I.; Quigley, J.P. Cell surface remodeling by plasmin: A new function for an old enzyme. J. Biomed. Biotechnol., 2012, 2012, 1-21. doi: 10.1155/2012/564259 PMID: 23097597
  89. Gkouveris, I.; Nikitakis, N.; Aseervatham, J.; Rao, N.; Ogbureke, K. Matrix metalloproteinases in head and neck cancer: Current perspectives. Metalloproteinases Med., 2017, 4, 47-61. doi: 10.2147/MNM.S105770
  90. Lu, P.; Takai, K.; Weaver, V.M.; Werb, Z. Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harb. Perspect. Biol., 2011, 3(12), a005058. doi: 10.1101/cshperspect.a005058 PMID: 21917992
  91. Kucukguven, A.; Khalil, R.A. Matrix metalloproteinases as potential targets in the venous dilation associated with varicose veins. Curr. Drug Targets, 2013, 14(3), 287-324. PMID: 23316963
  92. Barillari, G.; Melaiu, O.; Gargari, M.; Pomella, S.; Bei, R.; Campanella, V. The multiple roles of CD147 in the development and progression of oral squamous cell carcinoma: An overview. Int. J. Mol. Sci., 2022, 23(15), 8336. doi: 10.3390/ijms23158336 PMID: 35955471
  93. Zhou, L.; Zhang, S.; Huang, W.; Zhang, L.; Cai, Y.; Ke, W.; Cai, L.; Zou, J.; Chen, H. Functional analysis of polymorphism haplotypes of MGMT in residents of high background radiation area. Mutagenesis, 2023, 38(2), 109-119. doi: 10.1093/mutage/gead001 PMID: 36852768
  94. Eisenhaber, F.; Asthana, S.; Sunyaev, S. Understanding the functional importance of human single nucleotide polymorphisms. In: Discovering Biomolecular Mechanisms with Computational Biology; Springer: Boston, MA, 2006; pp. 126-132.
  95. Li, L.; Liu, J.; Qin, S.; Li, R. The association of polymorphisms in promoter region of MMP2 and MMP9 with recurrent spontaneous abortion risk in Chinese population. Medicine, 2018, 97(40), e12561. doi: 10.1097/MD.0000000000012561 PMID: 30290617
  96. Zhang, J.; Jin, X.; Fang, S.; Wang, R.; Li, Y.; Wang, N.; Guo, W.; Wang, Y.; Wen, D.; Wei, L.; Dong, Z.; Kuang, G. The functional polymorphism in the matrix metalloproteinase-7 promoter increases susceptibility to esophageal squamous cell carcinoma, gastric cardiac adenocarcinoma and non-small cell lung carcinoma. Carcinogenesis, 2005, 26(10), 1748-1753. doi: 10.1093/carcin/bgi144 PMID: 15930031
  97. Cao, Z.G.; Li, C.Z. A single nucleotide polymorphism in the matrix metalloproteinase-1 promoter enhances oral squamous cell carcinoma susceptibility in a Chinese population. Oral Oncol., 2006, 42(1), 31-37. doi: 10.1016/j.oraloncology.2004.08.015 PMID: 16256416
  98. Gao, J.; Ma, X.; Qu, T.; Xiao, G. Zinc dyshomeostasis in secretory compartments promotes tumor growth and invasion via cell autonomous and non-autonomous autophagy. Autophagy Reports, 2022, 1(1), 175-178. doi: 10.1080/27694127.2022.2062966
  99. Lin, S.C.; Lo, S.S.; Liu, C.J.; Chung, M.Y.; Huang, J.W.; Chang, K.W. Functional genotype in matrix metalloproteinases-2 promoter is a risk factor for oral carcinogenesis. J. Oral Pathol. Med., 2004, 33(7), 405-409. doi: 10.1111/j.1600-0714.2004.00231.x PMID: 15250832
  100. Battelli, M.G.; Polito, L.; Bortolotti, M.; Bolognesi, A. Xanthine oxidoreductase in cancer: More than a differentiation marker. Cancer Med., 2016, 5(3), 546-557. doi: 10.1002/cam4.601 PMID: 26687331
  101. Dobrescu, R.; Schipor, S.; Manda, D.; Caragheorgheopol, A.; Badiu, C. Matrix metalloproteinase-9 (MMP-9) promoter-1562C/T functional polymorphism is associated with an increased risk to develop micropapillary thyroid carcinoma. Cancer Biomark., 2022, 1, 1-8.
  102. Kumar, S.A.; Indu, S.; Gautami, D. Oral squamous cell carcinoma (OSCC) in humans: Etiological Factors, diagnostic and therapeutic relevance. Res. J. Biotechnol. Vol., 2020, 15, 10.
  103. Slavich, G.M.; Mengelkoch, S.; Cole, S.W. Human social genomics: Concepts, mechanisms, and implications for health. Lifestyle Med., 2023, 4(2), e75. doi: 10.1002/lim2.75 PMID: 37275556
  104. Castagnola, M.; Scarano, E.; Passali, G.C.; Messana, I.; Cabras, T.; Iavarone, F.; Di Cintio, G.; Fiorita, A.; De Corso, E.; Paludetti, G. Salivary biomarkers and proteomics: Future diagnostic and clinical utilities. Acta Otorhinolaryngol. Ital., 2017, 37(2), 94-101. doi: 10.14639/0392-100X-1598 PMID: 28516971
  105. Roi, A.; Roi, C.I.; Negruțiu, M.L.; Riviș, M.; Sinescu, C.; Rusu, L.C. ;The challenges of OSCC diagnosis: Salivary cytokines as potential biomarkers. J. Clin. Med., 2020, 9(9), 2866. doi: 10.3390/jcm9092866 PMID: 32899735
  106. Cabral-Pacheco, G.A.; Garza-Veloz, I.; Castruita-De la Rosa, C.; Ramirez-Acuña, J.M.; Perez-Romero, B.A.; Guerrero-Rodriguez, J.F.; Martinez-Avila, N.; Martinez-Fierro, M.L. The roles of matrix metalloproteinases and their inhibitors in human diseases. Int. J. Mol. Sci., 2020, 21(24), 9739. doi: 10.3390/ijms21249739 PMID: 33419373
  107. Fane, M.; Weeraratna, A.T. How the ageing microenvironment influences tumour progression. Nat. Rev. Cancer, 2020, 20(2), 89-106. doi: 10.1038/s41568-019-0222-9 PMID: 31836838
  108. Bano, A.; Vats, R.; Yadav, P.; Bhardwaj, R. Exosomics in oral cancer diagnosis, prognosis, and therapeutics – An emergent and imperative non-invasive natural nanoparticle-based approach. Crit. Rev. Oncol. Hematol., 2022, 178, 103799. doi: 10.1016/j.critrevonc.2022.103799 PMID: 36031170
  109. Vyas, K.; Rathod, M.; Patel, M.M. Insight on nano drug delivery systems with targeted therapy in treatment of oral cancer. Nanomedicine, 2023, 49, 102662. doi: 10.1016/j.nano.2023.102662 PMID: 36746272
  110. Carbone, D.; Parrino, B.; Cascioferro, S.; Pecoraro, C.; Giovannetti, E.; Di Sarno, V.; Musella, S.; Auriemma, G.; Cirrincione, G.; Diana, P. 1,2,4-oxadiazole topsentin analogs with antiproliferative activity against pancreatic cancer cells, targeting GSK3β kinase. ChemMedChem, 2021, 16(3), 537-554. doi: 10.1002/cmdc.202000752 PMID: 33141472
  111. Quintero-Fabián, S.; Arreola, R.; Becerril-Villanueva, E.; Torres-Romero, J.C.; Arana-Argáez, V.; Lara-Riegos, J.; Ramírez-Camacho, M.A.; Alvarez-Sánchez, M.E. Role of matrix metalloproteinases in angiogenesis and cancer. Front. Oncol., 2019, 9, 1370. doi: 10.3389/fonc.2019.01370 PMID: 31921634
  112. Srivastava, S.; Rizvi, S.; Eba, A.; Fatima, K.; Raza, S.T. Proteomic and transcriptomic biomarkers for oral squamous cell Car-cinoma detection: Insights from saliva analysis. J. Clin. Images Med. Case Rep., 2023, 4(8), 2533.
  113. Li, Y.Y.; Zhang, L.Y.; Xiang, Y.H.; Li, D.; Zhang, J. Matrix metalloproteinases and tissue inhibitors in multiple myeloma: Promote or inhibit? Front. Oncol., 2023, 13, 1127407. doi: 10.3389/fonc.2023.1127407 PMID: 37823051
  114. li, M.; Yan, T.; Cai, Y.; Wei, Y.; Xie, Q. Expression of matrix metalloproteinases and their association with clinical characteristics of solid tumors. Gene, 2023, 850, 146927. doi: 10.1016/j.gene.2022.146927 PMID: 36228865
  115. Anwar, S.; Ahmad, D.S.; Pratap, P.D.; Zehra, D.A. The Interplay of Matrix.,
  116. Saeidi, V.; Doudican, N.; Carucci, J.A. Understanding the squamous cell carcinoma immune microenvironment. Front. Immunol., 2023, 14, 1084873. doi: 10.3389/fimmu.2023.1084873 PMID: 36793738
  117. Jadczyk-Sorek, K.; Garczorz, W.; Bubała-Stachowicz, B.; Francuz, T.; Mrukwa-Kominek, E. Matrix metalloproteinases and the pathogenesis of recurrent corneal erosions and epithelial basement membrane dystrophy. Biology, 2023, 12(9), 1263. doi: 10.3390/biology12091263 PMID: 37759662
  118. Dharavath, B.; Butle, A.; Pal, A.; Desai, S.; Upadhyay, P.; Rane, A.; Khandelwal, R.; Manavalan, S.; Thorat, R.; Sonawane, K.; Vaish, R.; Gera, P.; Bal, M.; D’Cruz, A.K.; Nair, S.; Dutt, A. Role of miR-944/MMP10/AXL- axis in lymph node metastasis in tongue cancer. Commun. Biol., 2023, 6(1), 57. doi: 10.1038/s42003-023-04437-6 PMID: 36650344
  119. Kingsley, C.; Kourtidis, A. Critical roles of adherens junctions in diseases of the oral mucosa. Tissue Barriers, 2023, 11(2), 2084320. doi: 10.1080/21688370.2022.2084320 PMID: 35659464
  120. Cascioferro, S.; Petri, G.L.; Parrino, B.; Carbone, D.; Funel, N.; Bergonzini, C.; Mantini, G.; Dekker, H.; Geerke, D.; Peters, G.J.; Cirrincione, G.; Giovannetti, E.; Diana, P. Imidazo2,1-b 1,3,4thiadiazoles with antiproliferative activity against primary and gemcitabine-resistant pancreatic cancer cells. Eur. J. Med. Chem., 2020, 189, 112088. doi: 10.1016/j.ejmech.2020.112088 PMID: 32007666
  121. Mantovani, A.; Marchesi, F.; Malesci, A.; Laghi, L.; Allavena, P. Tumour-associated macrophages as treatment targets in oncology. Nat. Rev. Clin. Oncol., 2017, 14(7), 399-416. doi: 10.1038/nrclinonc.2016.217 PMID: 28117416
  122. Verhamme, I.M.; Leonard, S.E.; Perkins, R.C. Proteases: Pivot points in functional proteomics. Func. Proteom; Methods Protocol, 2019, pp. 313-392. doi: 10.1007/978-1-4939-8814-3_20
  123. Savita, J.K.; Kumar, B.N.Y.; Nayak, V.N. Matrix metalloproteinases in oral squamous cell carcinoma - A review. J. Adv. Clin. Res. Insights, 2018, 5(4), 124-126. doi: 10.15713/ins.jcri.227
  124. Fan, Y.; Chen, L.; Zheng, Y.; Li, A.; Lin, H.; Gao, J. >Nanoparticle-based activatable MRI probes for disease imaging and monitoring. Chem. Biomed. Imag., 2023, 1021, 3c00024. doi: 10.1021/cbmi.3c00024
  125. Langer, C.J. Role of targeted therapy in non-small cell lung cancer: Hype or hope? Expert Rev. Anticancer Ther., 2003, 3(4), 443-455. doi: 10.1586/14737140.3.4.443 PMID: 12934657
  126. Jayatilaka, H.; Umanzor, F.G.; Shah, V.; Meirson, T.; Russo, G.; Starich, B.; Tyle, P.; Lee, J.S.H.; Khatau, S.; Gil-Henn, H.; Wirtz, D. Tumor cell density regulates matrix metalloproteinases for enhanced migration. Oncotarget, 2018, 9(66), 32556-32569. doi: 10.18632/oncotarget.25863 PMID: 30220965
  127. Marder, G.; Greenwald, R.A. Potential applications of matrix metalloproteinase inhibitors in geriatric practice. Isr. Med. Assoc. J., 2003, 5(5), 361-364. PMID: 12811957
  128. Failes, T.W.; Cullinane, C.; Diakos, C.I.; Yamamoto, N.; Lyons, J.G.; Hambley, T.W. Studies of a cobalt(III) complex of the MMP inhibitor marimastat: A potential hypoxia-activated prodrug. Chemistry, 2007, 13(10), 2974-2982. doi: 10.1002/chem.200601137 PMID: 17171733
  129. Alaseem, A.; Alhazzani, K.; Dondapati, P.; Alobid, S.; Bishayee, A.; Rathinavelu, A. Matrix metalloproteinases: A challenging paradigm of cancer management. In: Seminars in cancer biology; Academic Press, 2019; pp. 100-115. doi: 10.1016/j.semcancer.2017.11.008
  130. Rivera-Delgado, E.; Nam, J.K.; von Recum, H.A. Localized affinity-based delivery of prinomastat for cancer treatment. ACS Biomater. Sci. Eng., 2017, 3(3), 238-242. doi: 10.1021/acsbiomaterials.6b00626 PMID: 33465922
  131. Yang, J.S.; Lin, C.W.; Su, S.C.; Yang, S.F. Pharmacodynamic considerations in the use of matrix metalloproteinase inhibitors in cancer treatment. Expert Opin. Drug Metab. Toxicol., 2016, 12(2), 191-200. doi: 10.1517/17425255.2016.1131820 PMID: 26852787
  132. Allen, J.L.; Hames, R.A.; Mastroianni, N.M.; Greenstein, A.E.; Weed, S.A. Evaluation of the matrix metalloproteinase 9 (MMP9) inhibitor Andecaliximab as an Anti-invasive therapeutic in Head and neck squamous cell carcinoma. Oral Oncol., 2022, 132, 106008. doi: 10.1016/j.oraloncology.2022.106008 PMID: 35803110
  133. Pagès, G.; Pouysségur, J. Transcriptional regulation of the Vascular Endothelial Growth Factor gene-a concert of activating factors. Cardiovasc. Res., 2005, 65(3), 564-573. doi: 10.1016/j.cardiores.2004.09.032 PMID: 15664382
  134. Ballav, S.; Lokhande, K.B.; Dabhi, I.; Inje, S.; Ranjan, A.; Swamy, K.V.; Basu, S. Designing novel quercetin derivatives as matrix metalloproteinase-9 inhibitors in colon carcinoma: An in vitro and in silico approach. J. Dental Res. Rev., 2020, 7(5), 30.
  135. Fischer, T.; Riedl, R. Inhibitory antibodies designed for matrix metalloproteinase modulation. Molecules, 2019, 24(12), 2265. doi: 10.3390/molecules24122265 PMID: 31216704
  136. Wang, D.; Qiu, C.; Zhang, H.; Wang, J.; Cui, Q.; Yin, Y. Human microRNA oncogenes and tumor suppressors show significantly different biological patterns: From functions to targets. PLoS One, 2010, 5(9), e13067. doi: 10.1371/journal.pone.0013067 PMID: 20927335
  137. Li, L.; Li, H. Role of microRNA-mediated MMP regulation in the treatment and diagnosis of malignant tumors. Cancer Biol. Ther., 2013, 14(9), 796-805. doi: 10.4161/cbt.25936 PMID: 23917402
  138. Salmond, N.; Williams, K.C. Isolation and characterization of extracellular vesicles for clinical applications in cancer – time for standardization? Nanoscale Adv., 2021, 3(7), 1830-1852. doi: 10.1039/D0NA00676A PMID: 36133088
  139. Yu, X.; Li, Z. Micro RNA expression and its implications for diagnosis and therapy of tongue squamous cell carcinoma. J. Cell. Mol. Med., 2016, 20(1), 10-16. doi: 10.1111/jcmm.12650 PMID: 26498914
  140. Ren, Z.H.; Wu, K.; Yang, R.; Liu, Z.Q.; Cao, W. Differential expression of matrix metalloproteinases and miRNAs in the metastasis of oral squamous cell carcinoma. BMC Oral Health, 2020, 20(1), 24. doi: 10.1186/s12903-020-1013-0 PMID: 31996191
  141. Grünwald, B.; Schoeps, B.; Krüger, A. Recognizing the molecular multifunctionality and interactome of TIMP-1. Trends Cell Biol., 2019, 29(1), 6-19. doi: 10.1016/j.tcb.2018.08.006 PMID: 30243515
  142. Ciccone, L.; Vandooren, J.; Nencetti, S.; Orlandini, E. Natural marine and terrestrial compounds as modulators of matrix metalloproteinases-2 (MMP-2) and MMP-9 in alzheimer’s disease. pharmaceuticals, 2021, 14(2), 86. doi: 10.3390/ph14020086 PMID: 33498927
  143. Turunen, S.P.; Tatti-Bugaeva, O.; Lehti, K. Membrane-type matrix metalloproteases as diverse effectors of cancer progression. Biochim. Biophys. Acta Mol. Cell Res., 2017, 1864(11), 1974-1988. doi: 10.1016/j.bbamcr.2017.04.002 PMID: 28390905
  144. Kumar, G.B.; Nair, B.G.; Perry, J.J.P.; Martin, D.B.C. Recent insights into natural product inhibitors of matrix metalloproteinases. MedChemComm, 2019, 10(12), 2024-2037. doi: 10.1039/C9MD00165D PMID: 32904148
  145. Montané, X.; Kowalczyk, O.; Reig-Vano, B.; Bajek, A.; Roszkowski, K.; Tomczyk, R.; Pawliszak, W.; Giamberini, M.; >Mocek-PPłóciniak, A.; Tylkowski, B. Current perspectives of the applications of polyphenols and flavonoids in cancer therapy. Molecules, 2020, 25(15), 3342. doi: 10.3390/molecules25153342 PMID: 32717865
  146. Alabi, R.O.; Youssef, O.; Pirinen, M.; Elmusrati, M.; Mäkitie, A.A.; Leivo, I.; Almangush, A. Machine learning in oral squamous cell carcinoma: Current status, clinical concerns and prospects for future-A systematic review. Artif. Intell. Med., 2021, 115, 102060. doi: 10.1016/j.artmed.2021.102060 PMID: 34001326
  147. Tseng, Y.J.; Wang, Y.C.; Hsueh, P.C.; Wu, C.C. Development and validation of machine learning-based risk prediction models of oral squamous cell carcinoma using salivary autoantibody biomarkers. BMC Oral Health, 2022, 22(1), 534. doi: 10.1186/s12903-022-02607-2 PMID: 36424594
  148. Lin, H.; Chen, H.; Weng, L.; Shao, J.; Lin, J. Automatic detection of oral cancer in smartphone-based images using deep learning for early diagnosis. J. Biomed. Opt., 2021, 26(8), 086007. doi: 10.1117/1.JBO.26.8.086007 PMID: 34453419

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers