Anticancer Potential of Novel Cinnamoyl Derivatives against U87MG and SHSY-5Y Cell Lines


Цитировать

Полный текст

Аннотация

Background:Glioblastoma multiforme (GBM) is probably the most malignant and aggressive brain tumor belonging to the class of astrocytomas. The considerable aggressiveness and high malignancy of GBM make it a tumor that is difficult to treat. Here, we report the synthesis and biological evaluation of eighteen novel cinnamoyl derivatives (3a-i and 4a-i) to obtain more effective antitumor agents against GBM.

Methods:The chemical structures of novel cinnamoyl derivatives (3a-i and 4a-i) were confirmed by NMR and MS analyses. The physicochemical properties and evaluation of the ADME profile of 3a-i and 4a-i were performed by the preADMETlab2.0 web program. Cinnamoyl derivatives 3a-i and 4a-i were tested in vitro for their cytotoxicity against the human healthy fibroblast (HDFa) cells using an MTT cell viability assay. Derivatives with no toxicity on HDFa cells were tested both on human glioblastoma (U87MG) and neuroblastoma (SHSY- 5Y) cells, chosen as an experimental model of brain tumors. Cell death mechanisms were analyzed by performing flow cytometry analyses.

Results:Cinnamoyl derivatives 3a-i and 4a-i showed good physicochemical and ADME properties suggesting that these compounds could be developed as oral drugs endowed with a high capability to cross the blood-brain barrier. Compounds (E)-1-methoxy-4-(2-(phenylsulfonyl)vinyl)benzene (2c) and (E)-N-benzyl-N-(2- (cyclohexylamino)-2-oxoethyl)-3-(3,4,5-trimethoxyphenyl)acrylamide (3e) did not show cytotoxicity on healthy human fibroblast cells up to 100 µg/mL. The most anticarcinogenic molecule, compound 3e, emerged as the most potent anticancer candidate in this study. Flow cytometry results showed that compound 3e (25 µg/mL) application resulted in nearly 86% and 84% cytotoxicity in the U87MG and the SHSY-5Y cell lines, respectively. Compound 2c (25 µg/mL) resulted in 81% and 82% cytotoxicity in the U87MG and the SHSY-5Y cell lines, respectively.

Conclusion:Cinnamoyl derivative 3e inhibits the proliferation of cultured U87MG and SHSY-5Y cells by inducing apoptosis. Further detailed research will be conducted to confirm these data in in vivo experimental animal models.

Об авторах

Niki Gouleni

Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens

Email: info@benthamscience.net

Annalisa Di Rienzo

Department of Pharmacy,, "G. D’Annunzio" University of Chieti-Pescara

Email: info@benthamscience.net

Sena Oner

Department of Molecular Biology and Genetics, Faculty of Science,, Erzurum Technical University

Email: info@benthamscience.net

Ceren Karagöz

Department of Molecular Biology and Genetics, Faculty of Science,, Erzurum Technical University

Email: info@benthamscience.net

Mehmet Arslan

Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University

Email: info@benthamscience.net

Adil Mardinoglu

Science for Life Laboratory,, KTH-Royal Institute of Technology,

Email: info@benthamscience.net

Hasan Turkez

Department of Medical Biology, Faculty of Medicine,, Atatürk University

Email: info@benthamscience.net

Antonio Di Stefano

Department of Pharmacy, "G. D’Annunzio" University of Chieti-Pescara,

Email: info@benthamscience.net

Stamatia Vassiliou

Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens

Автор, ответственный за переписку.
Email: info@benthamscience.net

Ivana Cacciatore

Department of Pharmacy,, "G. D’Annunzio" University of Chieti-Pescara

Автор, ответственный за переписку.
Email: info@benthamscience.net

Список литературы

  1. Husain, A.; Pandey, N.; Singh, D.; Ahmad, F.; Sharma, R.; Siddiqui, M.H. Drug discovery in glioblastoma: Current status and future perspectives. Biointerface Res. Appl. Chem., 2023, 13, 27. doi: 10.33263/BRIAC136.559
  2. Mohammed, S. M, D.; T, A. Survival and quality of life analysis in glioblastoma multiforme with adjuvant chemoradiotherapy: A retrospective study. Rep. Pract. Oncol. Radiother., 2022, 27(6), 1026-1036. doi: 10.5603/RPOR.a2022.0113 PMID: 36632307
  3. Mitusova, K.; Peltek, O.O.; Karpov, T.E.; Muslimov, A.R.; Zyuzin, M.V.; Timin, A.S. Overcoming the blood–brain barrier for the therapy of malignant brain tumor: Current status and prospects of drug delivery approaches. J. Nanobiotechnol., 2022, 20(1), 412. doi: 10.1186/s12951-022-01610-7 PMID: 36109754
  4. Zhai, K.; Siddiqui, M.; Abdellatif, B.; Liskova, A.; Kubatka, P.; Büsselberg, D. Natural compounds in glioblastoma therapy: Preclinical insights, mechanistic pathways, and outlook. Cancers, 2021, 13(10), 2317. doi: 10.3390/cancers13102317 PMID: 34065960
  5. Datta, S.; Luthra, R.; Bharadvaja, N. Medicinal plants for glioblastoma treatment. Anticancer. Agents Med. Chem., 2022, 22(13), 2367-2384. doi: 10.2174/1871520622666211221144739 PMID: 34939551
  6. Almatroodi, S.A.; Alsahli, M.A.; Rahmani, A.H. Berberine: an important emphasis on its anticancer effects through modulation of various cell signaling pathways. Molecules, 2022, 27(18), 5889. doi: 10.3390/molecules27185889 PMID: 36144625
  7. Chen, W.L.; Barszczyk, A.; Turlova, E.; Deurloo, M.; Liu, B.; Yang, B.B.; Rutka, J.T.; Feng, Z.P.; Sun, H.S. Inhibition of TRPM7 by carvacrol suppresses glioblastoma cell proliferation, migration and invasion. Oncotarget, 2015, 6(18), 16321-16340. doi: 10.18632/oncotarget.3872 PMID: 25965832
  8. Yazici, A.; Marinelli, L.; Cacciatore, I.; Emsen, B.; Eusepi, P.; Di Biase, G.; Di Stefano, A. Mardinoğlu, A.; Türkez, H. Potential anticancer effect of carvacrol codrugs on human glioblastoma cells. Curr. Drug Deliv., 2021, 18(3), 350-356. doi: 10.2174/18755704MTEw8OTQw5 PMID: 33109049
  9. Wong, S.C.; Kamarudin, M.N.A.; Naidu, R. Anticancer mechanism of curcumin on human glioblastoma. Nutrients, 2021, 13(3), 950. doi: 10.3390/nu13030950 PMID: 33809462
  10. Abotaleb, M.; Liskova, A.; Kubatka, P.; Büsselberg, D. Therapeutic potential of plant phenolic acids in the treatment of cancer. Biomolecules, 2020, 10(2), 221. doi: 10.3390/biom10020221 PMID: 32028623
  11. Niero, E.L.O.; Machado-Santelli, G.M. Cinnamic acid induces apoptotic cell death and cytoskeleton disruption in human melanoma cells. J. Exp. Clin. Cancer Res., 2013, 32(1), 31. doi: 10.1186/1756-9966-32-31 PMID: 23701745
  12. Zhu, B.; Shang, B.; Li, Y.; Zhen, Y. Inhibition of histone deacetylases by trans-cinnamic acid and its antitumor effect against colon cancer xenografts in athymic mice. Mol. Med. Rep., 2016, 13(5), 4159-4166. doi: 10.3892/mmr.2016.5041 PMID: 27035417
  13. Malacrida, A.; Deschamps-Wright, M.; Rigolio, R.; Cavaletti, G.; Miloso, M. Another brick to confirm the efficacy of Rigosertib as anticancer agent. Int. J. Mol. Sci., 2023, 24(2), 1721. doi: 10.3390/ijms24021721 PMID: 36675237
  14. Tang, L.; Chen, T.; Yang, H.; Wen, X.; Sun, Y.; Liu, S.; Peng, T.; Zhang, S.; Wang, L. Synthesis and antitumor effects of novel benzyl naphthyl sulfoxide/sulfone derivatives derived from Rigosertib. RSC Adv., 2021, 11(59), 37462-37471. doi: 10.1039/D1RA05226H PMID: 35496445
  15. Chen, J.; Mao, J.; Zheng, Y.; Liu, D.; Rong, G.; Yan, H.; Zhang, C.; Shi, D. Iodine-promoted decarboxylative C–S cross-coupling of cinnamic acids with sodium benzene sulfinates. Tetrahedron, 2015, 71(31), 5059-5063. doi: 10.1016/j.tet.2015.05.115
  16. Paul, S.; Guin, J. Radical C(sp 3)–H alkenylation, alkynylation and allylation of ethers and amides enabled by photocatalysis. Green Chem., 2017, 19(11), 2530-2534. doi: 10.1039/C7GC00840F
  17. Song, C.; Chen, P.; Tang, Y. Carboxylation of styrenes with CBr 4 and DMSO via cooperative photoredox and cobalt catalysis. RSC Advances, 2017, 7(19), 11233-11243. doi: 10.1039/C6RA28744A
  18. Xiong, G.; Wu, Z.; Yi, J.; Fu, L.; Yang, Z.; Hsieh, C.; Yin, M.; Zeng, X.; Wu, C.; Lu, A.; Chen, X.; Hou, T.; Cao, D. ADMETlab 2.0: An integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Res., 2021, 49(W1), W5-W14. doi: 10.1093/nar/gkab255 PMID: 33893803
  19. Cacciatore, I.; Fornasari, E.; Marinelli, L.; Eusepi, P.; Ciulla, M.; Ozdemir, O.; Tatar, A.; Turkez, H.; Di Stefano, A. Memantine-derived drugs as potential antitumor agents for the treatment of glioblastoma. Eur. J. Pharm. Sci., 2017, 109, 402-411. doi: 10.1016/j.ejps.2017.08.030 PMID: 28860082
  20. Alak, G.; Parlak, V.; Aslan, M.E.; Ucar, A.; Atamanalp, M.; Turkez, H. Borax supplementation alleviates hematotoxicity and DNA damage in rainbow trout (Oncorhynchus mykiss) exposed to copper. Biol. Trace Elem. Res., 2019, 187(2), 536-542. doi: 10.1007/s12011-018-1399-6 PMID: 29926392
  21. Küçükdoğru, R.; Türkez, H.; Arslan, M.E.; Tozlu, Ö.Ö.; Sönmez, E.; Mardinoğlu, A.; Cacciatore, I.; Di Stefano, A. Neuroprotective effects of boron nitride nanoparticles in the experimental Parkinson’s disease model against MPP+ induced apoptosis. Metab. Brain Dis., 2020, 35(6), 947-957. doi: 10.1007/s11011-020-00559-6 PMID: 32215836
  22. Nenajdenko, V.G. α-Acidic Isocyanides in Multicomponent Chemistry. In: Isocyanide Chemistry: Applications in Synthesis and Material Science; Wiley, 2012. doi: 10.1002/9783527652532
  23. Jha, V.; Bhosale, A.; Kapadia, P.; Bhargava, A.; Marick, A.; Charania, Z.; Parulekar, O.; Shaikh, M.; Madaye, B. Multitargeted molecular docking study of phytochemicals on hepatocellular carcinoma. J. Appl. Biol. Biotechnol., 2022, 11, 116-130. doi: 10.7324/JABB.2023.110117
  24. Oja, M.; Sild, S.; Maran, U. Logistic classification models for pH-permeability profile: Predicting permeability classes for the biopharmaceutical classification system. J. Chem. Inf. Model., 2019, 59(5), 2442-2455. doi: 10.1021/acs.jcim.8b00833 PMID: 30790522
  25. Pham-The, H.; Cabrera-Pérez, M.Á.; Nam, N.H.; Castillo-Garit, J.A.; Rasulev, B.; Le-Thi-Thu, H.; Casañola-Martin, G.M. In silico assessment of ADME properties: Advances in Caco-2 cell monolayer permeability modeling. Curr. Top. Med. Chem., 2019, 18(26), 2209-2229. doi: 10.2174/1568026619666181130140350 PMID: 30499410
  26. Yoshitomo, A.; Asano, S.; Hozuki, S.; Tamemoto, Y.; Shibata, Y.; Hashimoto, N.; Takahashi, K.; Sasaki, Y.; Ozawa, N.; Kageyama, M.; Iijima, T.; Kazuki, Y.; Sato, H.; Hisaka, A. Significance of basal membrane permeability of epithelial cells in predicting intestinal drug absorption. Drug Metab. Dispos., 2023, 51(3), 318-328. doi: 10.1124/dmd.122.000907 PMID: 36810197
  27. Holohan, C.; Van Schaeybroeck, S.; Longley, D.B.; Johnston, P.G. Cancer drug resistance: An evolving paradigm. Nat. Rev. Cancer, 2013, 13(10), 714-726. doi: 10.1038/nrc3599 PMID: 24060863
  28. Siddik, Z.H. Cisplatin: Mode of cytotoxic action and molecular basis of resistance. Oncogene, 2003, 22(47), 7265-7279. doi: 10.1038/sj.onc.1206933 PMID: 14576837
  29. Druker, B.J.; Talpaz, M.; Resta, D.J.; Peng, B.; Buchdunger, E.; Ford, J.M.; Lydon, N.B.; Kantarjian, H.; Capdeville, R.; Ohno-Jones, S.; Sawyers, C.L. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N. Engl. J. Med., 2001, 344(14), 1031-1037. doi: 10.1056/NEJM200104053441401 PMID: 11287972
  30. Jordan, V.C. Tamoxifen: A most unlikely pioneering medicine. Nat. Rev. Drug Discov., 2003, 2(3), 205-213. doi: 10.1038/nrd1031 PMID: 12612646
  31. Hirose, Y.; Berger, M.S.; Pieper, R.O. Abrogation of the Chk1-mediated G(2) checkpoint pathway potentiates temozolomide-induced toxicity in a p53-independent manner in human glioblastoma cells. Cancer Res., 2001, 61(15), 5843-5849. PMID: 11479224
  32. Rappa, G.; Fodstad, O.; Lorico, A. The stem cell-associated antigen CD133 (Prominin-1) is a molecular therapeutic target for metastatic melanoma. Stem Cells, 2008, 26(12), 3008-3017. doi: 10.1634/stemcells.2008-0601 PMID: 18802032

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Bentham Science Publishers, 2024