Cellular and DNA Toxicity Study of Triphenyltin Ethyl Phenyl Dithiocarbamate and Triphenyltin Butyl Phenyl Dithiocarbamate on K562, Leukemia Cell Line
- Authors: Hamid A.1, Rajab N.F.2, Charmagne Y.3, Awang N.4, Jufri N.F.1, Rasli N.R.5
-
Affiliations:
- Program of Biomedical Science, Center for Toxicology and Health Risk Study, Faculty of Health Sciences, Universiti Kebangsaan Malaysia
- Program of Biomedical Science, Centre for Healthy Ageing and Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia,
- Program of Biomedical Science, Center for Toxicology and Health Risk Study, Faculty of Health Sciences,, Universiti Kebangsaan Malaysia
- Program of Environmental Health & Industrial Safety, Center for Toxicology and Health Risk Study, Faculty of Health Sciences,, Universiti Kebangsaan Malaysia,
- rogram of Biomedical Science, Center for Toxicology and Health Risk Study, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz
- Issue: Vol 24, No 1 (2024)
- Pages: 58-65
- Section: Oncology
- URL: https://snv63.ru/1871-5206/article/view/643677
- DOI: https://doi.org/10.2174/0118715206266851231025054446
- ID: 643677
Cite item
Full Text
Abstract
Introduction:Continuous research for new effective drugs to treat cancer has improved our understanding on the mechanism of action of these drugs and paved new potential for their application in cancer treatments. In this study, organotin compounds known as triphenyltin ethyl phenyl dithiocarbamate and triphenyltin butyl phenyl dithiocarbamate were investigated for their toxicity on leukemia cell line (K562) and non-cancerous cell line (Chang liver cell and lung fibroblast, V79 cell).
Methods:MTT assay was performed to evaluate the cytotoxic effects of both compounds toward the cells after 24, 48 and 72 hours of exposure or treatment. The alkaline comet assay was conducted to determine the DNA damage on K562 cells after been exposed to both compounds for 30, 60 and 90 minutes.
Results:The IC50 values obtained from K562 cells ranged from 0.01 to 0.30 µM, whereas for both Chang liver cell and lung fibroblast V79 cell, the values ranged from 0.10 to 0.40 µM. For genotoxicity evaluation, the percentage of damaged DNA is measured as an average of tail moment, and was found to be within 1.20 to 2.20 A.U while the percentage of DNA intensity ranging from 1.50 to 3.50% indicating no genotoxic effects.
Conclusion:Both compounds are cytotoxic toward leukemia cells and non-cancerous cells but do not exert their genotoxic effects towards leukemia cell.
Keywords
About the authors
Asmah Hamid
Program of Biomedical Science, Center for Toxicology and Health Risk Study, Faculty of Health Sciences, Universiti Kebangsaan Malaysia
Author for correspondence.
Email: info@benthamscience.net
Nor Fadilah Rajab
Program of Biomedical Science, Centre for Healthy Ageing and Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia,
Email: info@benthamscience.net
Yip Charmagne
Program of Biomedical Science, Center for Toxicology and Health Risk Study, Faculty of Health Sciences,, Universiti Kebangsaan Malaysia
Email: info@benthamscience.net
Normah Awang
Program of Environmental Health & Industrial Safety, Center for Toxicology and Health Risk Study, Faculty of Health Sciences,, Universiti Kebangsaan Malaysia,
Email: info@benthamscience.net
Nurul Farhana Jufri
Program of Biomedical Science, Center for Toxicology and Health Risk Study, Faculty of Health Sciences, Universiti Kebangsaan Malaysia
Email: info@benthamscience.net
Nur Rasyiqin Rasli
rogram of Biomedical Science, Center for Toxicology and Health Risk Study, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz
Email: info@benthamscience.net
References
- Zylbersztejn, F.; Flores-Violante, M.; Voeltzel, T.; Nicolini, F.E.; Lefort, S.; Maguer-Satta, V. The BMP pathway: A unique tool to decode the origin and progression of leukemia. Exp. Hematol., 2018, 61, 36-44. doi: 10.1016/j.exphem.2018.02.005 PMID: 29477370
- Kassahun, W.; Tesfaye, G.; Bimerew, LG.; Fufa, D.; Adissu, W.; Yemane, T. Prevalence of leukemia and associated factors among patients with abnormal hematological parameters in Jimma Medical Center, Southwest Ethiopia: A cross-sectional study. Adv. Hematol. 2020, 2020. doi: 10.1155/2020/2014152
- Loscocco, F.; Visani, G.; Galimberti, S.; Curti, A.; Isidori, A. BCR-ABL independent mechanisms of resistance in chronic myeloid leukemia. Front. Oncol., 2019, 9, 939. doi: 10.3389/fonc.2019.00939 PMID: 31612105
- Amarante-Mendes, G.P.; Rana, A.; Datoguia, T.S.; Hamerschlak, N.; Brumatti, G. BCR-ABL1 tyrosine kinase complex signaling transduction: challenges to overcome resistance in chronic myeloid leukemia. Pharmaceutics, 2022, 14(1), 215. doi: 10.3390/pharmaceutics14010215 PMID: 35057108
- Nickoloff, J.A. Targeting replication stress response pathways to enhance genotoxic chemo-and radiotherapy. Molecules, 2022, 27(15), 4736. doi: 10.3390/molecules27154736 PMID: 35897913
- Lang, F.; Liu, Y.; Chou, F.J.; Yang, C. Genotoxic therapy and resistance mechanism in gliomas. Pharmacol. Ther., 2021, 228, 107922. doi: 10.1016/j.pharmthera.2021.107922 PMID: 34171339
- Çiftçiler, R.; Haznedaroglu, I.C. Tailored tyrosine kinase inhibitor (TKI) treatment of chronic myeloid leukemia (CML) based on current evidence. Eur. Rev. Med. Pharmacol. Sci., 2021, 25(24), 7787-7798. PMID: 34982440
- García-Gutiérrez, V.; Breccia, M.; Jabbour, E.; Mauro, M.; Cortes, J.E. A clinician perspective on the treatment of chronic myeloid leukemia in the chronic phase. J. Hematol. Oncol., 2022, 15(1), 90. doi: 10.1186/s13045-022-01309-0 PMID: 35818053
- Genthon, A.; Nicolini, F.E.; Huguet, F.; Colin-Gil, C.; Berger, M.; Saugues, S.; Janel, A.; Hayette, S.; Cohny-Makhoul, P.; Cadoux, N.; Cayuela, J.M.; Campos, L.; Guyotat, D.; Flandrin-Gresta, P. Influence of major BCR-ABL1 transcript subtype on outcome in patients with chronic myeloid leukemia in chronic phase treated frontline with nilotinib. Oncotarget, 2020, 11(26), 2560-2570. doi: 10.18632/oncotarget.27652 PMID: 32655840
- Breccia, M.; Alimena, G. Second-generation tyrosine kinase inhibitors (TKI) as salvage therapy for resistant or intolerant patients to prior tkis. Mediterr. J. Hematol. Infect. Dis., 2014, 6(1), e2014003. doi: 10.4084/mjhid.2014.003 PMID: 24455112
- Mehri, A. Trace elements in human nutrition (II)an update. Int. J. Prev. Med., 2020, 11, 2. PMID: 32042399
- Ovejero, P. K.; Díaz-García, D.; García-Almodóvar, V.; Lozano Chamizo, L.; Marciello, M.; Díaz-Sánchez, M.; Prashar, S.; Gómez-Ruiz, S.; Filice, M. Multifunctional silica-based nanoparticles with controlled release of organotin metallodrug for targeted theranosis of breast cancer. Cancers, 2020, 12(1), 187. doi: 10.3390/cancers12010187 PMID: 31940937
- Graisa, A.M.; Husain, A.A.; Al-Mashhadani, M.H.; Ahmed, D.S.; Adil, H.; Yousif, E. The organotin applications in biological, industrial and agricultural sectors: A systematic review. J. Serambi Eng., 2022, 7(1)
- Zhang, S.; Li, P.; Li, Z.H. Toxicity of organotin compounds and the ecological risk of organic tin with co-existing contaminants in aquatic organisms. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 2021, 246, 109054. doi: 10.1016/j.cbpc.2021.109054 PMID: 33887478
- Chen, C.; Chen, L.; Xue, R.; Huang, Q.; Wu, L.; Ye, S.; Zhang, W. Spatiotemporal variation and source apportionment of organotin compounds in sediments in the Yangtze Estuary. Environ. Sci. Eur., 2019, 31, 1-9.
- Nur Adibah, M.A. Synthesis, characterization and encapsulation studies of multidentate ligands and their organotin complexes / Nur Adibah Mohd Amin.. Masters thesis, University of Malaya 2019.
- Arraq, R.R.; Hadi, A.G. Enhanced the antioxidant activity of tri organotin (IV) complexes derived from cephalexin. Azerbaijan Med. J. 2022, 2022.
- Ajiboye, T.O.; Ajiboye, T.T.; Marzouki, R.; Onwudiwe, D.C. The versatility in the applications of dithiocarbamates. Int. J. Mol. Sci., 2022, 23(3), 1317. doi: 10.3390/ijms23031317 PMID: 35163241
- Bansal, O. Health impacts of the carbamate and dithiocarbamate pesticides: A review. Int. J. Sci. Res. Publ., 2022, 12(2) doi: 10.29322/IJSRP.12.02.2022.p12250
- Abd Aziz, N.A.; Awang, N.; Chan, K.M.; Kamaludin, N.F.; Anuar, N.N.M. Organotin (IV) dithiocarbamate compounds as anticancer agents: A review of syntheses and cytotoxicity studies. Molecules, 2023, 28(15), 5841.
- Rasli, N.R.; Hamid, A.; Awang, N.; Kamaludin, N.F. Series of organotin(IV) compounds with different dithiocarbamate ligands induced cytotoxicity, apoptosis and cell cycle arrest on jurkat E6.1, T acute lymphoblastic leukemia cells. Molecules, 2023, 28(8), 3376. doi: 10.3390/molecules28083376 PMID: 37110610
- Sirajuddin, M.; Ali, S.; Tahir, M.N. Organotin(IV) derivatives based on 2-((2-methoxyphenyl)carbamoyl)benzoic acid: Synthesis, spectroscopic characterization, assessment of antibacterial, DNA interaction, anticancer and antileishmanial potentials. J. Mol. Struct., 2021, 1229, 129600. doi: 10.1016/j.molstruc.2020.129600
- Hamid, A.; Azmi, M.A.; Rajab, N.F.; Awang, N.; Jufri, N.F. Cytotoxic effects of organotin(IV) dithiocarbamate compounds with different functional groups on leukemic cell line, K-562. Sains Malays., 2020, 49(6), 1421-1430. doi: 10.17576/jsm-2020-4906-20
- Devi, J.; Boora, A.; Rani, M.; Arora, T. Recent advancements in organotin (IV) complexes as potent cytotoxic agents. Anti-Cancer. Agents Med. Chem., 2023, 23, 164-191.
- Awang, N.; Kamaludin, N.F. Cytotoxicity of diphenyltin(IV) diisopropyl dithiocarbamate compound on acute lymphoblastic leukemia cells, CCL-119 (CCRF-CEM). Preprints, 2022, 2022050149. doi: 10.20944/preprints202205.0149.v1
- Kamaludin, N.F.; Awang, N. Synthesis and characterisation of organotin (IV) N-ethyl-N-phenyldithiocarbamate compounds and the crystal structures of dibutyl-and triphenyltin (IV) N-ethyl-N-phenyldithiocarbamate. Res. J. Chem. Environ., 2014, 18, 99-107.
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods, 1983, 65(1-2), 55-63. doi: 10.1016/0022-1759(83)90303-4 PMID: 6606682
- Singh, N.P.; McCoy, M.T.; Tice, R.R.; Schneider, E.L. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp. Cell Res., 1988, 175(1), 184-191. doi: 10.1016/0014-4827(88)90265-0 PMID: 3345800
- Antonenko, T.A.; Gracheva, Y.A.; Shpakovsky, D.B.; Vorobyev, M.A.; Mazur, D.M.; Tafeenko, V.A.; Oprunenko, Y.F.; Shevtsova, E.F.; Shevtsov, P.N.; Nazarov, A.A.; Milaeva, E.R. Biological activity of novel organotin compounds with a schiff base containing an antioxidant fragment. Int. J. Mol. Sci., 2023, 24(3), 2024. doi: 10.3390/ijms24032024 PMID: 36768345
- Mandal, A.; Ghosh, M.; Talukdar, D.; Dey, P.; Das, A.; Giri, S. Cytotoxicity and genotoxicity of tributyltin in the early embryonic chick, Gallus gallus domesticus. Mutat. Res. Genet. Toxicol. Environ. Mutagen., 2023, 889, 503656. doi: 10.1016/j.mrgentox.2023.503656 PMID: 37491115
- Syed Annuar, S.N.; Kamaludin, N.F.; Awang, N.; Chan, K.M. Triphenyltin(IV) dithiocarbamate compound induces genotoxicity and cytotoxicity in K562 human erythroleukemia cells primarily via mitochondria-mediated apoptosis. Food Chem. Toxicol., 2022, 168, 113336. doi: 10.1016/j.fct.2022.113336 PMID: 35963475
- Hunakova, L.; Macejova, D.; Toporova, L.; Brtko, J. Anticancer effects of tributyltin chloride and triphenyltin chloride in human breast cancer cell lines MCF-7 and MDA-MB-231. Tumour Biol., 2016, 37(5), 6701-6708. doi: 10.1007/s13277-015-4524-6 PMID: 26662104
- Sirajuddin, M.; Ali, S.; McKee, V.; Sohail, M.; Pasha, H. Potentially bioactive organotin(IV) compounds: Synthesis, characterization, in vitro bioactivities and interaction with SS-DNA. Eur. J. Med. Chem., 2014, 84, 343-363. doi: 10.1016/j.ejmech.2014.07.028 PMID: 25036793
- Adeyemi, J.; Onwudiwe, D. Antimicrobial and cytotoxicity studies of some organotin (IV) N-ethyl-N-phenyl dithiocarbamate complexes. Pol. J. Environ. Stud., 2020, 29(4), 2525-2532. doi: 10.15244/pjoes/111231
- Golonko, A.; Olichwier, A.J.; Swislocka, R.; Szczerbinski, L.; Lewandowski, W. Why do dietary flavonoids have a promising effect as enhancers of anthracyclines? hydroxyl substituents, bioavailability and biological activity. Int. J. Mol. Sci., 2022, 24(1), 391. doi: 10.3390/ijms24010391 PMID: 36613834
- Niu, L.; Li, Y.; Li, Q. Medicinal properties of organotin compounds and their limitations caused by toxicity. Inorg. Chim. Acta, 2014, 423, 2-13. doi: 10.1016/j.ica.2014.05.007
- Zhou, M.; Feng, M.; Fu, L.; Ji, L.; Zhao, J.; Xu, J. Toxicogenomic analysis identifies the apoptotic pathway as the main cause of hepatotoxicity induced by tributyltin. Food Chem. Toxicol., 2016, 97, 316-326. doi: 10.1016/j.fct.2016.09.027 PMID: 27678064
- Kumar, M.; Abbas, Z.; Siwach, P.; Sharma, J.; Rani, A.; Sharma, S.; Aggarwal, P.; Show, P-L.; Haque, S. Path of organotin complexes: Synthetic factors, mechanisms, and broad-spectrum biological influences. J. Adv. Biotechnol. Exp Ther., 2023, 6(2), 386-402.
- Damghani, T.; Moosavi, F.; Khoshneviszadeh, M.; Mortazavi, M.; Pirhadi, S.; Kayani, Z.; Saso, L.; Edraki, N.; Firuzi, O. Imidazopyridine hydrazone derivatives exert antiproliferative effect on lung and pancreatic cancer cells and potentially inhibit receptor tyrosine kinases including c-Met. Sci. Rep., 2021, 11(1), 3644. doi: 10.1038/s41598-021-83069-4 PMID: 33574356
- Ullah, H.; Previtali, V.; Mihigo, H.B.; Twamley, B.; Rauf, M.K.; Javed, F.; Waseem, A.; Baker, R.J.; Rozas, I. Structure-activity relationships of new Organotin(IV) anticancer agents and their cytotoxicity profile on HL-60, MCF-7 and HeLa human cancer cell lines. Eur. J. Med. Chem., 2019, 181, 111544. doi: 10.1016/j.ejmech.2019.07.047 PMID: 31374420
- Koch, A.; Tamez, P.; Pezzuto, J.; Soejarto, D. Evaluation of plants used for antimalarial treatment by the Maasai of Kenya. J. Ethnopharmacol., 2005, 101(1-3), 95-99. doi: 10.1016/j.jep.2005.03.011 PMID: 15878245
- Kim, K.; Yoo, H.J.; Jung, J.H.; Lee, R.; Hyun, J.K.; Park, J.H.; Na, D.; Yeon, J.H. Cytotoxic effects of plant sap-derived extracellular vesicles on various tumor cell types. J. Funct. Biomater., 2020, 11(2), 22. doi: 10.3390/jfb11020022 PMID: 32252412
- Hamid, A.; Aiyelaagbe, O.; Usman, L.; Ameen, O.; Lawal, A. Antioxidants: Its medicinal and pharmacological applications. Afr. J. Pure Appl. Chem., 2010, 4, 142-151.
- Seebacher, N.A.; Richardson, D.R.; Jansson, P.J. A mechanism for overcoming P-glycoprotein-mediated drug resistance: Novel combination therapy that releases stored doxorubicin from lysosomes via lysosomal permeabilization using Dp44mT or DpC. Cell Death Dis., 2016, 7(12), e2510-e2510. doi: 10.1038/cddis.2016.381 PMID: 27906178
- Kairuki, M.; Qiu, Q.; Pan, M.; Li, Q.; Zhou, J.; Ghaleb, H.; Huang, W.; Qian, H.; Jiang, C. Designed P-glycoprotein inhibitors with triazol-tetrahydroisoquinoline-core increase doxorubicin-induced mortality in multidrug resistant K562/A02 cells. Bioorg. Med. Chem., 2019, 27(15), 3347-3357. doi: 10.1016/j.bmc.2019.06.013 PMID: 31202598
- Farahana Kamaludin, N.; Aishah Zakaria, S.; Awang, N.; Mohamad, R.; Uttraphan Pim, N. Cytotoxicity assessment of organotin (IV)(2-metoxyethyl) methyldithiocarbamate compounds in human leukemia cell lines. Orient. J. Chem., 2017, 33(4), 1756-1766. doi: 10.13005/ojc/330420
- Ray, D.; Sarma, K.D.; Antony, A. Differential effects of tri-n-butylstannyl benzoates on induction of apoptosis in K562 and MCF-7 cells. IUBMB Life, 2000, 49(6), 519-525. doi: 10.1080/15216540050167061 PMID: 11032246
- Pantelić, NĐ; Zmejkovski, BB; iak, ; Banjac, NR; Boić, BĐ; Stanojković, TP; Kaluđerović, GN Design and in vitro biological evaluation of a novel organotin (IV) complex with 1-(4-carboxyphenyl)-3-ethyl-3-methylpyrrolidine-2, 5-dione. J. Chem. 2019, 2019.
- Syed Annuar, S.N.; Kamaludin, N.F.; Awang, N.; Chan, K.M.; Uttraphan Pim, N. Diorganotin(IV) N-methyl-N-phenethyldithio-carbamate compounds induce cytotoxicity via apoptosis in K562 human erythroleukaemia cells. Sains Malays., 2023, 52(5), 1513-1521. doi: 10.17576/jsm-2023-5205-14
- Sit, K.H.; Bay, B.H.; Wong, K.P. Reduced surface area in mitotic rounding of human chang liver cells. Anat. Rec., 1993, 235(2), 183-190. doi: 10.1002/ar.1092350202 PMID: 8420388
- Jiang, N.; Naz, S.; Ma, Y.; Ullah, Q.; Khan, M.Z.; Wang, J.; Lu, X.; Luosang, D.Z.; Tabassum, S.; Chatha, A.M.M.; Basang, W-D. An overview of comet assay application for detecting DNA damage in aquatic animals. Agriculture, 2023, 13(3), 623. doi: 10.3390/agriculture13030623
- Gajski, G. Ravlić, S.; Godschalk, R.; Collins, A.; Dusinska, M.; Brunborg, G. Application of the comet assay for the evaluation of DNA damage in mature sperm. Mutat. Res. Rev. Mutat. Res., 2021, 788, 108398. doi: 10.1016/j.mrrev.2021.108398 PMID: 34893163
- Møller, P.; Stopper, H.; Collins, A.R. Measurement of DNA damage with the comet assay in high-prevalence diseases: Current status and future directions. Mutagenesis, 2020, 35(1), 5-18. PMID: 31294794
- Rodríguez, R.; Gaivão, I.; Aguado, L.; Espina, M.; García, J.; Martínez-Camblor, P.; Sierra, L.M. The comet assay in drosophila: A tool to study interactions between DNA repair systems in DNA damage responses in vivo and ex vivo. Cells, 2023, 12(15), 1979. doi: 10.3390/cells12151979 PMID: 37566058
- Kuchařová, M.; Hronek, M.; Rybáková, K.; Zadák, Z.; tětina, R.; Josková, V.; Patková, A. Comet assay and its use for evaluating oxidative DNA damage in some pathological states. Physiol. Res., 2019, 68(1), 1-15. doi: 10.33549/physiolres.933901 PMID: 30433808
- Alhmoud, J.F.; Woolley, J.F.; Al Moustafa, A.E.; Malki, M.I. DNA damage/repair management in cancers. Cancers, 2020, 12(4), 1050. doi: 10.3390/cancers12041050 PMID: 32340362
- Awang, N.; Kamaludin, N.F.; Hamid, A.; Mokhtar, N.W.N.; Rajab, N.F. Cytotoxicity of triphenyltin(IV) methyl- and ethylisopropyldithiocarbamate compounds in chronic myelogenus leukemia cell line (K-562). Pak. J. Biol. Sci., 2012, 15(17), 833-838. doi: 10.3923/pjbs.2012.833.838 PMID: 24163967
- Rostami, A.; Lambie, M.; Yu, C.W.; Stambolic, V.; Waldron, J.N.; Bratman, S.V. Senescence, necrosis, and apoptosis govern circulating cell-free DNA release kinetics. Cell Rep., 2020, 31(13), 107830. doi: 10.1016/j.celrep.2020.107830 PMID: 32610131
- Sun, Z.; Xue, L.; Li, Y.; Cui, G.; Sun, R.; Hu, M.; Zhong, G. Rotenone-induced necrosis in insect cells via the cytoplasmic membrane damage and mitochondrial dysfunction. Pestic. Biochem. Physiol., 2021, 173, 104801. doi: 10.1016/j.pestbp.2021.104801 PMID: 33771250
- Chigasova, A.K.; Ostrovskaya, L.A.; Korman, D.B. Induction of DNA structure damage in tumor cells by gold polyacrylate. Biophysics (Oxf.), 2023, 68(1), 6-12. doi: 10.1134/S0006350923010050
- Sharif, R.; Ghazali, A.R.; Rajab, N.F. DNA damaging effect of selected salted and fermented food products against chang liver cell. Jurnal Sains Kesihatan Malaysia, 2007, 5, 63-77.
Supplementary files
