Coumarin-derived Hydroxamic Acids as Histone Deacetylase Inhibitors: A Review of Anti-cancer Activities
- Authors: Khai N.Q.1, Vu T.K.1
-
Affiliations:
- School of Chemical Engineering, Hanoi University of Science and Technology
- Issue: Vol 24, No 1 (2024)
- Pages: 18-29
- Section: Oncology
- URL: https://snv63.ru/1871-5206/article/view/643672
- DOI: https://doi.org/10.2174/0118715206272112231102063919
- ID: 643672
Cite item
Full Text
Abstract
Since coumarin and hydroxamic acid compounds are well-known in medicinal chemistry, a variety of their derivatives have been highlighted due to their potential uses for plentiful treatments. Different compounds of their derivatives acting through diverse activities, such as anti-tumor, anti-cancer, anti-inflammation, and histone deacetylase inhibition, have been comprehensively investigated by many researchers over the years. This present review provides the latest literature and knowledge on hydroxamic acids derived from coumarin. Overall, some recent advancements in biological activities of hybrid derivatives of hydroxamic acids containing coumarin moieties in medicinal chemistry are discussed.
Keywords
About the authors
Nguyen Quang Khai
School of Chemical Engineering, Hanoi University of Science and Technology
Email: info@benthamscience.net
Tran Khac Vu
School of Chemical Engineering, Hanoi University of Science and Technology
Author for correspondence.
Email: info@benthamscience.net
References
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin., 2022, 72(1), 7-33. doi: 10.3322/caac.21708 PMID: 35020204
- Yabroff, K.R.; Wu, X.C.; Negoita, S.; Stevens, J.; Coyle, L.; Zhao, J.; Mumphrey, B.J.; Jemal, A.; Ward, K.C. Association of the COVID-19 pandemic with patterns of statewide cancer services. J. Natl. Cancer Inst., 2022, 114(6), 907-909. doi: 10.1093/jnci/djab122 PMID: 34181001
- Bell, M.; Webster, L.; Woodland, A. Research techniques made simple: An introduction to drug discovery for dermatology. J. Invest. Dermatol., 2019, 139(11), 2252-2257.e1. doi: 10.1016/j.jid.2019.07.699 PMID: 31648685
- Ferlay, J.; Colombet, M.; Soerjomataram, I.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Cancer statistics for the year 2020: An overview. Int. J. Cancer, 2021, 149(4), 778-789. doi: 10.1002/ijc.33588 PMID: 33818764
- Sarmento-Ribeiro, A.B.; Scorilas, A.; Gonçalves, A.C.; Efferth, T.; Trougakos, I.P. The emergence of drug resistance to targeted cancer therapies: Clinical evidence. Drug Resist. Updat., 2019, 47, 100646. doi: 10.1016/j.drup.2019.100646 PMID: 31733611
- Grover, J.; Jachak, S.M. Coumarins as privileged scaffold for anti-inflammatory drug development. RSC Adv, 2015, 5(49), 38892-38905. doi: 10.1039/C5RA05643H
- Ranjan Sahoo, C.; Sahoo, J.; Mahapatra, M.; Lenka, D.; Kumar, S.P.; Dehury, B.; Nath, P.R.; Kumar Paidesetty, S. Coumarin derivatives as promising antibacterial agent(s). Arab. J. Chem., 2021, 14(2), 102922. doi: 10.1016/j.arabjc.2020.102922
- Zhang, L.; Xu, Z. Coumarin-containing hybrids and their anticancer activities. Eur. J. Med. Chem., 2019, 181, 111587. doi: 10.1016/j.ejmech.2019.111587 PMID: 31404864
- Hassan, M.Z.; Osman, H.; Ali, M.A.; Ahsan, M.J. Therapeutic potential of coumarins as antiviral agents. Eur. J. Med. Chem., 2016, 123, 236-255. doi: 10.1016/j.ejmech.2016.07.056 PMID: 27484512
- Paramjeet, K.; Sheetal, B.; Arti, D.; Hariom, N.; Dipak, S. Sources and biological activity of coumarin: An appraisal. J. Environ. Sci. Technol., 2021, 7, 11-25.
- Wu, Y.; Xu, J.; Liu, Y.; Zeng, Y.; Wu, G. A review on anti-tumor mechanisms of coumarins. Front. Oncol., 2020, 10, 592853. doi: 10.3389/fonc.2020.592853 PMID: 33344242
- Xu, L.; Zhao, X.Y.; Wu, Y.L.; Zhang, W. The study on biological and pharmacological activity of coumarins. Proceedings of the 2015 Asia-Pacific Energy Equipment Engineering Research Conference, 2015, pp. 135-138. doi: 10.2991/ap3er-15.2015.33
- Matos, M.J.; Santana, L.; Uriarte, E.; Abreu, O.A.; Molina, E.; Yordi, E.G. Coumarins An important class of phytochemicals. In: Phytochemicals - Isolation; Characterisation and Role in Human Health; , 2015. doi: 10.5772/59982
- Pan, Y.; Liu, T.; Wang, X.; Sun, J. Research progress of coumarins and their derivatives in the treatment of diabetes. J. Enzyme Inhib. Med. Chem., 2022, 37(1), 616-628. doi: 10.1080/14756366.2021.2024526 PMID: 35067136
- Nikhil, B.; Shikha, B.; Anil, P.; Prakash, N.B. Diverse pharmacological activities of 3 - substituted coumarins: A review. 2012. Available from: https://www.semanticscholar.org/paper/diverse-pharmacological-activities-of-3-substituted-Nikhil-Shikha/71c55aea18f2aa30a19353da2eee5f265bf5e6bc
- Detsi, A.; Kontogiorgis, C.; Hadjipavlou-Litina, D. Coumarin derivatives: An updated patent review (2015-2016). Expert Opin. Ther. Pat., 2017, 27(11), 1201-1226. doi: 10.1080/13543776.2017.1360284 PMID: 28756713
- Song, X.F.; Fan, J.; Liu, L.; Liu, X.F.; Gao, F. Coumarin derivatives with anticancer activities: An update. Arch. Pharm., 2020, 353(8), 2000025. doi: 10.1002/ardp.202000025 PMID: 32383190
- Bouhaoui, A.; Eddahmi, M.; Dib, M.; Khouili, M.; Aires, A.; Catto, M.; Bouissane, L. Synthesis and biological properties of coumarin derivatives. A review. Chem. Select, 2021, 6(24), 5848-5870. doi: 10.1002/slct.202101346
- Mishra, S.; Pandey, A.; Manvati, S. Coumarin: An emerging antiviral agent. Heliyon, 2020, 6(1), e03217. doi: 10.1016/j.heliyon.2020.e03217 PMID: 32042967
- Catterall, F.; Ames, P.R.J.; Isles, C. Warfarin in patients with mechanical heart valves. BMJ, 2020, 371, m3956. doi: 10.1136/bmj.m3956 PMID: 33060144
- Trailokya, A.; Hiremath, J.S.; Sawhney, J.; Mishra, Y.K.; Kanhere, V.; Srinivasa, R.; Tiwaskar, M. Acenocoumarol: A review of anticoagulant efficacy and safety. J. Assoc. Physicians India, 2016, 64(2), 88-93. PMID: 27730796
- Silva, V.L.M.; Silva-Reis, R.; Moreira-Pais, A.; Ferreira, T.; Oliveira, P.A.; Ferreira, R.; Cardoso, S.M.; Sharifi-Rad, J.; Butnariu, M.; Costea, M.A.; Grozea, I. Dicoumarol: From chemistry to antitumor benefits. Chin. Med., 2022, 17(1), 145. doi: 10.1186/s13020-022-00699-0 PMID: 36575479
- Citarella, A.; Moi, D.; Pinzi, L.; Bonanni, D.; Rastelli, G. Hydroxamic acid derivatives: From synthetic strategies to medicinal chemistry applications. ACS Omega, 2021, 6(34), 21843-21849. doi: 10.1021/acsomega.1c03628 PMID: 34497879
- Keth, J.; Johann, T.; Frey, H. Hydroxamic acid: An underrated moiety? marrying bioinorganic chemistry and polymer science. Biomacromolecules, 2020, 21(7), 2546-2556. doi: 10.1021/acs.biomac.0c00449 PMID: 32525665
- Zhao, C.; Dong, H.; Xu, Q.; Zhang, Y. Histone deacetylase (HDAC) inhibitors in cancer: A patent review (2017-present). Expert Opin. Ther. Pat., 2020, 30(4), 263-274. doi: 10.1080/13543776.2020.1725470 PMID: 32008402
- Munson, J.W. Hydroxamic acids. In: Acid Derivatives; Patai, S., Ed.; , 1992; pp. 849-873. doi: 10.1002/9780470772508.ch15
- Muri, E.; Nieto, M.; Sindelar, R.; Williamson, J. Hydroxamic acids as pharmacological agents. Curr. Med. Chem., 2002, 9(17), 1631-1653. doi: 10.2174/0929867023369402 PMID: 12171558
- Gupta, S.P.; Sharma, A. The chemistry of hydroxamic acids. In: Hydroxamic Acids; Patai, S., Ed.; , 2013; pp. 1-17. doi: 10.1007/978-3-642-38111-9_1
- Carneiro, A.; Matos, M.J.; Uriarte, E.; Santana, L. Trending topics on coumarin and its derivatives in 2020. Molecules, 2021, 26(2), 501. doi: 10.3390/molecules26020501 PMID: 33477785
- Marmion, C.J.; Parker, J.P.; Nolan, K.B. Hydroxamic acids: An important class of metalloenzyme inhibitors. Inorg. Chem., 2013, II, 683-708. doi: 10.1002/ejic.200400221
- Singh, A.K.; Kumar, A.; Singh, H.; Sonawane, P.; Paliwal, H.; Thareja, S.; Pathak, P.; Grishina, M.; Jaremko, M.; Emwas, A.H.; Yadav, J.P.; Verma, A.; Khalilullah, H.; Kumar, P. Concept of hybrid drugs and recent advancements in anticancer hybrids. Pharmaceuticals, 2022, 15(9), 1071. doi: 10.3390/ph15091071 PMID: 36145292
- Seidel, C.; Schnekenburger, M.; Zwergel, C.; Gaascht, F.; Mai, A.; Dicato, M.; Kirsch, G.; Valente, S.; Diederich, M. Novel inhibitors of human histone deacetylases: Design, synthesis and bioactivity of 3-alkenoylcoumarines. Bioorg. Med. Chem. Lett., 2014, 24(16), 3797-3801. doi: 10.1016/j.bmcl.2014.06.067 PMID: 25042254
- Minh, N.V.; Thanh, N.T.; Lien, H.T.; Anh, D.T.P.; Cuong, H.D.; Nam, N.H.; Hai, P.T.; Minh-Ngoc, L.; Le-Thi-Thu, H.; Chinh, L.V.; Vu, T.K. Design, synthesis and biological evaluation of novel n-hydroxyheptanamides incorporating 6-hydroxy-2-methylquinazolin-4(3H)-ones as histone deacetylase inhibitors and cytotoxic agents. Anticancer. Agents Med. Chem., 2019, 19(12), 1543-1557. doi: 10.2174/1871520619666190702142654 PMID: 31267876
- Hieu, D.T.; Anh, D.T.; Tuan, N.M.; Hai, P.T.; Huong, L.T.T.; Kim, J.; Kang, J.S.; Vu, T.K.; Dung, P.T.P.; Han, S.B.; Nam, N.H.; Hoa, N.D. Design, synthesis and evaluation of novel N -hydroxybenzamides/ N -hydroxypropenamides incorporating quinazolin-4(3 H)-ones as histone deacetylase inhibitors and antitumor agents. Bioorg. Chem., 2018, 76, 258-267. doi: 10.1016/j.bioorg.2017.12.007 PMID: 29223029
- Ha, V.T.; Kien, V.T.; Binh, L.H.; Tien, V.D.; My, N.T.T.; Nam, N.H.; Baltas, M.; Hahn, H.; Han, B.W.; Thao, D.T.; Vu, T.K. Design, synthesis and biological evaluation of novel hydroxamic acids bearing artemisinin skeleton. Bioorg. Chem., 2016, 66, 63-71. doi: 10.1016/j.bioorg.2016.03.008 PMID: 27018835
- Vu, T.K.; Thanh, N.T.; Minh, N.V.; Linh, N.H.; Thao, N.T.P.; Nguyen, T.T.B.; Hien, D.T.; Chinh, L.V.; Duc, T.H.; Anh, L.D.; Hai, P.T. Novel conjugated quinazolinone-based hydroxamic acids: Design, synthesis and biological evaluation. Med. Chem., 2021, 17(7), 732-749. doi: 10.2174/1573406416666200420081540 PMID: 32310052
- Li, X.; Hou, J.; Li, X.; Jiang, Y.; Liu, X.; Mu, W.; Jin, Y.; Zhang, Y.; Xu, W. Development of 3-hydroxycinnamamide-based HDAC inhibitors with potent in vitro and in vivo anti-tumor activity. Eur. J. Med. Chem., 2015, 89, 628-637. doi: 10.1016/j.ejmech.2014.10.077 PMID: 25462271
- Zang, J.; Shi, B.; Liang, X.; Gao, Q.; Xu, W.; Zhang, Y. Development of N -hydroxycinnamamide-based HDAC inhibitors with improved HDAC inhibitory activity and in vitro antitumor activity. Bioorg. Med. Chem., 2017, 25(9), 2666-2675. doi: 10.1016/j.bmc.2016.12.001 PMID: 28336407
- Ling, Y.; Gao, W.J.; Ling, C.; Liu, J.; Meng, C.; Qian, J.; Liu, S.; Gan, H.; Wu, H.; Tao, J.; Dai, H.; Zhang, Y. β-Carboline and N-hydroxycinnamamide hybrids as anticancer agents for drug-resistant Hepatocellular carcinoma. Eur. J. Med. Chem., 2019, 168, 515-526. doi: 10.1016/j.ejmech.2019.02.054 PMID: 30851694
- Abdizadeh, T.; Kalani, M.R.; Abnous, K.; Tayarani-Najaran, Z.; Khashyarmanesh, B.Z.; Abdizadeh, R.; Ghodsi, R.; Hadizadeh, F. Design, synthesis and biological evaluation of novel coumarin-based benzamides as potent histone deacetylase inhibitors and anticancer agents. Eur. J. Med. Chem., 2017, 132, 42-62. doi: 10.1016/j.ejmech.2017.03.024 PMID: 28340413
- Bolden, J.E.; Peart, M.J.; Johnstone, R.W. Anticancer activities of histone deacetylase inhibitors. Nat. Rev. Drug Discov., 2006, 5(9), 769-784. doi: 10.1038/nrd2133 PMID: 16955068
- Singh, A.; Patel, P.; Patel, V.K.; Jain, D.K.; Veerasamy, R.; Sharma, P.C.; Rajak, H. Histone deacetylase inhibitors for the treatment of colorectal cancer: Recent progress and future prospects. Curr. Cancer Drug Targets, 2017, 17(5), 456-466. doi: 10.2174/1568009617666170109150134 PMID: 28067178
- Ruijter, A.J.M.; Gennip, A.H.; Caron, H.N.; Kemp, S.; Kuilenburg, A.B.P. Histone deacetylases (HDACs): Characterization of the classical HDAC family. Biochem. J., 2003, 370(3), 737-749. doi: 10.1042/bj20021321 PMID: 12429021
- Li, Y.; Seto, E. HDACs and HDAC inhibitors in cancer development and therapy. Cold Spring Harb. Perspect. Med., 2016, 6(10), a026831. doi: 10.1101/cshperspect.a026831 PMID: 27599530
- Suraweera, A.; OByrne, K.J.; Richard, D.J. Combination therapy with histone deacetylase inhibitors (HDACi) for the treatment of cancer: Achieving the full therapeutic potential of HDACi. Front. Oncol., 2018, 8, 92. doi: 10.3389/fonc.2018.00092 PMID: 29651407
- Cao, Y.; Ning, B.; Tian, Y.; Lan, T.; Chu, Y.; Ren, F.; Wang, Y.; Meng, Q.; Li, J.; Jia, B.; Chang, Z. CREPT disarms the inhibitory activity of HDAC1 on oncogene expression to promote tumorigenesis. Cancers, 2022, 14(19), 4797. doi: 10.3390/cancers14194797 PMID: 36230720
- Li, T.; Zhang, C.; Hassan, S.; Liu, X.; Song, F.; Chen, K.; Zhang, W.; Yang, J. Histone deacetylase 6 in cancer. J. Hematol. Oncol., 2018, 11(1), 111. doi: 10.1186/s13045-018-0654-9 PMID: 30176876
- Shanmugam, G.; Rakshit, S.; Sarkar, K. HDAC inhibitors: Targets for tumor therapy, immune modulation and lung diseases. Transl. Oncol., 2022, 16, 101312. doi: 10.1016/j.tranon.2021.101312 PMID: 34922087
- Rajak, H.; Singh, A.; Dewangan, P.K.; Patel, V.; Jain, D.K.; Tiwari, S.K.; Veerasamy, R.; Sharma, P.C. Peptide based macrocycles: Selective histone deacetylase inhibitors with antiproliferative activity. Curr. Med. Chem., 2013, 20(14), 1887-1903. doi: 10.2174/0929867311320140006 PMID: 23409715
- Manal, M.; Chandrasekar, M.J.N.; Gomathi, P.J.; Nanjan, M.J. Inhibitors of histone deacetylase as antitumor agents: A critical review. Bioorg. Chem., 2016, 67, 18-42. doi: 10.1016/j.bioorg.2016.05.005 PMID: 27239721
- Qiu, X.; Xiao, X.; Li, N.; Li, Y. Histone deacetylases inhibitors (HDACis) as novel therapeutic application in various clinical diseases. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2017, 72, 60-72. doi: 10.1016/j.pnpbp.2016.09.002 PMID: 27614213
- He, X.; Hui, Z.; Xu, L.; Bai, R.; Gao, Y.; Wang, Z.; Xie, T.; Ye, X.Y. Medicinal chemistry updates of novel HDACs inhibitors (2020 to present). Eur. J. Med. Chem., 2022, 227, 113946. doi: 10.1016/j.ejmech.2021.113946 PMID: 34775332
- Yang, F.; Zhao, N.; Song, J.; Zhu, K.; Jiang, C.; Shan, P.; Zhang, H. Design, synthesis and biological evaluation of novel coumarin-based hydroxamate derivatives as histone deacetylase (Hdac) inhibitors with antitumor activities. Molecules, 2019, 24(14), 2569. doi: 10.3390/molecules24142569 PMID: 31311163
- Zhao, N.; Yang, F.; Han, L.; Qu, Y.; Ge, D.; Zhang, H. Development of coumarin-based hydroxamates as histone deacetylase inhibitors with antitumor activities. Molecules, 2020, 25(3), 717. doi: 10.3390/molecules25030717 PMID: 32046013
- García, S.; Mercado-Sánchez, I.; Bahena, L.; Alcaraz, Y.; García-Revilla, M.A.; Robles, J.; Santos-Martínez, N.; Ordaz-Rosado, D.; García-Becerra, R.; Vazquez, M.A. Design of fluorescent coumarin-hydroxamic acid derivatives as inhibitors of HDACs: Synthesis, anti-proliferative evaluation and docking studies. Molecules, 2020, 25(21), 5134. doi: 10.3390/molecules25215134 PMID: 33158250
- Ding, J.; Liu, J.; Zhang, Z.; Guo, J.; Cheng, M.; Wan, Y.; Wang, R.; Fang, Y.; Guan, Z.; Jin, Y.; Xie, S.S. Design, synthesis and biological evaluation of coumarin-based N-hydroxycinnamamide derivatives as novel histone deacetylase inhibitors with anticancer activities. Bioorg. Chem., 2020, 101, 104023. doi: 10.1016/j.bioorg.2020.104023 PMID: 32650178
- Singh, R.K.; Mandal, T.; Balasubramanian, N.; Cook, G.; Srivastava, D.K. Coumarin-suberoylanilide hydroxamic acid as a fluorescent probe for determining binding affinities and off-rates of histone deacetylase inhibitors. Anal. Biochem., 2011, 408(2), 309-315. doi: 10.1016/j.ab.2010.08.040 PMID: 20816742
- Singh, R.K.; Lall, N.; Leedahl, T.S.; McGillivray, A.; Mandal, T.; Haldar, M.; Mallik, S.; Cook, G.; Srivastava, D.K. Kinetic and thermodynamic rationale for suberoylanilide hydroxamic acid being a preferential human histone deacetylase 8 inhibitor as compared to the structurally similar ligand, trichostatin a. Biochemistry, 2013, 52(45), 8139-8149. doi: 10.1021/bi400740x PMID: 24079912
- Rubio-Ruiz, B.; Weiss, J.T.; Unciti-Broceta, A. Efficient palladium-triggered release of vorinostat from a bioorthogonal precursor. J. Med. Chem., 2016, 59(21), 9974-9980. doi: 10.1021/acs.jmedchem.6b01426 PMID: 27786474
- Pardo-Jiménez, V.; Navarrete-Encina, P.; Díaz-Araya, G. Synthesis and biological evaluation of novel thiazolyl-coumarin derivatives as potent histone deacetylase inhibitors with antifibrotic activity. Molecules, 2019, 24(4), 739. doi: 10.3390/molecules24040739 PMID: 30791388
- Ieda, N.; Yamada, S.; Kawaguchi, M.; Miyata, N.; Nakagawa, H. (7-Diethylaminocoumarin-4-yl)methyl ester of suberoylanilide hydroxamic acid as a caged inhibitor for photocontrol of histone deacetylase activity. Bioorg. Med. Chem., 2016, 24(12), 2789-2793. doi: 10.1016/j.bmc.2016.04.042 PMID: 27143132
- Nakagawa, H. Photo-Controlled release of small signaling molecules to induce biological responses. Chem. Rec., 2018, 18(12), 1708-1716. doi: 10.1002/tcr.201800035 PMID: 30040190
- Huang, W.J.; Chen, C.C.; Chao, S.W.; Lee, S.S.; Hsu, F.L.; Lu, Y.L.; Hung, M.F.; Chang, C.I. Synthesis of N-hydroxycinnamides capped with a naturally occurring moiety as inhibitors of histone deacetylase. ChemMedChem, 2010, 5(4), 598-607. doi: 10.1002/cmdc.200900494 PMID: 20209563
- Qiu, X.; Zhu, L.; Wang, H.; Tan, Y.; Yang, Z.; Yang, L.; Wan, L. From natural products to HDAC inhibitors: An overview of drug discovery and design strategy. Bioorg. Med. Chem., 2021, 52, 116510. doi: 10.1016/j.bmc.2021.116510 PMID: 34826681
- Wittine, K.; Ratkaj, I.; Benci, K.; Suhina, T. Mandić L.; Ilić N.; Pavelić S.K.; Pavelić K.; Mintas, M. The novel coumarin3,2-cthiophene and its hydroxamic acid and ureido derivatives: Synthesis and cytostatic activity evaluations. Med. Chem. Res., 2016, 25(4), 728-737. doi: 10.1007/s00044-016-1523-0
- Ji, H.; Tan, Y.; Gan, N.; Zhang, J.; Li, S.; Zheng, X.; Wang, Z.; Yi, W. Synthesis and anticancer activity of new coumarin-3-carboxylic acid derivatives as potential lactate transport inhibitors. Bioorg. Med. Chem., 2021, 29, 115870. doi: 10.1016/j.bmc.2020.115870 PMID: 33221062
- Tashima, T.; Murata, H.; Kodama, H. Design and synthesis of novel and highly-active pan-histone deacetylase (pan-HDAC) inhibitors. Bioorg. Med. Chem., 2014, 22(14), 3720-3731. doi: 10.1016/j.bmc.2014.05.001 PMID: 24864038
- Ho, T.C.S.; Chan, A.H.Y.; Ganesan, A. Thirty years of HDAC inhibitors: 2020 insight and hindsight. J. Med. Chem., 2020, 63(21), 12460-12484. doi: 10.1021/acs.jmedchem.0c00830 PMID: 32608981
- Bertrand, P. Inside HDAC with HDAC inhibitors. Eur. J. Med. Chem., 2010, 45(6), 2095-2116. doi: 10.1016/j.ejmech.2010.02.030 PMID: 20223566
- Rana, Z.; Diermeier, S.; Hanif, M.; Rosengren, R.J. Understanding failure and improving treatment using hdac inhibitors for prostate cancer. Biomedicines, 2020, 8(2), 22. doi: 10.3390/biomedicines8020022 PMID: 32019149
- Yamamoto, N.; Renfrew, A.K.; Kim, B.J.; Bryce, N.S.; Hambley, T.W. Dual targeting of hypoxic and acidic tumor environments with a cobalt(III) chaperone complex. J. Med. Chem., 2012, 55(24), 11013-11021. doi: 10.1021/jm3014713 PMID: 23199008
- Munteanu, C.R.; Suntharalingam, K. Advances in cobalt complexes as anticancer agents. Dalton Trans., 2015, 44(31), 13796-13808. doi: 10.1039/C5DT02101D PMID: 26148776
- Galluzzi, L.; Senovilla, L.; Vitale, I.; Michels, J.; Martins, I.; Kepp, O.; Castedo, M.; Kroemer, G. Molecular mechanisms of cisplatin resistance. Oncogene, 2012, 31(15), 1869-1883. doi: 10.1038/onc.2011.384 PMID: 21892204
- Lee, V.E.Y.; Lim, Z.C.; Chew, S.L.; Ang, W.H. Strategy for traceless codrug delivery with platinum(IV) prodrug complexes using self-immolative linkers. Inorg. Chem., 2021, 60(3), 1823-1831. doi: 10.1021/acs.inorgchem.0c03299 PMID: 33464875
- Green, B.P.; Renfrew, A.K.; Glenister, A.; Turner, P.; Hambley, T.W. The influence of the ancillary ligand on the potential of cobalt (III) complexes to act as chaperones for hydroxamic acid-based drugs. Dalton Trans., 2017, 46(45), 15897-15907. doi: 10.1039/C7DT03645K PMID: 29116280
Supplementary files
