Coumarin-derived Hydroxamic Acids as Histone Deacetylase Inhibitors: A Review of Anti-cancer Activities


Cite item

Full Text

Abstract

Since coumarin and hydroxamic acid compounds are well-known in medicinal chemistry, a variety of their derivatives have been highlighted due to their potential uses for plentiful treatments. Different compounds of their derivatives acting through diverse activities, such as anti-tumor, anti-cancer, anti-inflammation, and histone deacetylase inhibition, have been comprehensively investigated by many researchers over the years. This present review provides the latest literature and knowledge on hydroxamic acids derived from coumarin. Overall, some recent advancements in biological activities of hybrid derivatives of hydroxamic acids containing coumarin moieties in medicinal chemistry are discussed.

About the authors

Nguyen Quang Khai

School of Chemical Engineering, Hanoi University of Science and Technology

Email: info@benthamscience.net

Tran Khac Vu

School of Chemical Engineering, Hanoi University of Science and Technology

Author for correspondence.
Email: info@benthamscience.net

References

  1. Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin., 2022, 72(1), 7-33. doi: 10.3322/caac.21708 PMID: 35020204
  2. Yabroff, K.R.; Wu, X.C.; Negoita, S.; Stevens, J.; Coyle, L.; Zhao, J.; Mumphrey, B.J.; Jemal, A.; Ward, K.C. Association of the COVID-19 pandemic with patterns of statewide cancer services. J. Natl. Cancer Inst., 2022, 114(6), 907-909. doi: 10.1093/jnci/djab122 PMID: 34181001
  3. Bell, M.; Webster, L.; Woodland, A. Research techniques made simple: An introduction to drug discovery for dermatology. J. Invest. Dermatol., 2019, 139(11), 2252-2257.e1. doi: 10.1016/j.jid.2019.07.699 PMID: 31648685
  4. Ferlay, J.; Colombet, M.; Soerjomataram, I.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Cancer statistics for the year 2020: An overview. Int. J. Cancer, 2021, 149(4), 778-789. doi: 10.1002/ijc.33588 PMID: 33818764
  5. Sarmento-Ribeiro, A.B.; Scorilas, A.; Gonçalves, A.C.; Efferth, T.; Trougakos, I.P. The emergence of drug resistance to targeted cancer therapies: Clinical evidence. Drug Resist. Updat., 2019, 47, 100646. doi: 10.1016/j.drup.2019.100646 PMID: 31733611
  6. Grover, J.; Jachak, S.M. Coumarins as privileged scaffold for anti-inflammatory drug development. RSC Adv, 2015, 5(49), 38892-38905. doi: 10.1039/C5RA05643H
  7. Ranjan Sahoo, C.; Sahoo, J.; Mahapatra, M.; Lenka, D.; Kumar, S.P.; Dehury, B.; Nath, P.R.; Kumar Paidesetty, S. Coumarin derivatives as promising antibacterial agent(s). Arab. J. Chem., 2021, 14(2), 102922. doi: 10.1016/j.arabjc.2020.102922
  8. Zhang, L.; Xu, Z. Coumarin-containing hybrids and their anticancer activities. Eur. J. Med. Chem., 2019, 181, 111587. doi: 10.1016/j.ejmech.2019.111587 PMID: 31404864
  9. Hassan, M.Z.; Osman, H.; Ali, M.A.; Ahsan, M.J. Therapeutic potential of coumarins as antiviral agents. Eur. J. Med. Chem., 2016, 123, 236-255. doi: 10.1016/j.ejmech.2016.07.056 PMID: 27484512
  10. Paramjeet, K.; Sheetal, B.; Arti, D.; Hariom, N.; Dipak, S. Sources and biological activity of coumarin: An appraisal. J. Environ. Sci. Technol., 2021, 7, 11-25.
  11. Wu, Y.; Xu, J.; Liu, Y.; Zeng, Y.; Wu, G. A review on anti-tumor mechanisms of coumarins. Front. Oncol., 2020, 10, 592853. doi: 10.3389/fonc.2020.592853 PMID: 33344242
  12. Xu, L.; Zhao, X.Y.; Wu, Y.L.; Zhang, W. The study on biological and pharmacological activity of coumarins. Proceedings of the 2015 Asia-Pacific Energy Equipment Engineering Research Conference, 2015, pp. 135-138. doi: 10.2991/ap3er-15.2015.33
  13. Matos, M.J.; Santana, L.; Uriarte, E.; Abreu, O.A.; Molina, E.; Yordi, E.G. Coumarins — An important class of phytochemicals. In: Phytochemicals - Isolation; Characterisation and Role in Human Health; , 2015. doi: 10.5772/59982
  14. Pan, Y.; Liu, T.; Wang, X.; Sun, J. Research progress of coumarins and their derivatives in the treatment of diabetes. J. Enzyme Inhib. Med. Chem., 2022, 37(1), 616-628. doi: 10.1080/14756366.2021.2024526 PMID: 35067136
  15. Nikhil, B.; Shikha, B.; Anil, P.; Prakash, N.B. Diverse pharmacological activities of 3 - substituted coumarins: A review. 2012. Available from: https://www.semanticscholar.org/paper/diverse-pharmacological-activities-of-3-substituted-Nikhil-Shikha/71c55aea18f2aa30a19353da2eee5f265bf5e6bc
  16. Detsi, A.; Kontogiorgis, C.; Hadjipavlou-Litina, D. Coumarin derivatives: An updated patent review (2015-2016). Expert Opin. Ther. Pat., 2017, 27(11), 1201-1226. doi: 10.1080/13543776.2017.1360284 PMID: 28756713
  17. Song, X.F.; Fan, J.; Liu, L.; Liu, X.F.; Gao, F. Coumarin derivatives with anticancer activities: An update. Arch. Pharm., 2020, 353(8), 2000025. doi: 10.1002/ardp.202000025 PMID: 32383190
  18. Bouhaoui, A.; Eddahmi, M.; Dib, M.; Khouili, M.; Aires, A.; Catto, M.; Bouissane, L. Synthesis and biological properties of coumarin derivatives. A review. Chem. Select, 2021, 6(24), 5848-5870. doi: 10.1002/slct.202101346
  19. Mishra, S.; Pandey, A.; Manvati, S. Coumarin: An emerging antiviral agent. Heliyon, 2020, 6(1), e03217. doi: 10.1016/j.heliyon.2020.e03217 PMID: 32042967
  20. Catterall, F.; Ames, P.R.J.; Isles, C. Warfarin in patients with mechanical heart valves. BMJ, 2020, 371, m3956. doi: 10.1136/bmj.m3956 PMID: 33060144
  21. Trailokya, A.; Hiremath, J.S.; Sawhney, J.; Mishra, Y.K.; Kanhere, V.; Srinivasa, R.; Tiwaskar, M. Acenocoumarol: A review of anticoagulant efficacy and safety. J. Assoc. Physicians India, 2016, 64(2), 88-93. PMID: 27730796
  22. Silva, V.L.M.; Silva-Reis, R.; Moreira-Pais, A.; Ferreira, T.; Oliveira, P.A.; Ferreira, R.; Cardoso, S.M.; Sharifi-Rad, J.; Butnariu, M.; Costea, M.A.; Grozea, I. Dicoumarol: From chemistry to antitumor benefits. Chin. Med., 2022, 17(1), 145. doi: 10.1186/s13020-022-00699-0 PMID: 36575479
  23. Citarella, A.; Moi, D.; Pinzi, L.; Bonanni, D.; Rastelli, G. Hydroxamic acid derivatives: From synthetic strategies to medicinal chemistry applications. ACS Omega, 2021, 6(34), 21843-21849. doi: 10.1021/acsomega.1c03628 PMID: 34497879
  24. Keth, J.; Johann, T.; Frey, H. Hydroxamic acid: An underrated moiety? marrying bioinorganic chemistry and polymer science. Biomacromolecules, 2020, 21(7), 2546-2556. doi: 10.1021/acs.biomac.0c00449 PMID: 32525665
  25. Zhao, C.; Dong, H.; Xu, Q.; Zhang, Y. Histone deacetylase (HDAC) inhibitors in cancer: A patent review (2017-present). Expert Opin. Ther. Pat., 2020, 30(4), 263-274. doi: 10.1080/13543776.2020.1725470 PMID: 32008402
  26. Munson, J.W. Hydroxamic acids. In: Acid Derivatives; Patai, S., Ed.; , 1992; pp. 849-873. doi: 10.1002/9780470772508.ch15
  27. Muri, E.; Nieto, M.; Sindelar, R.; Williamson, J. Hydroxamic acids as pharmacological agents. Curr. Med. Chem., 2002, 9(17), 1631-1653. doi: 10.2174/0929867023369402 PMID: 12171558
  28. Gupta, S.P.; Sharma, A. The chemistry of hydroxamic acids. In: Hydroxamic Acids; Patai, S., Ed.; , 2013; pp. 1-17. doi: 10.1007/978-3-642-38111-9_1
  29. Carneiro, A.; Matos, M.J.; Uriarte, E.; Santana, L. Trending topics on coumarin and its derivatives in 2020. Molecules, 2021, 26(2), 501. doi: 10.3390/molecules26020501 PMID: 33477785
  30. Marmion, C.J.; Parker, J.P.; Nolan, K.B. Hydroxamic acids: An important class of metalloenzyme inhibitors. Inorg. Chem., 2013, II, 683-708. doi: 10.1002/ejic.200400221
  31. Singh, A.K.; Kumar, A.; Singh, H.; Sonawane, P.; Paliwal, H.; Thareja, S.; Pathak, P.; Grishina, M.; Jaremko, M.; Emwas, A.H.; Yadav, J.P.; Verma, A.; Khalilullah, H.; Kumar, P. Concept of hybrid drugs and recent advancements in anticancer hybrids. Pharmaceuticals, 2022, 15(9), 1071. doi: 10.3390/ph15091071 PMID: 36145292
  32. Seidel, C.; Schnekenburger, M.; Zwergel, C.; Gaascht, F.; Mai, A.; Dicato, M.; Kirsch, G.; Valente, S.; Diederich, M. Novel inhibitors of human histone deacetylases: Design, synthesis and bioactivity of 3-alkenoylcoumarines. Bioorg. Med. Chem. Lett., 2014, 24(16), 3797-3801. doi: 10.1016/j.bmcl.2014.06.067 PMID: 25042254
  33. Minh, N.V.; Thanh, N.T.; Lien, H.T.; Anh, D.T.P.; Cuong, H.D.; Nam, N.H.; Hai, P.T.; Minh-Ngoc, L.; Le-Thi-Thu, H.; Chinh, L.V.; Vu, T.K. Design, synthesis and biological evaluation of novel n-hydroxyheptanamides incorporating 6-hydroxy-2-methylquinazolin-4(3H)-ones as histone deacetylase inhibitors and cytotoxic agents. Anticancer. Agents Med. Chem., 2019, 19(12), 1543-1557. doi: 10.2174/1871520619666190702142654 PMID: 31267876
  34. Hieu, D.T.; Anh, D.T.; Tuan, N.M.; Hai, P.T.; Huong, L.T.T.; Kim, J.; Kang, J.S.; Vu, T.K.; Dung, P.T.P.; Han, S.B.; Nam, N.H.; Hoa, N.D. Design, synthesis and evaluation of novel N -hydroxybenzamides/ N -hydroxypropenamides incorporating quinazolin-4(3 H)-ones as histone deacetylase inhibitors and antitumor agents. Bioorg. Chem., 2018, 76, 258-267. doi: 10.1016/j.bioorg.2017.12.007 PMID: 29223029
  35. Ha, V.T.; Kien, V.T.; Binh, L.H.; Tien, V.D.; My, N.T.T.; Nam, N.H.; Baltas, M.; Hahn, H.; Han, B.W.; Thao, D.T.; Vu, T.K. Design, synthesis and biological evaluation of novel hydroxamic acids bearing artemisinin skeleton. Bioorg. Chem., 2016, 66, 63-71. doi: 10.1016/j.bioorg.2016.03.008 PMID: 27018835
  36. Vu, T.K.; Thanh, N.T.; Minh, N.V.; Linh, N.H.; Thao, N.T.P.; Nguyen, T.T.B.; Hien, D.T.; Chinh, L.V.; Duc, T.H.; Anh, L.D.; Hai, P.T. Novel conjugated quinazolinone-based hydroxamic acids: Design, synthesis and biological evaluation. Med. Chem., 2021, 17(7), 732-749. doi: 10.2174/1573406416666200420081540 PMID: 32310052
  37. Li, X.; Hou, J.; Li, X.; Jiang, Y.; Liu, X.; Mu, W.; Jin, Y.; Zhang, Y.; Xu, W. Development of 3-hydroxycinnamamide-based HDAC inhibitors with potent in vitro and in vivo anti-tumor activity. Eur. J. Med. Chem., 2015, 89, 628-637. doi: 10.1016/j.ejmech.2014.10.077 PMID: 25462271
  38. Zang, J.; Shi, B.; Liang, X.; Gao, Q.; Xu, W.; Zhang, Y. Development of N -hydroxycinnamamide-based HDAC inhibitors with improved HDAC inhibitory activity and in vitro antitumor activity. Bioorg. Med. Chem., 2017, 25(9), 2666-2675. doi: 10.1016/j.bmc.2016.12.001 PMID: 28336407
  39. Ling, Y.; Gao, W.J.; Ling, C.; Liu, J.; Meng, C.; Qian, J.; Liu, S.; Gan, H.; Wu, H.; Tao, J.; Dai, H.; Zhang, Y. β-Carboline and N-hydroxycinnamamide hybrids as anticancer agents for drug-resistant Hepatocellular carcinoma. Eur. J. Med. Chem., 2019, 168, 515-526. doi: 10.1016/j.ejmech.2019.02.054 PMID: 30851694
  40. Abdizadeh, T.; Kalani, M.R.; Abnous, K.; Tayarani-Najaran, Z.; Khashyarmanesh, B.Z.; Abdizadeh, R.; Ghodsi, R.; Hadizadeh, F. Design, synthesis and biological evaluation of novel coumarin-based benzamides as potent histone deacetylase inhibitors and anticancer agents. Eur. J. Med. Chem., 2017, 132, 42-62. doi: 10.1016/j.ejmech.2017.03.024 PMID: 28340413
  41. Bolden, J.E.; Peart, M.J.; Johnstone, R.W. Anticancer activities of histone deacetylase inhibitors. Nat. Rev. Drug Discov., 2006, 5(9), 769-784. doi: 10.1038/nrd2133 PMID: 16955068
  42. Singh, A.; Patel, P.; Patel, V.K.; Jain, D.K.; Veerasamy, R.; Sharma, P.C.; Rajak, H. Histone deacetylase inhibitors for the treatment of colorectal cancer: Recent progress and future prospects. Curr. Cancer Drug Targets, 2017, 17(5), 456-466. doi: 10.2174/1568009617666170109150134 PMID: 28067178
  43. Ruijter, A.J.M.; Gennip, A.H.; Caron, H.N.; Kemp, S.; Kuilenburg, A.B.P. Histone deacetylases (HDACs): Characterization of the classical HDAC family. Biochem. J., 2003, 370(3), 737-749. doi: 10.1042/bj20021321 PMID: 12429021
  44. Li, Y.; Seto, E. HDACs and HDAC inhibitors in cancer development and therapy. Cold Spring Harb. Perspect. Med., 2016, 6(10), a026831. doi: 10.1101/cshperspect.a026831 PMID: 27599530
  45. Suraweera, A.; O’Byrne, K.J.; Richard, D.J. Combination therapy with histone deacetylase inhibitors (HDACi) for the treatment of cancer: Achieving the full therapeutic potential of HDACi. Front. Oncol., 2018, 8, 92. doi: 10.3389/fonc.2018.00092 PMID: 29651407
  46. Cao, Y.; Ning, B.; Tian, Y.; Lan, T.; Chu, Y.; Ren, F.; Wang, Y.; Meng, Q.; Li, J.; Jia, B.; Chang, Z. CREPT disarms the inhibitory activity of HDAC1 on oncogene expression to promote tumorigenesis. Cancers, 2022, 14(19), 4797. doi: 10.3390/cancers14194797 PMID: 36230720
  47. Li, T.; Zhang, C.; Hassan, S.; Liu, X.; Song, F.; Chen, K.; Zhang, W.; Yang, J. Histone deacetylase 6 in cancer. J. Hematol. Oncol., 2018, 11(1), 111. doi: 10.1186/s13045-018-0654-9 PMID: 30176876
  48. Shanmugam, G.; Rakshit, S.; Sarkar, K. HDAC inhibitors: Targets for tumor therapy, immune modulation and lung diseases. Transl. Oncol., 2022, 16, 101312. doi: 10.1016/j.tranon.2021.101312 PMID: 34922087
  49. Rajak, H.; Singh, A.; Dewangan, P.K.; Patel, V.; Jain, D.K.; Tiwari, S.K.; Veerasamy, R.; Sharma, P.C. Peptide based macrocycles: Selective histone deacetylase inhibitors with antiproliferative activity. Curr. Med. Chem., 2013, 20(14), 1887-1903. doi: 10.2174/0929867311320140006 PMID: 23409715
  50. Manal, M.; Chandrasekar, M.J.N.; Gomathi, P.J.; Nanjan, M.J. Inhibitors of histone deacetylase as antitumor agents: A critical review. Bioorg. Chem., 2016, 67, 18-42. doi: 10.1016/j.bioorg.2016.05.005 PMID: 27239721
  51. Qiu, X.; Xiao, X.; Li, N.; Li, Y. Histone deacetylases inhibitors (HDACis) as novel therapeutic application in various clinical diseases. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2017, 72, 60-72. doi: 10.1016/j.pnpbp.2016.09.002 PMID: 27614213
  52. He, X.; Hui, Z.; Xu, L.; Bai, R.; Gao, Y.; Wang, Z.; Xie, T.; Ye, X.Y. Medicinal chemistry updates of novel HDACs inhibitors (2020 to present). Eur. J. Med. Chem., 2022, 227, 113946. doi: 10.1016/j.ejmech.2021.113946 PMID: 34775332
  53. Yang, F.; Zhao, N.; Song, J.; Zhu, K.; Jiang, C.; Shan, P.; Zhang, H. Design, synthesis and biological evaluation of novel coumarin-based hydroxamate derivatives as histone deacetylase (Hdac) inhibitors with antitumor activities. Molecules, 2019, 24(14), 2569. doi: 10.3390/molecules24142569 PMID: 31311163
  54. Zhao, N.; Yang, F.; Han, L.; Qu, Y.; Ge, D.; Zhang, H. Development of coumarin-based hydroxamates as histone deacetylase inhibitors with antitumor activities. Molecules, 2020, 25(3), 717. doi: 10.3390/molecules25030717 PMID: 32046013
  55. García, S.; Mercado-Sánchez, I.; Bahena, L.; Alcaraz, Y.; García-Revilla, M.A.; Robles, J.; Santos-Martínez, N.; Ordaz-Rosado, D.; García-Becerra, R.; Vazquez, M.A. Design of fluorescent coumarin-hydroxamic acid derivatives as inhibitors of HDACs: Synthesis, anti-proliferative evaluation and docking studies. Molecules, 2020, 25(21), 5134. doi: 10.3390/molecules25215134 PMID: 33158250
  56. Ding, J.; Liu, J.; Zhang, Z.; Guo, J.; Cheng, M.; Wan, Y.; Wang, R.; Fang, Y.; Guan, Z.; Jin, Y.; Xie, S.S. Design, synthesis and biological evaluation of coumarin-based N-hydroxycinnamamide derivatives as novel histone deacetylase inhibitors with anticancer activities. Bioorg. Chem., 2020, 101, 104023. doi: 10.1016/j.bioorg.2020.104023 PMID: 32650178
  57. Singh, R.K.; Mandal, T.; Balasubramanian, N.; Cook, G.; Srivastava, D.K. Coumarin-suberoylanilide hydroxamic acid as a fluorescent probe for determining binding affinities and off-rates of histone deacetylase inhibitors. Anal. Biochem., 2011, 408(2), 309-315. doi: 10.1016/j.ab.2010.08.040 PMID: 20816742
  58. Singh, R.K.; Lall, N.; Leedahl, T.S.; McGillivray, A.; Mandal, T.; Haldar, M.; Mallik, S.; Cook, G.; Srivastava, D.K. Kinetic and thermodynamic rationale for suberoylanilide hydroxamic acid being a preferential human histone deacetylase 8 inhibitor as compared to the structurally similar ligand, trichostatin a. Biochemistry, 2013, 52(45), 8139-8149. doi: 10.1021/bi400740x PMID: 24079912
  59. Rubio-Ruiz, B.; Weiss, J.T.; Unciti-Broceta, A. Efficient palladium-triggered release of vorinostat from a bioorthogonal precursor. J. Med. Chem., 2016, 59(21), 9974-9980. doi: 10.1021/acs.jmedchem.6b01426 PMID: 27786474
  60. Pardo-Jiménez, V.; Navarrete-Encina, P.; Díaz-Araya, G. Synthesis and biological evaluation of novel thiazolyl-coumarin derivatives as potent histone deacetylase inhibitors with antifibrotic activity. Molecules, 2019, 24(4), 739. doi: 10.3390/molecules24040739 PMID: 30791388
  61. Ieda, N.; Yamada, S.; Kawaguchi, M.; Miyata, N.; Nakagawa, H. (7-Diethylaminocoumarin-4-yl)methyl ester of suberoylanilide hydroxamic acid as a caged inhibitor for photocontrol of histone deacetylase activity. Bioorg. Med. Chem., 2016, 24(12), 2789-2793. doi: 10.1016/j.bmc.2016.04.042 PMID: 27143132
  62. Nakagawa, H. Photo-Controlled release of small signaling molecules to induce biological responses. Chem. Rec., 2018, 18(12), 1708-1716. doi: 10.1002/tcr.201800035 PMID: 30040190
  63. Huang, W.J.; Chen, C.C.; Chao, S.W.; Lee, S.S.; Hsu, F.L.; Lu, Y.L.; Hung, M.F.; Chang, C.I. Synthesis of N-hydroxycinnamides capped with a naturally occurring moiety as inhibitors of histone deacetylase. ChemMedChem, 2010, 5(4), 598-607. doi: 10.1002/cmdc.200900494 PMID: 20209563
  64. Qiu, X.; Zhu, L.; Wang, H.; Tan, Y.; Yang, Z.; Yang, L.; Wan, L. From natural products to HDAC inhibitors: An overview of drug discovery and design strategy. Bioorg. Med. Chem., 2021, 52, 116510. doi: 10.1016/j.bmc.2021.116510 PMID: 34826681
  65. Wittine, K.; Ratkaj, I.; Benci, K.; Suhina, T. Mandić L.; Ilić N.; Pavelić S.K.; Pavelić K.; Mintas, M. The novel coumarin3,2-cthiophene and its hydroxamic acid and ureido derivatives: Synthesis and cytostatic activity evaluations. Med. Chem. Res., 2016, 25(4), 728-737. doi: 10.1007/s00044-016-1523-0
  66. Ji, H.; Tan, Y.; Gan, N.; Zhang, J.; Li, S.; Zheng, X.; Wang, Z.; Yi, W. Synthesis and anticancer activity of new coumarin-3-carboxylic acid derivatives as potential lactate transport inhibitors. Bioorg. Med. Chem., 2021, 29, 115870. doi: 10.1016/j.bmc.2020.115870 PMID: 33221062
  67. Tashima, T.; Murata, H.; Kodama, H. Design and synthesis of novel and highly-active pan-histone deacetylase (pan-HDAC) inhibitors. Bioorg. Med. Chem., 2014, 22(14), 3720-3731. doi: 10.1016/j.bmc.2014.05.001 PMID: 24864038
  68. Ho, T.C.S.; Chan, A.H.Y.; Ganesan, A. Thirty years of HDAC inhibitors: 2020 insight and hindsight. J. Med. Chem., 2020, 63(21), 12460-12484. doi: 10.1021/acs.jmedchem.0c00830 PMID: 32608981
  69. Bertrand, P. Inside HDAC with HDAC inhibitors. Eur. J. Med. Chem., 2010, 45(6), 2095-2116. doi: 10.1016/j.ejmech.2010.02.030 PMID: 20223566
  70. Rana, Z.; Diermeier, S.; Hanif, M.; Rosengren, R.J. Understanding failure and improving treatment using hdac inhibitors for prostate cancer. Biomedicines, 2020, 8(2), 22. doi: 10.3390/biomedicines8020022 PMID: 32019149
  71. Yamamoto, N.; Renfrew, A.K.; Kim, B.J.; Bryce, N.S.; Hambley, T.W. Dual targeting of hypoxic and acidic tumor environments with a cobalt(III) chaperone complex. J. Med. Chem., 2012, 55(24), 11013-11021. doi: 10.1021/jm3014713 PMID: 23199008
  72. Munteanu, C.R.; Suntharalingam, K. Advances in cobalt complexes as anticancer agents. Dalton Trans., 2015, 44(31), 13796-13808. doi: 10.1039/C5DT02101D PMID: 26148776
  73. Galluzzi, L.; Senovilla, L.; Vitale, I.; Michels, J.; Martins, I.; Kepp, O.; Castedo, M.; Kroemer, G. Molecular mechanisms of cisplatin resistance. Oncogene, 2012, 31(15), 1869-1883. doi: 10.1038/onc.2011.384 PMID: 21892204
  74. Lee, V.E.Y.; Lim, Z.C.; Chew, S.L.; Ang, W.H. Strategy for traceless codrug delivery with platinum(IV) prodrug complexes using self-immolative linkers. Inorg. Chem., 2021, 60(3), 1823-1831. doi: 10.1021/acs.inorgchem.0c03299 PMID: 33464875
  75. Green, B.P.; Renfrew, A.K.; Glenister, A.; Turner, P.; Hambley, T.W. The influence of the ancillary ligand on the potential of cobalt (III) complexes to act as chaperones for hydroxamic acid-based drugs. Dalton Trans., 2017, 46(45), 15897-15907. doi: 10.1039/C7DT03645K PMID: 29116280

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers