Vol 24, No 9 (2024)

Oncology

Thiosemicarbazone-benzenesulfonamide Derivatives as Human Carbonic Anhydrases Inhibitors: Synthesis, Characterization, and In silico Studies

Trawally M., Demir-Yazıcı K., Angeli A., Kaya K., Akdemir A., Supuran C., Güzel-Akdemir Ö.

Abstract

Introduction:Carbonic anhydrases (CAs) are widespread metalloenzymes with the core function of catalyzing the interconversion of CO2 and HCO3-. Targeting these enzymes using selective inhibitors has emerged as a promising approach for the development of novel therapeutic agents against multiple diseases.

Methods:A series of novel thiosemicarbazones-containing derivatives were synthesized, characterized, and tested for their inhibitory activity against pharmaceutically important human CA I (hCA I), II (hCA II), IX (hCA IX), and XII (hCA XII) using the single tail approach.

Results:The compounds generally inhibited the isoenzymes at low nanomolar concentrations, with compound 6b having Ki values of 7.16, 0.31, 92.5, and 375 nM against hCA I, II, IX and XII, respectively. Compound 6e exhibited Ki values of 27.6, 0.34, 872, and 94.5 nM against hCA I, II, IX and XII, respectively.

Conclusion:To rationalize the inhibition data, molecular docking studies were conducted, providing insight into the binding mechanisms, molecular interactions, and selectivity of the compounds towards the isoenzymes.

Anti-Cancer Agents in Medicinal Chemistry. 2024;24(9):649-667
pages 649-667 views

Cordyceps militaris: A Comprehensive Study on Laboratory Cultivation and Anticancer Potential in Dalton's Ascites Lymphoma Tumor Model

Dutta D., Singh N., Aggarwal R., Verma A.

Abstract

Background:Cancer, a predominant cause of mortality, poses a formidable challenge in our pursuit of elevating life expectancy. Throughout history, individuals have sought natural remedies with minimal side effects as an appealing substitute for chemotherapeutic drugs. One such remedy is Cordyceps militaris, a renowned medicinal mushroom deeply entrenched in Asian ethnomedicine. Revered for its rejuvenating and curative attributes, it relied upon for ages.

Objective:The mushroom’s soaring demand outpaced natural availability, necessitating controlled laboratory cultivation as the core focus and exploring the potential of methanolic extracts from harvested Cordyceps militaris fruiting bodies against Dalton's Lymphoma Ascites (DLA) cells in vitro, with a specific emphasis on its anticancer traits.

Methods:For cultivation, we employed a diverse range of rice substrates, among which bora rice showed promising growth of C. militaris fruiting bodies. To assess DLA cell cytotoxicity, several assays, including trypan blue exclusion assay, MTT assay, and LDH assay, were employed at different time points (24-96 h), which provided valuable insights on DLA cell viability and proliferation, shedding light on its therapeutic potential against cancer.

Results:Our studies unveiled that methanolic extract prompts apoptosis in DLA cells via AO/EB dual staining, manifesting consistent apoptosis indicators such as membrane blebbing, chromatin condensation, nuclei fragmentation, and cellular shrinkage at 48-96 h of treatment. Furthermore, these striking repercussions of apoptosis were comprehended by an in silico approach having molecular docking simulation against antiapoptotic proteins like BCL-2, BCL-XL, MCL-1, BFL-1 & HSP100.

Conclusion:Methanolic C. militaris extracts exhibited cytotoxicity and apoptotic alterations in DLA cells

Anti-Cancer Agents in Medicinal Chemistry. 2024;24(9):668-690
pages 668-690 views

Anti-proliferative, Morphological and Molecular Docking Studies of New Thiophene Derivatives and their Strategy in Ionic Liquids Immobilized Reactions

Mohareb R., Mukhtar S., Parveen H., Abdelaziz M., Alwan E.

Abstract

Background:A number of research were conducted on the pyran and thiophene derivatives, which were attributed to have a wide range of biological activities, including anti-plasmodial, as well as acting as caspase, hepatitis C and cancer inhibitors.

Objective:The multicomponent reactions of the 5-acetyl-2-amino-4-(phenylamino)-thiophene-3-carbonitrile produced biologically active target molecules like pyran and their fused derivatives. Comparison between regular catalytic multi-component reactions and solvent-free ionic liquids immobilized multicomponent was studied.

Methods:The multicomponent reactions in this work were carried out not only under the reflux conditions using triethylamine as a catalyst but also in solvent-free ionic liquids immobilized magnetic nanoparticles (MNPs) catalysts.

Results:Through this work, thirty-one new compounds were synthesized and characterized and were evaluated toward the six cancer cell lines, namely A549, HT-29, MKN-45, U87MG, and SMMC-7721 and H460. The most active compounds were further screened toward seventeen cancer cell lines classified according to the disease. In addition, the effect of compound 11e on the A549 cell line was selected to make further morphological changes in the cell line. The Molecular docking studies of 11e and 11f were carried and promising results were obtained.

Conclusion:The synthesis of heterocyclic compounds derived from thiophene derivatives has been receiving significant attention. After a detailed optimizing study, it has been found that the solvent-free ionic liquids immobilized multi-component syntheses afforded a high yield of compounds, opening a greener procedure for this synthetically relevant transformation. Many of the synthesized compounds can be considered anticancer agents, enhancing further studies

Anti-Cancer Agents in Medicinal Chemistry. 2024;24(9):691-708
pages 691-708 views

Antheraea proylei J. Sericin Induces Apoptosis in a Caspase-dependent Manner in A549 and HeLa Cells

Devi P., Singh A., Singh N., Singh L., Devi S., Singh L.

Abstract

Background::In spite of much progress in cancer, the global cancer burden is still significant and increasing. Sericin, an adhesive protein of silk cocoons, has been shown to be a potential protein in various biomedical applications, including cancer therapeutics. The present study evaluates the anticancer property of sericin from cocoons of Antheraea proylei J (SAP) against human lung cancer (A549) and cervical cancer (HeLa) cell lines. This is the first report of anti-cancer activity of the non-mulberry silkworm A. proylei J.

Objective::Establish the antiproliferative potential of SAP. 2. Identify the molecular mechanism of cell death induced by SAP on two different cell lines

Aims::To investigate the anticancer activity of sericin preparation from cocoons of A. proylei.

Methods::SAP was prepared from cocoons of A. proylei J. by the process of the degumming method. Cytotoxic activity was assessed by MTT assay, and genotoxicity was assessed by comet assay. Cleavage of caspase and PARP proteins and phosphorylation of MAPK pathway members were analysed by Western blotting. Cell cycle analysis was done by flow cytometer.

Results::SAP causes cytotoxicity to A549 and HeLa cell lines with the IC50 values 3.8 and 3.9 µg/µl respectively. SAP induces apoptosis in a dose-dependent manner through caspase-3 and p38, MAPK pathways in A549 and HeLa cells. Moreover, in A549 and HeLa cells, SAP induces cell cycle arrest at the S phase in a dose-dependent manner.

Conclusion::The difference in the molecular mechanisms of apoptosis induced by SAP in A549 and HeLa cell lines may be due to the difference in the genotypes of the cancer cell lines. However, further investigation is warranted. The overall results of the present study envisage the possibility of using SAP as an anti-tumorigenic agent.

Anti-Cancer Agents in Medicinal Chemistry. 2024;24(9):709-717
pages 709-717 views

Indirubin, an Active Component of Indigo Naturalis, Exhibits Inhibitory Effects on Leukemia Cells via Targeting HSP90AA1 and PI3K/Akt Pathway

Yao Y., Li X., Yang X., Mou H., Wei L.

Abstract

Background::This research intended to predict the active ingredients and key target genes of Indigo Naturalis in treating human chronic myeloid leukemia (CML) using network pharmacology and conduct the invitro verification.

Methods::The active components of Indigo Naturalis and the corresponding targets and leukemia-associated genes were gathered through public databases. The core targets and pathways of Indigo Naturalis were predicted through protein-protein interaction (PPI) network, gene ontology (GO) function, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. Next, after intersecting with leukemia-related genes, the direct core target gene of Indigo Naturalis active components was identified. Subsequently, HL-60 cells were stimulated with indirubin (IND) and then examined for cell proliferation using CCK-8 assay and cell cycle, cell apoptosis, and mitochondrial membrane potential using flow cytometry. The content of apoptosis-associated proteins (Cleaved Caspase 9, Cleaved Caspase 7, Cleaved Caspase 3, and Cleaved parp) were detected using Western blot, HSP90AA1 protein, and PI3K/Akt signaling (PI3K, p-PI3K, Akt, and p-Akt) within HL-60 cells.

Results::A total of 9 active components of Indigo Naturalis were screened. The top 10 core target genes (TNF, PTGS2, RELA, MAPK14, IFNG, PPARG, NOS2, IKBKB, HSP90AA1, and NOS3) of Indigo Naturalis active components within the PPI network were identified. According to the KEGG enrichment analysis, these targets were associated with leukemia-related pathways (such as acute myeloid leukemia and CML). After intersecting with leukemia-related genes, it was found that IND participated in the most pairs of target information and was at the core of the target network; HSP90AA1 was the direct core gene of IND. Furthermore, the in-vitro cell experiments verified that IND could inhibit the proliferation, elicit G2/M-phase cell cycle arrest, enhance the apoptosis of HL-60 cells, reduce mitochondrial membrane potential, and promote apoptosis-related protein levels. Under IND treatment, HSP90AA1 overexpression notably promoted cell proliferation and inhibited apoptosis. Additionally, IND exerted tumor suppressor effects on leukemia cells by inhibiting HSP90AA1 expression.

Conclusion::IND, an active component of Indigo Naturalis, could inhibit CML progression, which may be achieved via inhibiting HSP90AA1 and PI3K/Akt signaling expression levels.

Anti-Cancer Agents in Medicinal Chemistry. 2024;24(9):718-727
pages 718-727 views