Thiosemicarbazone-benzenesulfonamide Derivatives as Human Carbonic Anhydrases Inhibitors: Synthesis, Characterization, and In silico Studies


Cite item

Full Text

Abstract

Introduction:Carbonic anhydrases (CAs) are widespread metalloenzymes with the core function of catalyzing the interconversion of CO2 and HCO3-. Targeting these enzymes using selective inhibitors has emerged as a promising approach for the development of novel therapeutic agents against multiple diseases.

Methods:A series of novel thiosemicarbazones-containing derivatives were synthesized, characterized, and tested for their inhibitory activity against pharmaceutically important human CA I (hCA I), II (hCA II), IX (hCA IX), and XII (hCA XII) using the single tail approach.

Results:The compounds generally inhibited the isoenzymes at low nanomolar concentrations, with compound 6b having Ki values of 7.16, 0.31, 92.5, and 375 nM against hCA I, II, IX and XII, respectively. Compound 6e exhibited Ki values of 27.6, 0.34, 872, and 94.5 nM against hCA I, II, IX and XII, respectively.

Conclusion:To rationalize the inhibition data, molecular docking studies were conducted, providing insight into the binding mechanisms, molecular interactions, and selectivity of the compounds towards the isoenzymes.

About the authors

Muhammed Trawally

Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Istanbul University

Email: info@benthamscience.net

Kübra Demir-Yazıcı

Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Istanbul University

Email: info@benthamscience.net

Andrea Angeli

Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence

Author for correspondence.
Email: info@benthamscience.net

Kerem Kaya

Department of Chemistry, Istanbul Technical University

Email: info@benthamscience.net

Atilla Akdemir

Department of Pharmacology, Faculty of Pharmacy, Istinye University

Email: info@benthamscience.net

Claudiu Supuran

Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence

Email: info@benthamscience.net

Özlen Güzel-Akdemir

Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Istanbul University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Nocentini, A.; Supuran, C.T.; Capasso, C. An overview on the recently discovered iota-carbonic anhydrases. J. Enzyme Inhib. Med. Chem., 2021, 36(1), 1988-1995. doi: 10.1080/14756366.2021.1972995 PMID: 34482770
  2. Supuran, C. T. How many carbonic anhydrase inhibition mechanisms exist_ _ Enhanced Reader // How many carbonic anhydrase inhibition mechanisms exist? J Enzyme Inhib Med Chem., 2016, 31(3), 345-360. doi: 10.3109/14756366.2015.1122001
  3. Supuran, C.T. Structure and function of carbonic anhydrases. Biochem. J., 2016, 473(14), 2023-2032. doi: 10.1042/BCJ20160115 PMID: 27407171
  4. Supuran, C.T. Advances in structure-based drug discovery of carbonic anhydrase inhibitors. Expert Opin. Drug Discov., 2017, 12(1), 61-88. doi: 10.1080/17460441.2017.1253677 PMID: 27783541
  5. Chegwidden, W.R. The carbonic anhydrases in health and disease. In: The Carbonic Anhydrases: Current and Emerging Therapeutic Targets; Chegwidden, W.R.; Carter, N.D., Eds.; Springer International Publishing, 2021; 75, pp. 1-12. doi: 10.1007/978-3-030-79511-5_1
  6. Imtaiyaz H, M.; Shajee, B.; Waheed, A.; Ahmad, F.; Sly, W.S. Structure, function and applications of carbonic anhydrase isozymes. Bioorg. Med. Chem., 2013, 21(6), 1570-1582. doi: 10.1016/j.bmc.2012.04.044 PMID: 22607884
  7. Aspatwar, A.; Tolvanen, M.E.E.; Ortutay, C.; Parkkila, S. Carbonic anhydrase related proteins: Molecular biology and evolution. In: Carbonic Anhydrase: Mechanism, Regulation, Links to Disease, and Industrial Applications; Frost, S.C.; McKenna, R., Eds.; Springer: Netherlands, 2014; pp. 135-156. doi: 10.1007/978-94-007-7359-2_8
  8. Supuran, C.T. Carbonic anhydrase inhibition and the management of hypoxic tumors. Metabolites, 2017, 7(3), 48. doi: 10.3390/metabo7030048 PMID: 28926956
  9. Supuran, C.T. Carbonic anhydrases. In: Metalloenzymes:From bench to bedside; Supuran, C.T.; Donald, W.A., Eds.; Academic Press, 2024; pp. 139-156. doi: 10.1016/B978-0-12-823974-2.00014-0
  10. Neri, D.; Supuran, C.T. Interfering with pH regulation in tumours as a therapeutic strategy. Nat. Rev. Drug Discov., 2011, 10(10), 767-777. doi: 10.1038/nrd3554 PMID: 21921921
  11. Supuran, C.T. Emerging role of carbonic anhydrase inhibitors. Clin. Sci., 2021, 135(10), 1233-1249. doi: 10.1042/CS20210040 PMID: 34013961
  12. Alterio, V.; Di Fiore, A.; D’Ambrosio, K.; Supuran, C.T.; De Simone, G. Multiple binding modes of inhibitors to carbonic anhydrases: How to design specific drugs targeting 15 different isoforms? Chem. Rev., 2012, 112(8), 4421-4468. doi: 10.1021/cr200176r PMID: 22607219
  13. Mishra, C.B.; Tiwari, M.; Supuran, C.T. Progress in the development of human carbonic anhydrase inhibitors and their pharmacological applications: Where are we today? Med. Res. Rev., 2020, 40(6), 2485-2565. doi: 10.1002/med.21713 PMID: 32691504
  14. Masini, E.; Carta, F.; Scozzafava, A.; Supuran, C.T. Antiglaucoma carbonic anhydrase inhibitors: A patent review. Expert Opin. Ther. Pat., 2013, 23(6), 705-716. doi: 10.1517/13543776.2013.794788 PMID: 23627893
  15. Scozzafava, A.; Mastrolorenzo, A.; Supuran, C.T. Modulation of carbonic anhydrase activity and its applications in therapy. Expert Opin. Ther. Pat., 2004, 14(5), 667-702. doi: 10.1517/13543776.14.5.667
  16. Ondriskova, E.; Debreova, M.; Pastorekova, S. Tumor-associated carbonic anhydrases IX and XII. In: Carbonic anhydrases as biocatalysts: From theory to medical and industrial applications; Supuran, C.T.; de Simone, G., Eds.; Elsevier, 2015; pp. 169-205. doi: 10.1016/B978-0-444-63258-6.00010-X
  17. Mboge, M.Y.; Chen, Z.; Wolff, A.; Mathias, J.V.; Tu, C.; Brown, K.D.; Bozdag, M.; Carta, F.; Supuran, C.T.; McKenna, R.; Frost, S.C. Selective inhibition of carbonic anhydrase IX over carbonic anhydrase XII in breast cancer cells using benzene sulfonamides: Disconnect between activity and growth inhibition. PLoS One, 2018, 13(11), e0207417. doi: 10.1371/journal.pone.0207417 PMID: 30452451
  18. Giovannuzzi, S.; D’Ambrosio, M.; Luceri, C.; Osman, S.M.; Pallecchi, M.; Bartolucci, G.; Nocentini, A.; Supuran, C.T. Aromatic sulfonamides including a sulfonic acid tail: New membrane impermeant carbonic anhydrase inhibitors for targeting selectively the cancer-associated isoforms. Int. J. Mol. Sci., 2021, 23(1), 461. doi: 10.3390/ijms23010461 PMID: 35008884
  19. Tawfik, H.O.; Petreni, A.; Supuran, C.T.; El-Hamamsy, M.H. Discovery of new carbonic anhydrase IX inhibitors as anticancer agents by toning the hydrophobic and hydrophilic rims of the active site to encounter the dual-tail approach. Eur. J. Med. Chem., 2022, 232, 114190. doi: 10.1016/j.ejmech.2022.114190 PMID: 35182815
  20. Nerella, S.G.; Singh, P.; Arifuddin, M.; Supuran, C.T. Anticancer carbonic anhydrase inhibitors: A patent and literature update 2018-2022. Expert Opin. Ther. Pat., 2022, 32(8), 833-847. doi: 10.1080/13543776.2022.2083502 PMID: 35616541
  21. Supuran, C.T. Carbonic anhydrase inhibitors. Bioorg. Med. Chem. Lett., 2010, 20(12), 3467-3474. doi: 10.1016/j.bmcl.2010.05.009 PMID: 20529676
  22. Carta, F.; Supuran, C.T.; Scozzafava, A. Sulfonamides and their isosters as carbonic anhydrase inhibitors. Future Med. Chem., 2014, 6(10), 1149-1165. doi: 10.4155/fmc.14.68 PMID: 25078135
  23. Supuran, C.T.; Mugelli, A. Polypharmacology of carbonic anhydrase inhibitors. Pharmadvances, 2019, 1(00) doi: 10.36118/pharmadvances.00.2019.06
  24. Güzel-Akdemir, Ö.; Trawally, M.; Özbek-Babuç, M.; Özbek-Çelik, B.; Ermut, G.; Özdemir, H. Synthesis and antibacterial activity of new hybrid derivatives of 5-sulfamoyl-1H-indole and 4-thiazolidinone groups. Monatsh. Chem., 2020, 151(9), 1443-1452. doi: 10.1007/s00706-020-02664-9
  25. Shah, S.A.S.; Rivera, G.; Ashfaq, M. Recent advances in medicinal chemistry of sulfonamides. Rational design as anti-tumoral, anti-bacterial and anti-inflammatory agents. Mini Rev. Med. Chem., 2012, 13(1), 70-86. doi: 10.2174/1389557511307010070
  26. George, J.; Lekha, V.S.; G, R.N.; Mary, Y.S.; Al-Otaibi, J.S.; K, R. Synthesis, crystal structure and anti-tumour activity studies of 4- Tertiarybutylcyclohexanonethiosemicarbazone. J. Mol. Struct., 2022, 1265, 133490. doi: 10.1016/j.molstruc.2022.133490
  27. Lobana, T.S.; Sharma, R.; Bawa, G.; Khanna, S. Bonding and structure trends of thiosemicarbazone derivatives of metals—An overview. Coord. Chem. Rev., 2009, 253(7-8), 977-1055. doi: 10.1016/j.ccr.2008.07.004
  28. Reis, D.; Despaigne, A.; Silva, J.; Silva, N.; Vilela, C.; Mendes, I.; Takahashi, J.; Beraldo, H. Structural studies and investigation on the activity of imidazole-derived thiosemicarbazones and hydrazones against crop-related fungi. Molecules, 2013, 18(10), 12645-12662. doi: 10.3390/molecules181012645 PMID: 24129274
  29. Rogolino, D.; Bacchi, A.; Luca, L.; de; Rispoli, G.; Sechi, M.; Stevaert, A.; Naesens, L.; Carcelli, M. Investigation of the salicylaldehyde thiosemicarbazone scaffold for inhibition of influenza virus PA endonuclease. J. Biol. Inorg. Chem., 2015, 20(7), 1109-1121. doi: 10.1007/s00775-015-1292-0
  30. Suni, V.; Prathapachandra Kurup, M.R.; Nethaji, M. Structural and spectral perspectives of a novel thiosemicarbazone synthesized from di-2-pyridyl ketone and 4-phenyl-3-thiosemicarbazide. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2006, 63(1), 174-181. doi: 10.1016/j.saa.2005.05.001 PMID: 16344250
  31. Carradori, S.; Cirilli, R.; Dei Cicchi, S.; Ferretti, R.; Menta, S.; Pierini, M.; Secci, D. 3-Methylcyclohexanone thiosemicarbazone: Determination of E/Z isomerization barrier by dynamic high-performance liquid chromatography, configuration assignment and theoretical study of the mechanisms involved by the spontaneous, acid and base catalyzed processes. J. Chromatogr. A, 2012, 1269, 168-177. doi: 10.1016/j.chroma.2012.08.007 PMID: 22921363
  32. Afonin, A.V.; Pavlov, D.V.; Albanov, A.V.; Mal’kina, A.G. Solvent-induced E/Z isomerization of 2-(furylmethylidene)-1-hydrazinecarbothioamide: The N–H⋅⋅⋅O intramolecular hydrogen bond as promoting factor. J. Mol. Struct., 2020, 1207, 127782. doi: 10.1016/j.molstruc.2020.127782
  33. Ali, N.H.S.O.; Hamid, M.H.S.A.; Putra, N.A.A.M.A.; Adol, H.A.; Mirza, A.H.; Usman, A.; Siddiquee, T.A.; Hoq, M.R.; Karim, M.R. Efficient eco-friendly syntheses of dithiocarbazates and thiosemicarbazones. Green Chem. Lett. Rev., 2020, 13(2), 129-140. doi: 10.1080/17518253.2020.1737252
  34. Bajaj, K.; Buchanan, R.M.; Grapperhaus, C.A. Antifungal activity of thiosemicarbazones, bis(thiosemicarbazones), and their metal complexes. J. Inorg. Biochem., 2021, 225, 111620. doi: 10.1016/j.jinorgbio.2021.111620 PMID: 34619407
  35. Sevinçli, Z.Ş.; Duran, G.N.; Özbil, M.; Karalı, N. Synthesis, molecular modeling and antiviral activity of novel 5-fluoro-1H-indole-2,3-dione 3-thiosemicarbazones. Bioorg. Chem., 2020, 104, 104202. doi: 10.1016/j.bioorg.2020.104202 PMID: 32892069
  36. Xu, Y.S.; Chigan, J.Z.; Li, J.Q.; Ding, H.H.; Sun, L.Y.; Liu, L.; Hu, Z.; Yang, K.W. Hydroxamate and thiosemicarbazone: Two highly promising scaffolds for the development of SARS-CoV-2 antivirals. Bioorg. Chem., 2022, 124, 105799. doi: 10.1016/j.bioorg.2022.105799 PMID: 35462235
  37. Ibáñez-Escribano, A.; Fonseca-Berzal, C.; Martínez-Montiel, M.; Álvarez-Márquez, M.; Gómez-Núñez, M.; Lacueva-Arnedo, M.; Espinosa-Buitrago, T.; Martín-Pérez, T.; Escario, J.A.; Merino-Montiel, P.; Montiel-Smith, S.; Gómez-Barrio, A.; López, Ó.; Fernández-Bolaños, J.G. Thio- and selenosemicarbazones as antiprotozoal agents against Trypanosoma cruzi and Trichomonas vaginalis. J. Enzyme Inhib. Med. Chem., 2022, 37(1), 781-791. doi: 10.1080/14756366.2022.2041629 PMID: 35193444
  38. Güzel, Ö.; Karalı, N.; Salman, A. Synthesis and antituberculosis activity of 5-methyl/trifluoromethoxy-1H-indole-2,3-dione 3-thiosemicarbazone derivatives. Bioorg. Med. Chem., 2008, 16(19), 8976-8987. doi: 10.1016/j.bmc.2008.08.050 PMID: 18804379
  39. Sardari, S.; Feizi, S.; Rezayan, A.H.; Azerang, P.; Shahcheragh, S.M.; Ghavami, G.; Habibi, A. Synthesis and biological evaluation of thiosemicarbazide derivatives endowed with high activity toward mycobacterium bovis. Iran. J. Pharm. Res., 2017, 16(3), 1128-1140. doi: 10.22334/jbhost.v6i2.217.s47 PMID: 29201099
  40. Sevinçli, Z.Ş.; Cantürk, Z.; Dikmen, M.; Karalı, N.L. Anticancer and antituberculosis effects of 5-fluoro1H-indole-2,3-dione 3-thiosemicarbazones. Istanbul J Pharm, 2020, 50(3), 176-180. doi: 10.26650/IstanbulJPharm.2020.0086
  41. Parker, E.N.; Song, J.; Kishore Kumar, G.D.; Odutola, S.O.; Chavarria, G.E.; Charlton-Sevcik, A.K.; Strecker, T.E.; Barnes, A.L.; Sudhan, D.R.; Wittenborn, T.R.; Siemann, D.W.; Horsman, M.R.; Chaplin, D.J.; Trawick, M.L.; Pinney, K.G. Synthesis and biochemical evaluation of benzoylbenzophenone thiosemicarbazone analogues as potent and selective inhibitors of cathepsin L. Bioorg. Med. Chem., 2015, 23(21), 6974-6992. doi: 10.1016/j.bmc.2015.09.036 PMID: 26462052
  42. Othman, E.M.; Fayed, E.A.; Husseiny, E.M.; Abulkhair, H.S. The effect of novel synthetic semicarbazone- and thiosemicarbazone-linked 1,2,3-triazoles on the apoptotic markers, VEGFR-2, and cell cycle of myeloid leukemia. Bioorg. Chem., 2022, 127, 105968. doi: 10.1016/j.bioorg.2022.105968 PMID: 35728289
  43. Dharmasivam, M.; Azad, M.G.; Afroz, R.; Richardson, V.; Jansson, P.J.; Richardson, D.R. The thiosemicarbazone, DpC, broadly synergizes with multiple anti-cancer therapeutics and demonstrates temperature- and energy-dependent uptake by tumor cells. Biochim. Biophys. Acta, Gen. Subj., 2022, 1866(8), 130152. doi: 10.1016/j.bbagen.2022.130152 PMID: 35436509
  44. Song, J.; Pan, R.; Li, G.; Su, W.; Song, X.; Li, J.; Liu, S. Synthesis and anticancer activities of thiosemicarbazones derivatives of thiochromanones and related scaffolds. Med. Chem. Res., 2020, 29(4), 630-642. doi: 10.1007/s00044-020-02503-w
  45. Karalı, N.; Akdemir, A.; Göktaş, F.; Eraslan Elma, P.; Angeli, A.; Kızılırmak, M.; Supuran, C.T. Novel sulfonamide-containing 2-indolinones that selectively inhibit tumor-associated alpha carbonic anhydrases. Bioorg. Med. Chem., 2017, 25(14), 3714-3718. doi: 10.1016/j.bmc.2017.05.029 PMID: 28545816
  46. Güzel-Akdemir, Ö.; Akdemir, A.; Karalı, N.; Supuran, C.T. Discovery of novel isatin-based sulfonamides with potent and selective inhibition of the tumor-associated carbonic anhydrase isoforms IX and XII. Org. Biomol. Chem., 2015, 13(23), 6493-6499. doi: 10.1039/C5OB00688K PMID: 25967275
  47. Demir-Yazıcı, K.; Bua, S.; Akgüneş, N.M.; Akdemir, A.; Supuran, C.T.; Güzel-Akdemir, Ö. Indole-based hydrazones containing A sulfonamide moiety as selective inhibitors of tumor-associated human carbonic anhydrase isoforms IX and XII. Int. J. Mol. Sci., 2019, 20(9), 2354. doi: 10.3390/ijms20092354 PMID: 31083645
  48. Akdemir, A.; Güzel-Akdemir, Ö.; Scozzafava, A.; Capasso, C.; Supuran, C.T. Inhibition of tumor-associated human carbonic anhydrase isozymes IX and XII by a new class of substituted-phenylacetamido aromatic sulfonamides. Bioorg. Med. Chem., 2013, 21(17), 5228-5232. doi: 10.1016/j.bmc.2013.06.029 PMID: 23842519
  49. Güzel, Ö.; Temperini, C.; Innocenti, A.; Scozzafava, A.; Salman, A.; Supuran, C.T. Carbonic anhydrase inhibitors. Interaction of 2-(hydrazinocarbonyl)-3-phenyl-1H-indole-5-sulfonamide with 12 mammalian isoforms: Kinetic and X-ray crystallographic studies. Bioorg. Med. Chem. Lett., 2008, 18(1), 152-158. doi: 10.1016/j.bmcl.2007.10.110 PMID: 18024029
  50. Güzel, Ö.; Innocenti, A.; Scozzafava, A.; Salman, A.; Parkkila, S.; Hilvo, M.; Supuran, C.T. Carbonic anhydrase inhibitors: Synthesis and inhibition studies against mammalian isoforms I–XV with a series of 2-(hydrazinocarbonyl)-3-substituted-phenyl-1H-indole-5-sulfonamides. Bioorg. Med. Chem., 2008, 16(20), 9113-9120. doi: 10.1016/j.bmc.2008.09.032 PMID: 18819811
  51. Güzel, Ö.; Maresca, A.; Scozzafava, A.; Salman, A.; Balaban, A.T.; Supuran, C.T. Carbonic anhydrase inhibitors. Synthesis of 2,4,6-trimethylpyridinium derivatives of 2-(hydrazinocarbonyl)-3-aryl-1H-indole-5-sulfonamides acting as potent inhibitors of the tumor-associated isoform IX and XII. Bioorg. Med. Chem. Lett., 2009, 19(11), 2931-2934. doi: 10.1016/j.bmcl.2009.04.068 PMID: 19410461
  52. Güzel, Ö.; Innocenti, A.; Scozzafava, A.; Salman, A.; Supuran, C.T. Carbonic anhydrase inhibitors. Phenacetyl-, pyridylacetyl- and thienylacetyl-substituted aromatic sulfonamides act as potent and selective isoform VII inhibitors. Bioorg. Med. Chem. Lett., 2009, 19(12), 3170-3173. doi: 10.1016/j.bmcl.2009.04.123 PMID: 19435663
  53. Güzel, O.; Innocenti, A.; Vullo, D.; Scozzafava, A.; Supuran, C.T. 3-phenyl-1H-indole-5-sulfonamides: Structure-based drug design of a promising class of carbonic anhydrase inhibitors. Curr. Pharm. Des., 2010, 16(29), 3317-3326. doi: 10.2174/138161210793429805 PMID: 20819062
  54. Pacchiano, F.; Carta, F.; McDonald, P.C.; Lou, Y.; Vullo, D.; Scozzafava, A.; Dedhar, S.; Supuran, C.T. Ureido-substituted benzenesulfonamides potently inhibit carbonic anhydrase IX and show antimetastatic activity in a model of breast cancer metastasis. J. Med. Chem., 2011, 54(6), 1896-1902. doi: 10.1021/jm101541x PMID: 21361354
  55. McDonald, P.C.; Chia, S.; Bedard, P.L.; Chu, Q.; Lyle, M.; Tang, L.; Singh, M.; Zhang, Z.; Supuran, C.T.; Renouf, D.J.; Dedhar, S. A phase 1 study of SLC-0111, a novel inhibitor of carbonic anhydrase IX, in patients with advanced solid tumors. Am. J. Clin. Oncol., 2020, 43(7), 484-490. doi: 10.1097/COC.0000000000000691 PMID: 32251122
  56. Eldehna, W.M.; Abo-Ashour, M.F.; Nocentini, A.; El-Haggar, R.S.; Bua, S.; Bonardi, A.; Al-Rashood, S.T.; Hassan, G.S.; Gratteri, P.; Abdel-Aziz, H.A.; Supuran, C.T. Enhancement of the tail hydrophobic interactions within the carbonic anhydrase IX active site via structural extension: Design and synthesis of novel N-substituted isatins-SLC-0111 hybrids as carbonic anhydrase inhibitors and antitumor agents. Eur. J. Med. Chem., 2019, 162, 147-160. doi: 10.1016/j.ejmech.2018.10.068 PMID: 30445264
  57. Sarnella, A.; Ferrara, Y.; Auletta, L.; Albanese, S.; Cerchia, L.; Alterio, V.; De Simone, G.; Supuran, C.T.; Zannetti, A. Inhibition of carbonic anhydrases IX/XII by SLC-0111 boosts cisplatin effects in hampering head and neck squamous carcinoma cell growth and invasion. J. Exp. Clin. Cancer Res., 2022, 41(1), 122. doi: 10.1186/s13046-022-02345-x PMID: 35365193
  58. Ilies, M.A.; Vullo, D.; Pastorek, J.; Scozzafava, A.; Ilies, M.; Caproiu, M.T.; Pastorekova, S.; Supuran, C.T. Carbonic anhydrase inhibitors. Inhibition of tumor-associated isozyme IX by halogenosulfanilamide and halogenophenylaminobenzolamide derivatives. J. Med. Chem., 2003, 46(11), 2187-2196. doi: 10.1021/jm021123s PMID: 12747790
  59. McKee, R.L.; Bost, R.W. para-Substituted phenyl isothiocyanates and some related thioureas. J. Am. Chem. Soc., 1946, 68(12), 2506-2507. doi: 10.1021/ja01216a022 PMID: 20282387
  60. Cecchi, A.; Ciani, L.; Winum, J.Y.; Montero, J.L.; Scozzafava, A.; Ristori, S.; Supuran, C.T. Carbonic anhydrase inhibitors: Design of spin-labeled sulfonamides incorporating TEMPO moieties as probes for cytosolic or transmembrane isozymes. Bioorg. Med. Chem. Lett., 2008, 18(12), 3475-3480. doi: 10.1016/j.bmcl.2008.05.051 PMID: 18513964
  61. Eraslan Elma, P. 1H-indole-2,3-dione 3-thiosemicarbazone derivatives carrying 3-sulfamoylphenyl moiety: Synthesis, structure determination, molecular modeling and biological activity evaluation. Ph.D; Istanbul University: Istanbul, 2017.
  62. Taşdemir, D.; Karaküçük-İyidoğan, A.; Ulaşli, M.; Taşkin-Tok, T.; Oruç-Emre, E.E.; Bayram, H. Synthesis, molecular modeling, and biological evaluation of novel chiral thiosemicarbazone derivatives as potent anticancer agents. Chirality, 2015, 27(2), 177-188. doi: 10.1002/chir.22408 PMID: 25399965
  63. Karaküçük-İyidoğan, A.; Taşdemir, D.; Oruç-Emre, E.E.; Balzarini, J. Novel platinum(II) and palladium(II) complexes of thiosemicarbazones derived from 5-substitutedthiophene-2-carboxaldehydes and their antiviral and cytotoxic activities. Eur. J. Med. Chem., 2011, 46(11), 5616-5624. doi: 10.1016/j.ejmech.2011.09.031 PMID: 21993152
  64. Stariat, J.; Kovaříková, P.; Kučera, R.; Klimeš, J.; Kalinowski, D.S.; Richardson, D.R.; Ketola, R.A. Identification of in vitro metabolites of the novel anti-tumor thiosemicarbazone, DpC, using ultra-high performance liquid chromatography–quadrupole-time-of-flight mass spectrometry. Anal. Bioanal. Chem., 2013, 405(5), 1651-1661. doi: 10.1007/s00216-012-6562-x PMID: 23180090
  65. Subhashree, G.R.; Haribabu, J.; Saranya, S.; Yuvaraj, P.; Krishnan, A.D.; Karvembu, R.; Gayathri, D. In vitro antioxidant, antiinflammatory and in silico molecular docking studies of thiosemicarbazones. J. Mol. Struct., 2017, 1145, 160-169. doi: 10.1016/j.molstruc.2017.05.054
  66. Yıldız, M.; Ünver, H.; Erdener, D.; Kiraz, A.; İskeleli, N.O. Synthesis, spectroscopic studies and crystal structure of (E)-2-(2,4-dihydroxybenzylidene)thiosemicarbazone and (E)-2-(1H-indol-3-yl)methylenethiosemicarbazone. J. Mol. Struct., 2009, 919(1-3), 227-234. doi: 10.1016/j.molstruc.2008.09.008
  67. Rana, A.; Parekh, N.; Dabhi, H.; Bhoi, D.; Kumari, N. Synthesis, crystal structural characterization and biological properties of thiosemicarbazones of schiff bases derived from 4-acyl-2-pyrazoline-5-one. E-J. Chem., 2011, 8(4), 1820-1831. doi: 10.1155/2011/826392
  68. Anderson, B.; Jasinski, J.; Freedman, M.; Millikan, S.; O’Rourke, K.; Smolenski, V. Synthesis, crystal structural investigations, and DFT calculations of novel thiosemicarbazones. Crystals, 2016, 6(2), 17. doi: 10.3390/cryst6020017
  69. Kılıç-Cıkla, I.; Güveli, Ş.; Yavuz, M.; Bal-Demirci, T.; Ülküseven, B. 5-Methyl-2-hydroxy-acetophenone-thiosemicarbazone and its nickel(II) complex: Crystallographic, spectroscopic (IR, NMR and UV) and DFT studies. Polyhedron, 2016, 105, 104-114. doi: 10.1016/j.poly.2015.12.021
  70. Domagała, M.; Dubis, A.T.; Wojtulewski, S.; Zabel, M.; Pfitzner, A. Hydrogen bonding in crystals of pyrrol-2-yl chloromethyl ketone derivatives and methyl pyrrole-2-carboxylate. Crystals, 2022, 12(11), 1523. doi: 10.3390/cryst12111523
  71. Haramura, M.; Tanaka, A.; Akimoto, T.; Hirayama, N. Crystal structure of dichlorphenamide. X-ray Struct. Anal. Online., 2003, 19, X35-X36. doi: 10.2116/analscix.19.x35
  72. Ceylan, Ü.; Durgun, M.; Türkmen, H.; Yalçın, Ş.P.; Kilic, A.; Özdemir, N. Theoretical and experimental investigation of 4-(2-hydroxy-3-methylbenzylidene)aminobenzenesulfonamide: Structural and spectroscopic properties, NBO, NLO and NPA analysis. J. Mol. Struct., 2015, 1089, 222-232. doi: 10.1016/j.molstruc.2015.02.042
  73. Gürsoy, A.; Karalı, N. Synthesis, characterization and primary antituberculosis activity evaluation of 4-(3-coumarinyl)-3-benzyl-4-thiazolin-2-one benzylidenehydrazones. Turk. J. Chem., 2003, 27(5), 545-552.
  74. Sheldrick, G.M.; Schneider, T.R. SHELXL: High-resolution refinement. Methods Enzymol., 1997, 277, 319-343. doi: 10.1016/S0076-6879(97)77018-6 PMID: 18488315
  75. Schrödinger. QikProp, 4, 4th ed; Schrödinger, 2015.
  76. Bank, R.P.D. RCSB PDB: Homepage. Available from: https://www.rcsb.org/
  77. Fantacuzzi, M.; D’Agostino, I.; Carradori, S.; Liguori, F.; Carta, F.; Agamennone, M.; Angeli, A.; Sannio, F.; Docquier, J.D.; Capasso, C.; Supuran, C.T. Benzenesulfonamide derivatives as Vibrio cholerae carbonic anhydrases inhibitors: A computational-aided insight in the structural rigidity-activity relationships. J. Enzyme Inhib. Med. Chem., 2023, 38(1), 2201402. doi: 10.1080/14756366.2023.2201402 PMID: 37073528
  78. Gumus, A.; Bozdag, M.; Akdemir, A.; Angeli, A.; Selleri, S.; Carta, F.; Supuran, C.T. Thiosemicarbazide-substituted coumarins as selective inhibitors of the tumor associated human carbonic anhydrases IX and XII. Molecules, 2022, 27(14), 4610. doi: 10.3390/molecules27144610 PMID: 35889480
  79. Senaweera, S.; Du, H.; Zhang, H.; Kirby, K.A.; Tedbury, P.R.; Xie, J.; Sarafianos, S.G.; Wang, Z. Discovery of new small molecule hits as hepatitis B virus capsid assembly modulators: Structure and pharmacophore-based approaches. Viruses, 2021, 13(5), 770. doi: 10.3390/v13050770 PMID: 33925540
  80. Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings 1PII of original article: S0169-409X(96)00423-1. The article was originally published in Advanced Drug Delivery Reviews 23 (1997) 3–25. 1. Adv. Drug Deliv. Rev., 2001, 46(1-3), 3-26. doi: 10.1016/S0169-409X(00)00129-0 PMID: 11259830

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers