Thiosemicarbazone-benzenesulfonamide Derivatives as Human Carbonic Anhydrases Inhibitors: Synthesis, Characterization, and In silico Studies
- Authors: Trawally M.1, Demir-Yazıcı K.1, Angeli A.2, Kaya K.3, Akdemir A.4, Supuran C.2, Güzel-Akdemir Ö.1
-
Affiliations:
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Istanbul University
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence
- Department of Chemistry, Istanbul Technical University
- Department of Pharmacology, Faculty of Pharmacy, Istinye University
- Issue: Vol 24, No 9 (2024)
- Pages: 649-667
- Section: Oncology
- URL: https://snv63.ru/1871-5206/article/view/644296
- DOI: https://doi.org/10.2174/0118715206290722240125112447
- ID: 644296
Cite item
Full Text
Abstract
Introduction:Carbonic anhydrases (CAs) are widespread metalloenzymes with the core function of catalyzing the interconversion of CO2 and HCO3-. Targeting these enzymes using selective inhibitors has emerged as a promising approach for the development of novel therapeutic agents against multiple diseases.
Methods:A series of novel thiosemicarbazones-containing derivatives were synthesized, characterized, and tested for their inhibitory activity against pharmaceutically important human CA I (hCA I), II (hCA II), IX (hCA IX), and XII (hCA XII) using the single tail approach.
Results:The compounds generally inhibited the isoenzymes at low nanomolar concentrations, with compound 6b having Ki values of 7.16, 0.31, 92.5, and 375 nM against hCA I, II, IX and XII, respectively. Compound 6e exhibited Ki values of 27.6, 0.34, 872, and 94.5 nM against hCA I, II, IX and XII, respectively.
Conclusion:To rationalize the inhibition data, molecular docking studies were conducted, providing insight into the binding mechanisms, molecular interactions, and selectivity of the compounds towards the isoenzymes.
About the authors
Muhammed Trawally
Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Istanbul University
Email: info@benthamscience.net
Kübra Demir-Yazıcı
Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Istanbul University
Email: info@benthamscience.net
Andrea Angeli
Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence
Author for correspondence.
Email: info@benthamscience.net
Kerem Kaya
Department of Chemistry, Istanbul Technical University
Email: info@benthamscience.net
Atilla Akdemir
Department of Pharmacology, Faculty of Pharmacy, Istinye University
Email: info@benthamscience.net
Claudiu Supuran
Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence
Email: info@benthamscience.net
Özlen Güzel-Akdemir
Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Istanbul University
Author for correspondence.
Email: info@benthamscience.net
References
- Nocentini, A.; Supuran, C.T.; Capasso, C. An overview on the recently discovered iota-carbonic anhydrases. J. Enzyme Inhib. Med. Chem., 2021, 36(1), 1988-1995. doi: 10.1080/14756366.2021.1972995 PMID: 34482770
- Supuran, C. T. How many carbonic anhydrase inhibition mechanisms exist_ _ Enhanced Reader // How many carbonic anhydrase inhibition mechanisms exist? J Enzyme Inhib Med Chem., 2016, 31(3), 345-360. doi: 10.3109/14756366.2015.1122001
- Supuran, C.T. Structure and function of carbonic anhydrases. Biochem. J., 2016, 473(14), 2023-2032. doi: 10.1042/BCJ20160115 PMID: 27407171
- Supuran, C.T. Advances in structure-based drug discovery of carbonic anhydrase inhibitors. Expert Opin. Drug Discov., 2017, 12(1), 61-88. doi: 10.1080/17460441.2017.1253677 PMID: 27783541
- Chegwidden, W.R. The carbonic anhydrases in health and disease. In: The Carbonic Anhydrases: Current and Emerging Therapeutic Targets; Chegwidden, W.R.; Carter, N.D., Eds.; Springer International Publishing, 2021; 75, pp. 1-12. doi: 10.1007/978-3-030-79511-5_1
- Imtaiyaz H, M.; Shajee, B.; Waheed, A.; Ahmad, F.; Sly, W.S. Structure, function and applications of carbonic anhydrase isozymes. Bioorg. Med. Chem., 2013, 21(6), 1570-1582. doi: 10.1016/j.bmc.2012.04.044 PMID: 22607884
- Aspatwar, A.; Tolvanen, M.E.E.; Ortutay, C.; Parkkila, S. Carbonic anhydrase related proteins: Molecular biology and evolution. In: Carbonic Anhydrase: Mechanism, Regulation, Links to Disease, and Industrial Applications; Frost, S.C.; McKenna, R., Eds.; Springer: Netherlands, 2014; pp. 135-156. doi: 10.1007/978-94-007-7359-2_8
- Supuran, C.T. Carbonic anhydrase inhibition and the management of hypoxic tumors. Metabolites, 2017, 7(3), 48. doi: 10.3390/metabo7030048 PMID: 28926956
- Supuran, C.T. Carbonic anhydrases. In: Metalloenzymes:From bench to bedside; Supuran, C.T.; Donald, W.A., Eds.; Academic Press, 2024; pp. 139-156. doi: 10.1016/B978-0-12-823974-2.00014-0
- Neri, D.; Supuran, C.T. Interfering with pH regulation in tumours as a therapeutic strategy. Nat. Rev. Drug Discov., 2011, 10(10), 767-777. doi: 10.1038/nrd3554 PMID: 21921921
- Supuran, C.T. Emerging role of carbonic anhydrase inhibitors. Clin. Sci., 2021, 135(10), 1233-1249. doi: 10.1042/CS20210040 PMID: 34013961
- Alterio, V.; Di Fiore, A.; DAmbrosio, K.; Supuran, C.T.; De Simone, G. Multiple binding modes of inhibitors to carbonic anhydrases: How to design specific drugs targeting 15 different isoforms? Chem. Rev., 2012, 112(8), 4421-4468. doi: 10.1021/cr200176r PMID: 22607219
- Mishra, C.B.; Tiwari, M.; Supuran, C.T. Progress in the development of human carbonic anhydrase inhibitors and their pharmacological applications: Where are we today? Med. Res. Rev., 2020, 40(6), 2485-2565. doi: 10.1002/med.21713 PMID: 32691504
- Masini, E.; Carta, F.; Scozzafava, A.; Supuran, C.T. Antiglaucoma carbonic anhydrase inhibitors: A patent review. Expert Opin. Ther. Pat., 2013, 23(6), 705-716. doi: 10.1517/13543776.2013.794788 PMID: 23627893
- Scozzafava, A.; Mastrolorenzo, A.; Supuran, C.T. Modulation of carbonic anhydrase activity and its applications in therapy. Expert Opin. Ther. Pat., 2004, 14(5), 667-702. doi: 10.1517/13543776.14.5.667
- Ondriskova, E.; Debreova, M.; Pastorekova, S. Tumor-associated carbonic anhydrases IX and XII. In: Carbonic anhydrases as biocatalysts: From theory to medical and industrial applications; Supuran, C.T.; de Simone, G., Eds.; Elsevier, 2015; pp. 169-205. doi: 10.1016/B978-0-444-63258-6.00010-X
- Mboge, M.Y.; Chen, Z.; Wolff, A.; Mathias, J.V.; Tu, C.; Brown, K.D.; Bozdag, M.; Carta, F.; Supuran, C.T.; McKenna, R.; Frost, S.C. Selective inhibition of carbonic anhydrase IX over carbonic anhydrase XII in breast cancer cells using benzene sulfonamides: Disconnect between activity and growth inhibition. PLoS One, 2018, 13(11), e0207417. doi: 10.1371/journal.pone.0207417 PMID: 30452451
- Giovannuzzi, S.; DAmbrosio, M.; Luceri, C.; Osman, S.M.; Pallecchi, M.; Bartolucci, G.; Nocentini, A.; Supuran, C.T. Aromatic sulfonamides including a sulfonic acid tail: New membrane impermeant carbonic anhydrase inhibitors for targeting selectively the cancer-associated isoforms. Int. J. Mol. Sci., 2021, 23(1), 461. doi: 10.3390/ijms23010461 PMID: 35008884
- Tawfik, H.O.; Petreni, A.; Supuran, C.T.; El-Hamamsy, M.H. Discovery of new carbonic anhydrase IX inhibitors as anticancer agents by toning the hydrophobic and hydrophilic rims of the active site to encounter the dual-tail approach. Eur. J. Med. Chem., 2022, 232, 114190. doi: 10.1016/j.ejmech.2022.114190 PMID: 35182815
- Nerella, S.G.; Singh, P.; Arifuddin, M.; Supuran, C.T. Anticancer carbonic anhydrase inhibitors: A patent and literature update 2018-2022. Expert Opin. Ther. Pat., 2022, 32(8), 833-847. doi: 10.1080/13543776.2022.2083502 PMID: 35616541
- Supuran, C.T. Carbonic anhydrase inhibitors. Bioorg. Med. Chem. Lett., 2010, 20(12), 3467-3474. doi: 10.1016/j.bmcl.2010.05.009 PMID: 20529676
- Carta, F.; Supuran, C.T.; Scozzafava, A. Sulfonamides and their isosters as carbonic anhydrase inhibitors. Future Med. Chem., 2014, 6(10), 1149-1165. doi: 10.4155/fmc.14.68 PMID: 25078135
- Supuran, C.T.; Mugelli, A. Polypharmacology of carbonic anhydrase inhibitors. Pharmadvances, 2019, 1(00) doi: 10.36118/pharmadvances.00.2019.06
- Güzel-Akdemir, Ö.; Trawally, M.; Özbek-Babuç, M.; Özbek-Çelik, B.; Ermut, G.; Özdemir, H. Synthesis and antibacterial activity of new hybrid derivatives of 5-sulfamoyl-1H-indole and 4-thiazolidinone groups. Monatsh. Chem., 2020, 151(9), 1443-1452. doi: 10.1007/s00706-020-02664-9
- Shah, S.A.S.; Rivera, G.; Ashfaq, M. Recent advances in medicinal chemistry of sulfonamides. Rational design as anti-tumoral, anti-bacterial and anti-inflammatory agents. Mini Rev. Med. Chem., 2012, 13(1), 70-86. doi: 10.2174/1389557511307010070
- George, J.; Lekha, V.S.; G, R.N.; Mary, Y.S.; Al-Otaibi, J.S.; K, R. Synthesis, crystal structure and anti-tumour activity studies of 4- Tertiarybutylcyclohexanonethiosemicarbazone. J. Mol. Struct., 2022, 1265, 133490. doi: 10.1016/j.molstruc.2022.133490
- Lobana, T.S.; Sharma, R.; Bawa, G.; Khanna, S. Bonding and structure trends of thiosemicarbazone derivatives of metalsAn overview. Coord. Chem. Rev., 2009, 253(7-8), 977-1055. doi: 10.1016/j.ccr.2008.07.004
- Reis, D.; Despaigne, A.; Silva, J.; Silva, N.; Vilela, C.; Mendes, I.; Takahashi, J.; Beraldo, H. Structural studies and investigation on the activity of imidazole-derived thiosemicarbazones and hydrazones against crop-related fungi. Molecules, 2013, 18(10), 12645-12662. doi: 10.3390/molecules181012645 PMID: 24129274
- Rogolino, D.; Bacchi, A.; Luca, L.; de; Rispoli, G.; Sechi, M.; Stevaert, A.; Naesens, L.; Carcelli, M. Investigation of the salicylaldehyde thiosemicarbazone scaffold for inhibition of influenza virus PA endonuclease. J. Biol. Inorg. Chem., 2015, 20(7), 1109-1121. doi: 10.1007/s00775-015-1292-0
- Suni, V.; Prathapachandra Kurup, M.R.; Nethaji, M. Structural and spectral perspectives of a novel thiosemicarbazone synthesized from di-2-pyridyl ketone and 4-phenyl-3-thiosemicarbazide. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2006, 63(1), 174-181. doi: 10.1016/j.saa.2005.05.001 PMID: 16344250
- Carradori, S.; Cirilli, R.; Dei Cicchi, S.; Ferretti, R.; Menta, S.; Pierini, M.; Secci, D. 3-Methylcyclohexanone thiosemicarbazone: Determination of E/Z isomerization barrier by dynamic high-performance liquid chromatography, configuration assignment and theoretical study of the mechanisms involved by the spontaneous, acid and base catalyzed processes. J. Chromatogr. A, 2012, 1269, 168-177. doi: 10.1016/j.chroma.2012.08.007 PMID: 22921363
- Afonin, A.V.; Pavlov, D.V.; Albanov, A.V.; Malkina, A.G. Solvent-induced E/Z isomerization of 2-(furylmethylidene)-1-hydrazinecarbothioamide: The NH⋅⋅⋅O intramolecular hydrogen bond as promoting factor. J. Mol. Struct., 2020, 1207, 127782. doi: 10.1016/j.molstruc.2020.127782
- Ali, N.H.S.O.; Hamid, M.H.S.A.; Putra, N.A.A.M.A.; Adol, H.A.; Mirza, A.H.; Usman, A.; Siddiquee, T.A.; Hoq, M.R.; Karim, M.R. Efficient eco-friendly syntheses of dithiocarbazates and thiosemicarbazones. Green Chem. Lett. Rev., 2020, 13(2), 129-140. doi: 10.1080/17518253.2020.1737252
- Bajaj, K.; Buchanan, R.M.; Grapperhaus, C.A. Antifungal activity of thiosemicarbazones, bis(thiosemicarbazones), and their metal complexes. J. Inorg. Biochem., 2021, 225, 111620. doi: 10.1016/j.jinorgbio.2021.111620 PMID: 34619407
- Sevinçli, Z.Ş.; Duran, G.N.; Özbil, M.; Karalı, N. Synthesis, molecular modeling and antiviral activity of novel 5-fluoro-1H-indole-2,3-dione 3-thiosemicarbazones. Bioorg. Chem., 2020, 104, 104202. doi: 10.1016/j.bioorg.2020.104202 PMID: 32892069
- Xu, Y.S.; Chigan, J.Z.; Li, J.Q.; Ding, H.H.; Sun, L.Y.; Liu, L.; Hu, Z.; Yang, K.W. Hydroxamate and thiosemicarbazone: Two highly promising scaffolds for the development of SARS-CoV-2 antivirals. Bioorg. Chem., 2022, 124, 105799. doi: 10.1016/j.bioorg.2022.105799 PMID: 35462235
- Ibáñez-Escribano, A.; Fonseca-Berzal, C.; Martínez-Montiel, M.; Álvarez-Márquez, M.; Gómez-Núñez, M.; Lacueva-Arnedo, M.; Espinosa-Buitrago, T.; Martín-Pérez, T.; Escario, J.A.; Merino-Montiel, P.; Montiel-Smith, S.; Gómez-Barrio, A.; López, Ó.; Fernández-Bolaños, J.G. Thio- and selenosemicarbazones as antiprotozoal agents against Trypanosoma cruzi and Trichomonas vaginalis. J. Enzyme Inhib. Med. Chem., 2022, 37(1), 781-791. doi: 10.1080/14756366.2022.2041629 PMID: 35193444
- Güzel, Ö.; Karalı, N.; Salman, A. Synthesis and antituberculosis activity of 5-methyl/trifluoromethoxy-1H-indole-2,3-dione 3-thiosemicarbazone derivatives. Bioorg. Med. Chem., 2008, 16(19), 8976-8987. doi: 10.1016/j.bmc.2008.08.050 PMID: 18804379
- Sardari, S.; Feizi, S.; Rezayan, A.H.; Azerang, P.; Shahcheragh, S.M.; Ghavami, G.; Habibi, A. Synthesis and biological evaluation of thiosemicarbazide derivatives endowed with high activity toward mycobacterium bovis. Iran. J. Pharm. Res., 2017, 16(3), 1128-1140. doi: 10.22334/jbhost.v6i2.217.s47 PMID: 29201099
- Sevinçli, Z.Ş.; Cantürk, Z.; Dikmen, M.; Karalı, N.L. Anticancer and antituberculosis effects of 5-fluoro1H-indole-2,3-dione 3-thiosemicarbazones. Istanbul J Pharm, 2020, 50(3), 176-180. doi: 10.26650/IstanbulJPharm.2020.0086
- Parker, E.N.; Song, J.; Kishore Kumar, G.D.; Odutola, S.O.; Chavarria, G.E.; Charlton-Sevcik, A.K.; Strecker, T.E.; Barnes, A.L.; Sudhan, D.R.; Wittenborn, T.R.; Siemann, D.W.; Horsman, M.R.; Chaplin, D.J.; Trawick, M.L.; Pinney, K.G. Synthesis and biochemical evaluation of benzoylbenzophenone thiosemicarbazone analogues as potent and selective inhibitors of cathepsin L. Bioorg. Med. Chem., 2015, 23(21), 6974-6992. doi: 10.1016/j.bmc.2015.09.036 PMID: 26462052
- Othman, E.M.; Fayed, E.A.; Husseiny, E.M.; Abulkhair, H.S. The effect of novel synthetic semicarbazone- and thiosemicarbazone-linked 1,2,3-triazoles on the apoptotic markers, VEGFR-2, and cell cycle of myeloid leukemia. Bioorg. Chem., 2022, 127, 105968. doi: 10.1016/j.bioorg.2022.105968 PMID: 35728289
- Dharmasivam, M.; Azad, M.G.; Afroz, R.; Richardson, V.; Jansson, P.J.; Richardson, D.R. The thiosemicarbazone, DpC, broadly synergizes with multiple anti-cancer therapeutics and demonstrates temperature- and energy-dependent uptake by tumor cells. Biochim. Biophys. Acta, Gen. Subj., 2022, 1866(8), 130152. doi: 10.1016/j.bbagen.2022.130152 PMID: 35436509
- Song, J.; Pan, R.; Li, G.; Su, W.; Song, X.; Li, J.; Liu, S. Synthesis and anticancer activities of thiosemicarbazones derivatives of thiochromanones and related scaffolds. Med. Chem. Res., 2020, 29(4), 630-642. doi: 10.1007/s00044-020-02503-w
- Karalı, N.; Akdemir, A.; Göktaş, F.; Eraslan Elma, P.; Angeli, A.; Kızılırmak, M.; Supuran, C.T. Novel sulfonamide-containing 2-indolinones that selectively inhibit tumor-associated alpha carbonic anhydrases. Bioorg. Med. Chem., 2017, 25(14), 3714-3718. doi: 10.1016/j.bmc.2017.05.029 PMID: 28545816
- Güzel-Akdemir, Ö.; Akdemir, A.; Karalı, N.; Supuran, C.T. Discovery of novel isatin-based sulfonamides with potent and selective inhibition of the tumor-associated carbonic anhydrase isoforms IX and XII. Org. Biomol. Chem., 2015, 13(23), 6493-6499. doi: 10.1039/C5OB00688K PMID: 25967275
- Demir-Yazıcı, K.; Bua, S.; Akgüneş, N.M.; Akdemir, A.; Supuran, C.T.; Güzel-Akdemir, Ö. Indole-based hydrazones containing A sulfonamide moiety as selective inhibitors of tumor-associated human carbonic anhydrase isoforms IX and XII. Int. J. Mol. Sci., 2019, 20(9), 2354. doi: 10.3390/ijms20092354 PMID: 31083645
- Akdemir, A.; Güzel-Akdemir, Ö.; Scozzafava, A.; Capasso, C.; Supuran, C.T. Inhibition of tumor-associated human carbonic anhydrase isozymes IX and XII by a new class of substituted-phenylacetamido aromatic sulfonamides. Bioorg. Med. Chem., 2013, 21(17), 5228-5232. doi: 10.1016/j.bmc.2013.06.029 PMID: 23842519
- Güzel, Ö.; Temperini, C.; Innocenti, A.; Scozzafava, A.; Salman, A.; Supuran, C.T. Carbonic anhydrase inhibitors. Interaction of 2-(hydrazinocarbonyl)-3-phenyl-1H-indole-5-sulfonamide with 12 mammalian isoforms: Kinetic and X-ray crystallographic studies. Bioorg. Med. Chem. Lett., 2008, 18(1), 152-158. doi: 10.1016/j.bmcl.2007.10.110 PMID: 18024029
- Güzel, Ö.; Innocenti, A.; Scozzafava, A.; Salman, A.; Parkkila, S.; Hilvo, M.; Supuran, C.T. Carbonic anhydrase inhibitors: Synthesis and inhibition studies against mammalian isoforms IXV with a series of 2-(hydrazinocarbonyl)-3-substituted-phenyl-1H-indole-5-sulfonamides. Bioorg. Med. Chem., 2008, 16(20), 9113-9120. doi: 10.1016/j.bmc.2008.09.032 PMID: 18819811
- Güzel, Ö.; Maresca, A.; Scozzafava, A.; Salman, A.; Balaban, A.T.; Supuran, C.T. Carbonic anhydrase inhibitors. Synthesis of 2,4,6-trimethylpyridinium derivatives of 2-(hydrazinocarbonyl)-3-aryl-1H-indole-5-sulfonamides acting as potent inhibitors of the tumor-associated isoform IX and XII. Bioorg. Med. Chem. Lett., 2009, 19(11), 2931-2934. doi: 10.1016/j.bmcl.2009.04.068 PMID: 19410461
- Güzel, Ö.; Innocenti, A.; Scozzafava, A.; Salman, A.; Supuran, C.T. Carbonic anhydrase inhibitors. Phenacetyl-, pyridylacetyl- and thienylacetyl-substituted aromatic sulfonamides act as potent and selective isoform VII inhibitors. Bioorg. Med. Chem. Lett., 2009, 19(12), 3170-3173. doi: 10.1016/j.bmcl.2009.04.123 PMID: 19435663
- Güzel, O.; Innocenti, A.; Vullo, D.; Scozzafava, A.; Supuran, C.T. 3-phenyl-1H-indole-5-sulfonamides: Structure-based drug design of a promising class of carbonic anhydrase inhibitors. Curr. Pharm. Des., 2010, 16(29), 3317-3326. doi: 10.2174/138161210793429805 PMID: 20819062
- Pacchiano, F.; Carta, F.; McDonald, P.C.; Lou, Y.; Vullo, D.; Scozzafava, A.; Dedhar, S.; Supuran, C.T. Ureido-substituted benzenesulfonamides potently inhibit carbonic anhydrase IX and show antimetastatic activity in a model of breast cancer metastasis. J. Med. Chem., 2011, 54(6), 1896-1902. doi: 10.1021/jm101541x PMID: 21361354
- McDonald, P.C.; Chia, S.; Bedard, P.L.; Chu, Q.; Lyle, M.; Tang, L.; Singh, M.; Zhang, Z.; Supuran, C.T.; Renouf, D.J.; Dedhar, S. A phase 1 study of SLC-0111, a novel inhibitor of carbonic anhydrase IX, in patients with advanced solid tumors. Am. J. Clin. Oncol., 2020, 43(7), 484-490. doi: 10.1097/COC.0000000000000691 PMID: 32251122
- Eldehna, W.M.; Abo-Ashour, M.F.; Nocentini, A.; El-Haggar, R.S.; Bua, S.; Bonardi, A.; Al-Rashood, S.T.; Hassan, G.S.; Gratteri, P.; Abdel-Aziz, H.A.; Supuran, C.T. Enhancement of the tail hydrophobic interactions within the carbonic anhydrase IX active site via structural extension: Design and synthesis of novel N-substituted isatins-SLC-0111 hybrids as carbonic anhydrase inhibitors and antitumor agents. Eur. J. Med. Chem., 2019, 162, 147-160. doi: 10.1016/j.ejmech.2018.10.068 PMID: 30445264
- Sarnella, A.; Ferrara, Y.; Auletta, L.; Albanese, S.; Cerchia, L.; Alterio, V.; De Simone, G.; Supuran, C.T.; Zannetti, A. Inhibition of carbonic anhydrases IX/XII by SLC-0111 boosts cisplatin effects in hampering head and neck squamous carcinoma cell growth and invasion. J. Exp. Clin. Cancer Res., 2022, 41(1), 122. doi: 10.1186/s13046-022-02345-x PMID: 35365193
- Ilies, M.A.; Vullo, D.; Pastorek, J.; Scozzafava, A.; Ilies, M.; Caproiu, M.T.; Pastorekova, S.; Supuran, C.T. Carbonic anhydrase inhibitors. Inhibition of tumor-associated isozyme IX by halogenosulfanilamide and halogenophenylaminobenzolamide derivatives. J. Med. Chem., 2003, 46(11), 2187-2196. doi: 10.1021/jm021123s PMID: 12747790
- McKee, R.L.; Bost, R.W. para-Substituted phenyl isothiocyanates and some related thioureas. J. Am. Chem. Soc., 1946, 68(12), 2506-2507. doi: 10.1021/ja01216a022 PMID: 20282387
- Cecchi, A.; Ciani, L.; Winum, J.Y.; Montero, J.L.; Scozzafava, A.; Ristori, S.; Supuran, C.T. Carbonic anhydrase inhibitors: Design of spin-labeled sulfonamides incorporating TEMPO moieties as probes for cytosolic or transmembrane isozymes. Bioorg. Med. Chem. Lett., 2008, 18(12), 3475-3480. doi: 10.1016/j.bmcl.2008.05.051 PMID: 18513964
- Eraslan Elma, P. 1H-indole-2,3-dione 3-thiosemicarbazone derivatives carrying 3-sulfamoylphenyl moiety: Synthesis, structure determination, molecular modeling and biological activity evaluation. Ph.D; Istanbul University: Istanbul, 2017.
- Taşdemir, D.; Karaküçük-İyidoğan, A.; Ulaşli, M.; Taşkin-Tok, T.; Oruç-Emre, E.E.; Bayram, H. Synthesis, molecular modeling, and biological evaluation of novel chiral thiosemicarbazone derivatives as potent anticancer agents. Chirality, 2015, 27(2), 177-188. doi: 10.1002/chir.22408 PMID: 25399965
- Karaküçük-İyidoğan, A.; Taşdemir, D.; Oruç-Emre, E.E.; Balzarini, J. Novel platinum(II) and palladium(II) complexes of thiosemicarbazones derived from 5-substitutedthiophene-2-carboxaldehydes and their antiviral and cytotoxic activities. Eur. J. Med. Chem., 2011, 46(11), 5616-5624. doi: 10.1016/j.ejmech.2011.09.031 PMID: 21993152
- Stariat, J.; Kovaříková, P.; Kučera, R.; Klime, J.; Kalinowski, D.S.; Richardson, D.R.; Ketola, R.A. Identification of in vitro metabolites of the novel anti-tumor thiosemicarbazone, DpC, using ultra-high performance liquid chromatographyquadrupole-time-of-flight mass spectrometry. Anal. Bioanal. Chem., 2013, 405(5), 1651-1661. doi: 10.1007/s00216-012-6562-x PMID: 23180090
- Subhashree, G.R.; Haribabu, J.; Saranya, S.; Yuvaraj, P.; Krishnan, A.D.; Karvembu, R.; Gayathri, D. In vitro antioxidant, antiinflammatory and in silico molecular docking studies of thiosemicarbazones. J. Mol. Struct., 2017, 1145, 160-169. doi: 10.1016/j.molstruc.2017.05.054
- Yıldız, M.; Ünver, H.; Erdener, D.; Kiraz, A.; İskeleli, N.O. Synthesis, spectroscopic studies and crystal structure of (E)-2-(2,4-dihydroxybenzylidene)thiosemicarbazone and (E)-2-(1H-indol-3-yl)methylenethiosemicarbazone. J. Mol. Struct., 2009, 919(1-3), 227-234. doi: 10.1016/j.molstruc.2008.09.008
- Rana, A.; Parekh, N.; Dabhi, H.; Bhoi, D.; Kumari, N. Synthesis, crystal structural characterization and biological properties of thiosemicarbazones of schiff bases derived from 4-acyl-2-pyrazoline-5-one. E-J. Chem., 2011, 8(4), 1820-1831. doi: 10.1155/2011/826392
- Anderson, B.; Jasinski, J.; Freedman, M.; Millikan, S.; ORourke, K.; Smolenski, V. Synthesis, crystal structural investigations, and DFT calculations of novel thiosemicarbazones. Crystals, 2016, 6(2), 17. doi: 10.3390/cryst6020017
- Kılıç-Cıkla, I.; Güveli, Ş.; Yavuz, M.; Bal-Demirci, T.; Ülküseven, B. 5-Methyl-2-hydroxy-acetophenone-thiosemicarbazone and its nickel(II) complex: Crystallographic, spectroscopic (IR, NMR and UV) and DFT studies. Polyhedron, 2016, 105, 104-114. doi: 10.1016/j.poly.2015.12.021
- Domagała, M.; Dubis, A.T.; Wojtulewski, S.; Zabel, M.; Pfitzner, A. Hydrogen bonding in crystals of pyrrol-2-yl chloromethyl ketone derivatives and methyl pyrrole-2-carboxylate. Crystals, 2022, 12(11), 1523. doi: 10.3390/cryst12111523
- Haramura, M.; Tanaka, A.; Akimoto, T.; Hirayama, N. Crystal structure of dichlorphenamide. X-ray Struct. Anal. Online., 2003, 19, X35-X36. doi: 10.2116/analscix.19.x35
- Ceylan, Ü.; Durgun, M.; Türkmen, H.; Yalçın, Ş.P.; Kilic, A.; Özdemir, N. Theoretical and experimental investigation of 4-(2-hydroxy-3-methylbenzylidene)aminobenzenesulfonamide: Structural and spectroscopic properties, NBO, NLO and NPA analysis. J. Mol. Struct., 2015, 1089, 222-232. doi: 10.1016/j.molstruc.2015.02.042
- Gürsoy, A.; Karalı, N. Synthesis, characterization and primary antituberculosis activity evaluation of 4-(3-coumarinyl)-3-benzyl-4-thiazolin-2-one benzylidenehydrazones. Turk. J. Chem., 2003, 27(5), 545-552.
- Sheldrick, G.M.; Schneider, T.R. SHELXL: High-resolution refinement. Methods Enzymol., 1997, 277, 319-343. doi: 10.1016/S0076-6879(97)77018-6 PMID: 18488315
- Schrödinger. QikProp, 4, 4th ed; Schrödinger, 2015.
- Bank, R.P.D. RCSB PDB: Homepage. Available from: https://www.rcsb.org/
- Fantacuzzi, M.; DAgostino, I.; Carradori, S.; Liguori, F.; Carta, F.; Agamennone, M.; Angeli, A.; Sannio, F.; Docquier, J.D.; Capasso, C.; Supuran, C.T. Benzenesulfonamide derivatives as Vibrio cholerae carbonic anhydrases inhibitors: A computational-aided insight in the structural rigidity-activity relationships. J. Enzyme Inhib. Med. Chem., 2023, 38(1), 2201402. doi: 10.1080/14756366.2023.2201402 PMID: 37073528
- Gumus, A.; Bozdag, M.; Akdemir, A.; Angeli, A.; Selleri, S.; Carta, F.; Supuran, C.T. Thiosemicarbazide-substituted coumarins as selective inhibitors of the tumor associated human carbonic anhydrases IX and XII. Molecules, 2022, 27(14), 4610. doi: 10.3390/molecules27144610 PMID: 35889480
- Senaweera, S.; Du, H.; Zhang, H.; Kirby, K.A.; Tedbury, P.R.; Xie, J.; Sarafianos, S.G.; Wang, Z. Discovery of new small molecule hits as hepatitis B virus capsid assembly modulators: Structure and pharmacophore-based approaches. Viruses, 2021, 13(5), 770. doi: 10.3390/v13050770 PMID: 33925540
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings 1PII of original article: S0169-409X(96)00423-1. The article was originally published in Advanced Drug Delivery Reviews 23 (1997) 325. 1. Adv. Drug Deliv. Rev., 2001, 46(1-3), 3-26. doi: 10.1016/S0169-409X(00)00129-0 PMID: 11259830
Supplementary files
