Antheraea proylei J. Sericin Induces Apoptosis in a Caspase-dependent Manner in A549 and HeLa Cells


Cite item

Full Text

Abstract

Background::In spite of much progress in cancer, the global cancer burden is still significant and increasing. Sericin, an adhesive protein of silk cocoons, has been shown to be a potential protein in various biomedical applications, including cancer therapeutics. The present study evaluates the anticancer property of sericin from cocoons of Antheraea proylei J (SAP) against human lung cancer (A549) and cervical cancer (HeLa) cell lines. This is the first report of anti-cancer activity of the non-mulberry silkworm A. proylei J.

Objective::Establish the antiproliferative potential of SAP. 2. Identify the molecular mechanism of cell death induced by SAP on two different cell lines

Aims::To investigate the anticancer activity of sericin preparation from cocoons of A. proylei.

Methods::SAP was prepared from cocoons of A. proylei J. by the process of the degumming method. Cytotoxic activity was assessed by MTT assay, and genotoxicity was assessed by comet assay. Cleavage of caspase and PARP proteins and phosphorylation of MAPK pathway members were analysed by Western blotting. Cell cycle analysis was done by flow cytometer.

Results::SAP causes cytotoxicity to A549 and HeLa cell lines with the IC50 values 3.8 and 3.9 µg/µl respectively. SAP induces apoptosis in a dose-dependent manner through caspase-3 and p38, MAPK pathways in A549 and HeLa cells. Moreover, in A549 and HeLa cells, SAP induces cell cycle arrest at the S phase in a dose-dependent manner.

Conclusion::The difference in the molecular mechanisms of apoptosis induced by SAP in A549 and HeLa cell lines may be due to the difference in the genotypes of the cancer cell lines. However, further investigation is warranted. The overall results of the present study envisage the possibility of using SAP as an anti-tumorigenic agent.

About the authors

Potsangbam Devi

Department of Biochemistry, Laboratory of Protein Biochemistry,, Manipur University

Email: info@benthamscience.net

Asem Singh

Department of Biotechnology, Cancer and Molecular Biology Division, Manipur University

Email: info@benthamscience.net

Naorem Singh

Department of Biotechnology, Cancer and Molecular Biology Division, Manipur University

Email: info@benthamscience.net

Laishram Singh

Department of Biochemistry, Laboratory of Protein Biochemistry, Manipur University

Email: info@benthamscience.net

Sanjenbam Devi

Department of Biochemistry, Laboratory of Protein Biochemistry, Manipur University

Email: info@benthamscience.net

Lisam Singh

Department of Biotechnology, Cancer and Molecular Biology Division, Manipur University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424. doi: 10.3322/caac.21492 PMID: 30207593
  2. Weiderpass, E. Lifestyle and cancer risk. J. Prev. Med. Public Health, 2010, 43(6), 459-471. doi: 10.3961/jpmph.2010.43.6.459 PMID: 21139406
  3. Katzke, V.A.; Kaaks, R.; Kühn, T. Lifestyle and cancer risk. Cancer J., 2015, 21(2), 104-110. doi: 10.1097/PPO.0000000000000101 PMID: 25815850
  4. Zhang, D.; Wan, L.; Zhang, J.; Liu, C.; Sun, H. Effect of BMAP-28 on human thyroid cancer TT cells is mediated by inducing apoptosis. Oncol. Lett., 2015, 10(4), 2620-2626. doi: 10.3892/ol.2015.3612 PMID: 26622900
  5. Gajski, G.; Garaj-Vrhovac, V. Melittin: A lytic peptide with anticancer properties. Environ. Toxicol. Pharmacol., 2013, 36(2), 697-705. doi: 10.1016/j.etap.2013.06.009 PMID: 23892471
  6. Hanaoka, Y.; Yamaguchi, Y.; Yamamoto, H.; Ishii, M.; Nagase, T.; Kurihara, H.; Akishita, M.; Ouchi, Y. In vitro and in vivo anticancer activity of human β-defensin-3 and its mouse homolog. Anticancer Res., 2016, 36(11), 5999-6004. doi: 10.21873/anticanres.11188 PMID: 27793926
  7. Kundu, S.C.; Dash, B.C.; Dash, R.; Kaplan, D.L. Natural protective glue protein, sericin bioengineered by silkworms: Potential for biomedical and biotechnological applications. Prog. Polym. Sci., 2008, 33(10), 998-1012. doi: 10.1016/j.progpolymsci.2008.08.002
  8. Kunz, R.I.; Brancalhão, R.M.C.; Ribeiro, L.F.C.; Natali, M.R.M. Silkworm sericin: Properties and biomedical applications. Bio.Med. Res. Int., 2016, 2016, 8175701. doi: 10.1155/2016/8175701 PMID: 27965981
  9. Sasaki, M.; Kato, N.; Watanabe, H.; Yamada, H. Silk protein, sericin, suppresses colon carcinogenesis induced by 1,2-dimethylhydrazine in mice. Oncol. Rep., 2000, 7(5), 1049-1052. doi: 10.3892/or.7.5.1049 PMID: 10948337
  10. Zhaorigetu, S.; Sasaki, M.; Kato, N. Consumption of sericin suppresses colon oxidative stress and aberrant crypt foci in 1,2-dimethylhydrazine-treated rats by colon undigested sericin. J. Nutr. Sci. Vitaminol., 2007, 53(3), 297-300. doi: 10.3177/jnsv.53.297 PMID: 17874837
  11. Zhaorigetu, S.; Sasaki, M.; Watanabe, H.; Kato, N. Supplemental silk protein, sericin, suppresses colon tumorigenesis in 1,2-dimethylhydrazine-treated mice by reducing oxidative stress and cell proliferation. Biosci. Biotechnol. Biochem., 2001, 65(10), 2181-2186. doi: 10.1271/bbb.65.2181 PMID: 11758907
  12. Takechi, T.; Wada, R.; Fukuda, T.; Harada, K.; Takamura, H. Antioxidant activities of two sericin proteins extracted from cocoon of silkworm (Bombyx mori) measured by DPPH, chemiluminescence, ORAC and ESR methods. Biomed. Rep., 2014, 2(3), 364-369. doi: 10.3892/br.2014.244 PMID: 24748975
  13. Zhaorigetu, S.; Yanaka, N.; Sasaki, M.; Watanabe, H.; Kato, N. Silk protein, sericin, suppresses DMBA-TPA-induced mouse skin tumorigenesis by reducing oxidative stress, inflammatory responses and endogenous tumor promoter TNF-alpha. Oncol. Rep., 2003, 10(3), 537-543. PMID: 12684620
  14. Kaewkorn, W.; Limpeanchob, N.; Tiyaboonchai, W.; Pongcharoen, S.; Sutheerawattananonda, M. Effects of silk sericin on the proliferation and apoptosis of colon cancer cells. Biol. Res., 2012, 45(1), 45-50. doi: 10.4067/S0716-97602012000100006 PMID: 22688983
  15. Kumar, J.P.; Mandal, B.B. Silk sericin induced pro-oxidative stress leads to apoptosis in human cancer cells. Food Chem. Toxicol., 2019, 123, 275-287. doi: 10.1016/j.fct.2018.10.063 PMID: 30391273
  16. Zhang, W.M.; Lai, Z.S.; He, M.R.; Xu, G.; Huang, W.; Zhou, D.Y. Effects of the antibacterial peptide cecropins from Chinese oak silkworm, Antheraea pernyi on 1, 2-dimethylhydrazine-induced colon carcinogenesis in rats. Di 1 jun yi da xue xue bao, 2003, 23(10), 1066-1068. PMID: 14559696
  17. Niu, L.; Yang, S.; Zhao, X.; Liu, X.; Si, L.; Wei, M.; Liu, L.; Cheng, L.; Qiao, Y.; Chen, Z. Sericin inhibits MDA-MB-468 cell proliferation via the PI3K/Akt pathway in triple-negative breast cancer. Mol. Med. Rep., 2021, 23(2), 1-1. PMID: 33313947
  18. Silva, S.S.; Kundu, B.; Lu, S.; Reis, R.L.; Kundu, S.C. Chinese oak tasar silkworm Antheraea pernyi silk proteins: Current strategies and future perspectives for biomedical applications. Macromol. Biosci., 2019, 19(3), 1800252. doi: 10.1002/mabi.201800252 PMID: 30294916
  19. Crowley, L.C.; Christensen, M.E.; Waterhouse, N.J.J.C.S.H.P. Measuring survival of adherent cells with the colony-forming assay. Cold Spring Harb. Protoc., 2016, 2016(8), pdb. prot087171. doi: 10.1101/pdb.prot087171
  20. Olive, P.L.; Banáth, J.P. The comet assay: A method to measure DNA damage in individual cells. Nat. Protoc., 2006, 1(1), 23-29. doi: 10.1038/nprot.2006.5 PMID: 17406208
  21. Häcker, G. The morphology of apoptosis. Cell Tissue Res., 2000, 301(1), 5-17. doi: 10.1007/s004410000193 PMID: 10928277
  22. Karanam, G.; Arumugam, M.K. Reactive oxygen species generation and mitochondrial dysfunction for the initiation of apoptotic cell death in human hepatocellular carcinoma HepG2 cells by a cyclic dipeptide Cyclo(-Pro-Tyr). Mol. Biol. Rep., 2020, 47(5), 3347-3359. doi: 10.1007/s11033-020-05407-5 PMID: 32248385
  23. Sawant, V.J.; Bamane, S.R.; Kanase, D.G.; Patil, S.B.; Ghosh, J. Encapsulation of curcumin over carbon dot coated TiO2 nanoparticles for pH sensitive enhancement of anticancer and anti-psoriatic potential. RSC Advances, 2016, 6(71), 66745-66755. doi: 10.1039/C6RA13851A
  24. Mota, N.S.; Kviecinski, M.R.; Felipe, K.B.; GRINEVIcIUS, V.M.; Siminski, T.; Almeida, G.M.; Zeferino, R.C.; Pich, C.T.; Pedrosa, R.C.J.I.J.o.F.N. β-carboline alkaloid harmine induces DNA damage and triggers apoptosis by a mitochondrial pathway: Study in silico, in vitro and in vivo. Int. J. Funct. Nutr., 2020, 1(1), 1-1. doi: 10.3892/ijfn.2020.1
  25. Santos, D.C.; Rafique, J.; Saba, S.; Almeida, G.M.; Siminski, T.; Pádua, C.; Filho, D.W.; Zamoner, A.; Braga, A.L.; Pedrosa, R.C.; Ourique, F. Apoptosis oxidative damage‐mediated and antiproliferative effect of selenylated imidazo1,2‐ apyridines on hepatocellular carcinoma HepG2 cells and in vivo. J. Biochem. Mol. Toxicol., 2021, 35(3), e22663. doi: 10.1002/jbt.22663 PMID: 33125183
  26. Majtnerová, P.; Roušar, T. An overview of apoptosis assays detecting DNA fragmentation. Mol. Biol. Rep., 2018, 45(5), 1469-1478. doi: 10.1007/s11033-018-4258-9 PMID: 30022463
  27. Boulares, A.H.; Yakovlev, A.G.; Ivanova, V.; Stoica, B.A.; Wang, G.; Iyer, S.; Smulson, M. Role of poly(ADP-ribose) polymerase (PARP) cleavage in apoptosis. Caspase 3-resistant PARP mutant increases rates of apoptosis in transfected cells. J. Biol. Chem., 1999, 274(33), 22932-22940. doi: 10.1074/jbc.274.33.22932 PMID: 10438458
  28. Yue, J.; López, J.M. Understanding MAPK signaling pathways in apoptosis. Int. J. Mol. Sci., 2020, 21(7), 2346. doi: 10.3390/ijms21072346 PMID: 32231094
  29. Park, W.H. MAPK inhibitors, particularly the JNK inhibitor, increase cell death effects in H2O2-treated lung cancer cells via increased superoxide anion and glutathione depletion. Oncol. Rep., 2018, 39(2), 860-870. PMID: 29207156
  30. Meurer, S.K.; Weiskirchen, R. Usage of Mitogen-activated protein kinase small molecule inhibitors: More than just inhibition. Front. Pharmacol., 2018, 9, 98. doi: 10.3389/fphar.2018.00098 PMID: 29483873
  31. Taylor, C.A.; Zheng, Q.; Liu, Z.; Thompson, J.E. Role of p38 and JNK MAPK signaling pathways and tumor suppressor p53 on induction of apoptosis in response to Ad-eIF5A1 in A549 lung cancer cells. Mol. Cancer, 2013, 12(1), 35. doi: 10.1186/1476-4598-12-35 PMID: 23638878
  32. Zhang, L.; Yang, X.; Li, X.; Li, C.; Zhao, L.; Zhou, Y.; Hou, H. Butein sensitizes HeLa cells to cisplatin through the AKT and ERK/p38 MAPK pathways by targeting FoxO3a. Int. J. Mol. Med., 2015, 36(4), 957-966. doi: 10.3892/ijmm.2015.2324 PMID: 26310353
  33. Mebratu, Y.; Tesfaigzi, Y. How ERK1/2 activation controls cell proliferation and cell death: Is subcellular localization the answer? Cell Cycle, 2009, 8(8), 1168-1175. doi: 10.4161/cc.8.8.8147 PMID: 19282669
  34. Tang, D.; Wu, D.; Hirao, A.; Lahti, J.M.; Liu, L.; Mazza, B.; Kidd, V.J.; Mak, T.W.; Ingram, A.J. ERK activation mediates cell cycle arrest and apoptosis after DNA damage independently of p53. J. Biol. Chem., 2002, 277(15), 12710-12717. doi: 10.1074/jbc.M111598200 PMID: 11821415
  35. Cagnol, S.; Chambard, J.C. ERK and cell death: Mechanisms of ERK-induced cell death - apoptosis, autophagy and senescence. FEBS J., 2010, 277(1), 2-21. doi: 10.1111/j.1742-4658.2009.07366.x PMID: 19843174
  36. Wang, X.; Martindale, J.L.; Holbrook, N.J. Requirement for ERK activation in cisplatin-induced apoptosis. J. Biol. Chem., 2000, 275(50), 39435-39443. doi: 10.1074/jbc.M004583200 PMID: 10993883
  37. Ambrosino, C.; Nebreda, A.R. Cell cycle regulation by p38 MAP kinases. Biol. Cell, 2001, 93(1-2), 47-51. doi: 10.1016/S0248-4900(01)01124-8 PMID: 11730321
  38. Sun, Y.; Tang, S.; Jin, X.; Zhang, C.; Zhao, W.; Xiao, X. Involvement of the p38 MAPK signaling pathway in S-phase cell-cycle arrest induced by Furazolidone in human hepatoma G2 cells. J. Appl. Toxicol., 2013, 33(12), 1500-1505. doi: 10.1002/jat.2829 PMID: 23112108
  39. Zhang, Z.; He, H.; Chen, F.; Huang, C.; Shi, X. MAPKs mediate S phase arrest induced by vanadate through a p53-dependent pathway in mouse epidermal C141 cells. Chem. Res. Toxicol., 2002, 15(7), 950-956. doi: 10.1021/tx0255018 PMID: 12119006
  40. Wakeman, T.P.; Wyczechowska, D.; Xu, B. Involvement of the p38 MAP kinase in Cr(VI)-induced growth arrest and apoptosis. Mol. Cell. Biochem., 2005, 279(1-2), 69-73. doi: 10.1007/s11010-005-8216-1 PMID: 16283515

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers