On the sensitivity of the chandler wobble period of Mars to the parameters of the rheological model

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The Chandler period of Mars is a new parameter determined from observational data that characterizes the properties of the planet’s interior. Numerical modeling of the period of the Chandler wobble of Mars was performed for a number of internal structure models that satisfy not only geodetic data (moment of inertia, tidal Love number k2), but also data obtained during a seismic experiment in 2019–2022. To reconcile the theoretical and observed values of the Chandler wobble, it is necessary to take into account the inelasticity of the mantle. To take into account the viscoelastic behavior of the interiors, the Andrade rheological model was used. It is demonstrated how the value of the Chandler period depends on the parameters of the rheological model.

作者简介

E. Kulik

Sсhmidt Institute of Physics of the Earth of the Russian Academy of Sciences

Email: kulik.ea@ifz.ru
俄罗斯联邦, Moscow

T. Gudkova

Sсhmidt Institute of Physics of the Earth of the Russian Academy of Sciences

编辑信件的主要联系方式.
Email: gudkova@ifz.ru
俄罗斯联邦, Moscow

参考

  1. Жарков В. Н., Молоденский С. М. Об определении физических параметров ядра Марса по данным о его вращении // Астрон. вестн. 1994. Т. 28. № 4–5. С. 86–97.
  2. Жарков В. Н., Молоденский С. М. Чандлеровский период слаботрехосных моделей Марса // Астрон. Вестник.1995. Т. 29. № 4. С. 341–344.
  3. Zharkov V. N., Molodensky S. M. On the chandler wobble of Mars // Planet. Space Sci. 1996. V. 44. P. 1457–1462.
  4. Жарков В. Н., Гудкова Т. В. Построение модели внутреннего строения Марса // Астрон. Вестник. 2005. Т. 39 (5). C. 387–418.
  5. Zharkov V. N., Gudkova T. V. The period and Q of the chandler wobble of Mars // Planet. Space Sci. 2009. V. 57. P. 288–295.
  6. Harada Y. Reconsideration of the anelasticity parameters of the martian mantle: Preliminary estimates based on the latest geodetic parameters and seismic models // Icarus. 2022. V. 383. P. 114917.
  7. Konopliv A. S., Yoder C. F., Standish E. M., Yuan D. N., Sjogren W. L. A global solution for the Mars static and seasonal gravity, Mars orientation, Phobos and Deimos masses, and Mars ephemeris // Icarus. 2006. V. 182. P. 23–50.
  8. Konopliv A. S., Asmar S. W., Folkner W. M., Karatekin Ö., Nunes D. C., Smrekar S. E., Yoder C. F., Zuber M. T. Mars high resolution gravity fields from MRO, Mars seasonal gravity, and other dynamical parameters // Icarus. 2011. V. 211. P. 401–428.
  9. Konopliv A. S., Park R. S., Rivoldini A., Baland R. M., Le Maistre S., Van Hoolst T., Yseboodt M., Dehant V. Detection of the chandler wobble of mars from orbiting spacecraft // Geophys. Res. Lett. 2020. V. 47. P. e2020GL090568
  10. Молоденский С. М. Приливы и нутация Земли. I. Модели Земли с неупругой мантией и однородным невязким жидким ядром // Астрон. Вестн. 2004. Т. 38. № 6. С. 542–558.
  11. Wieczorek M. A., Broquet A., McLennan S. M., Rivoldini A., Golombek M., ntonangeli D., Beghein C., Giardini D., Gudkova T., Gyalay S., Johnson C., Joshi R., Kim D., King S. D., Knapmeyer-Endrun B., Lognonné Ph., Michaut C., Mittelholz A., Nimmo F., Ojha L., Panning M. P., Plesa A.-C., Siegler M. A., Smrekar S. E., Spohn T., Banerdt W. B. InSight constraints on the global character of the Martian crust // Journal of Geophysical Research: Planets. 2022. V. 127. e2022JE007298.
  12. Stähler S. C., Khan A., Banerdt W.B., Lognonné P., Giardini D., Ceylan S., Drilleau M., Duran A.C., Garcia R. F., Huang Q., Kim D., Lekic V., Samuel H., Schimmel M., Schmerr N., Sollberger D., Stutzmann E., Xu Z., Antonangeli D., Charalambous C., Davis P. M., Irving J.C.E., Kawamura T., Knapmeyer M., Maguire R., Marusiak A.G., Panning M. P., Perrin C., Plesa A. C., Rivoldini A., Schmelzbach C., Zenhäusern G., Beucler E., Clinton J., Dahmen N., van Driel M., Gudkova T., Horleston A., Pike W. T., Plasman M., Smrekar S. E. Seismic detection of the martian core // Science. 2021. V. 373. P. 443–448.
  13. Samuel H., Drilleau M., Rivoldini A., Xu Z., Huang Q., Garsia R. F., Lekic V., Irving J. C. E., Badro J., Lognonne P. H., Connolly J. A. D., Kawamura T., Gudkova T., Banerdt W. B. Geophysical evidence for an enriched molten silicate layer above Mars’s core // Nature. 2023. V. 622. P. 712–717.
  14. Bagheri A., Efroimsky M., Castillo-Rogez J., Goossens S., Plesa A.-C., Rambaux N., Rhoden A., Walterova M., Khan A., Giardini D. Tidal insights into rocky and icy bodies: An introduction and overview // Advances in Geophysics. 2022. V. 63. Ch. 5. P. 231–320.
  15. Castillo-Rogez J. C., Efroimsky M., Lainey V. The tidal history of Japetus: Spin dynamics in the light of a refined dissipation model // J. Geophys. Res: Planets. 2011. V. 116. ID. E9.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2024