On the sensitivity of the chandler wobble period of Mars to the parameters of the rheological model

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The Chandler period of Mars is a new parameter determined from observational data that characterizes the properties of the planet’s interior. Numerical modeling of the period of the Chandler wobble of Mars was performed for a number of internal structure models that satisfy not only geodetic data (moment of inertia, tidal Love number k2), but also data obtained during a seismic experiment in 2019–2022. To reconcile the theoretical and observed values of the Chandler wobble, it is necessary to take into account the inelasticity of the mantle. To take into account the viscoelastic behavior of the interiors, the Andrade rheological model was used. It is demonstrated how the value of the Chandler period depends on the parameters of the rheological model.

Авторлар туралы

E. Kulik

Sсhmidt Institute of Physics of the Earth of the Russian Academy of Sciences

Email: kulik.ea@ifz.ru
Ресей, Moscow

T. Gudkova

Sсhmidt Institute of Physics of the Earth of the Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: gudkova@ifz.ru
Ресей, Moscow

Әдебиет тізімі

  1. Жарков В. Н., Молоденский С. М. Об определении физических параметров ядра Марса по данным о его вращении // Астрон. вестн. 1994. Т. 28. № 4–5. С. 86–97.
  2. Жарков В. Н., Молоденский С. М. Чандлеровский период слаботрехосных моделей Марса // Астрон. Вестник.1995. Т. 29. № 4. С. 341–344.
  3. Zharkov V. N., Molodensky S. M. On the chandler wobble of Mars // Planet. Space Sci. 1996. V. 44. P. 1457–1462.
  4. Жарков В. Н., Гудкова Т. В. Построение модели внутреннего строения Марса // Астрон. Вестник. 2005. Т. 39 (5). C. 387–418.
  5. Zharkov V. N., Gudkova T. V. The period and Q of the chandler wobble of Mars // Planet. Space Sci. 2009. V. 57. P. 288–295.
  6. Harada Y. Reconsideration of the anelasticity parameters of the martian mantle: Preliminary estimates based on the latest geodetic parameters and seismic models // Icarus. 2022. V. 383. P. 114917.
  7. Konopliv A. S., Yoder C. F., Standish E. M., Yuan D. N., Sjogren W. L. A global solution for the Mars static and seasonal gravity, Mars orientation, Phobos and Deimos masses, and Mars ephemeris // Icarus. 2006. V. 182. P. 23–50.
  8. Konopliv A. S., Asmar S. W., Folkner W. M., Karatekin Ö., Nunes D. C., Smrekar S. E., Yoder C. F., Zuber M. T. Mars high resolution gravity fields from MRO, Mars seasonal gravity, and other dynamical parameters // Icarus. 2011. V. 211. P. 401–428.
  9. Konopliv A. S., Park R. S., Rivoldini A., Baland R. M., Le Maistre S., Van Hoolst T., Yseboodt M., Dehant V. Detection of the chandler wobble of mars from orbiting spacecraft // Geophys. Res. Lett. 2020. V. 47. P. e2020GL090568
  10. Молоденский С. М. Приливы и нутация Земли. I. Модели Земли с неупругой мантией и однородным невязким жидким ядром // Астрон. Вестн. 2004. Т. 38. № 6. С. 542–558.
  11. Wieczorek M. A., Broquet A., McLennan S. M., Rivoldini A., Golombek M., ntonangeli D., Beghein C., Giardini D., Gudkova T., Gyalay S., Johnson C., Joshi R., Kim D., King S. D., Knapmeyer-Endrun B., Lognonné Ph., Michaut C., Mittelholz A., Nimmo F., Ojha L., Panning M. P., Plesa A.-C., Siegler M. A., Smrekar S. E., Spohn T., Banerdt W. B. InSight constraints on the global character of the Martian crust // Journal of Geophysical Research: Planets. 2022. V. 127. e2022JE007298.
  12. Stähler S. C., Khan A., Banerdt W.B., Lognonné P., Giardini D., Ceylan S., Drilleau M., Duran A.C., Garcia R. F., Huang Q., Kim D., Lekic V., Samuel H., Schimmel M., Schmerr N., Sollberger D., Stutzmann E., Xu Z., Antonangeli D., Charalambous C., Davis P. M., Irving J.C.E., Kawamura T., Knapmeyer M., Maguire R., Marusiak A.G., Panning M. P., Perrin C., Plesa A. C., Rivoldini A., Schmelzbach C., Zenhäusern G., Beucler E., Clinton J., Dahmen N., van Driel M., Gudkova T., Horleston A., Pike W. T., Plasman M., Smrekar S. E. Seismic detection of the martian core // Science. 2021. V. 373. P. 443–448.
  13. Samuel H., Drilleau M., Rivoldini A., Xu Z., Huang Q., Garsia R. F., Lekic V., Irving J. C. E., Badro J., Lognonne P. H., Connolly J. A. D., Kawamura T., Gudkova T., Banerdt W. B. Geophysical evidence for an enriched molten silicate layer above Mars’s core // Nature. 2023. V. 622. P. 712–717.
  14. Bagheri A., Efroimsky M., Castillo-Rogez J., Goossens S., Plesa A.-C., Rambaux N., Rhoden A., Walterova M., Khan A., Giardini D. Tidal insights into rocky and icy bodies: An introduction and overview // Advances in Geophysics. 2022. V. 63. Ch. 5. P. 231–320.
  15. Castillo-Rogez J. C., Efroimsky M., Lainey V. The tidal history of Japetus: Spin dynamics in the light of a refined dissipation model // J. Geophys. Res: Planets. 2011. V. 116. ID. E9.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2024