THE LAWS OF THE MATTER DISTRIBUTION IN A COLORED FREE-FALLING DROP IN A TRANSPARENT RECEIVING FLUID (REVIEW)

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The results of the visualization of the matter transfer processes in colored free-fall drops, which mix with a transparent receiving fluid are analyzed. The parametrization is carried out basing on the system of fundamental equations of fluid mechanics which includes the equations of state for the density and the Gibbs potential. The contribution of different mechanisms of energy transfer is discussed; these are the macroscopic (including flows, waves, and vortices) and microscopic (dissipative and conversional) ones. The radiation transfer effect is not considered. The technique of the present-day experiments is descried, which makes it possible to record accompanying acoustic signals together with the highly-resolving videorecording of colored flow pictures. The flow structure, dynamics, and energetics are analyzed for different density ratios of the confluent fluids and the kinetic and potential surface energies (PSE) of the drop. The conditions of the establishment of certain selected regimes, such as intrusive drop inflow, impact breakdown in fibers, and an intermediate hovering and rebound regime, are determined. A drop flowing smoothly into the fluid thickness at a small contact velocity in the intrusive regime forms a connected body. Thin jetlets containing the matter of both media are formed in the contact spot in the The fibrous wakes of the jetlets form lineate and reticular structures on the fluid surface and within its thickness. In the intermediate regime the drop can hover on the fluid surface, touch it, merge partially with it, and rebound with the loss of the matter. The evolution of gas cavities and bubbles radiating acoustic packets is traced. The necessity of taking account for all the mechanisms of total energy transfer in describing hydrodynamics and acoustics of drop flows is noted.

Sobre autores

Yu. Chashechkin

Ishlinsky Institute forProblems in Mechanics

Email: chakin@ipmnet.ru
Moscow, 119526 Russia

Bibliografia

  1. Thomson W. Vortex atom // Mathematical and Physical Papers. Cambridge: Cambridge University Press, 1882–1911.
  2. Silliman R.H. William Thomson: Smoke Rings and Nineteenth-Century Atomism // ISIS. 1963. V. 54. № 4. P. 461–474. http://www.jstor.org/stable/228151
  3. Helmholtz H. About integrals of the hydrodynamic equations, which correspond to the vortex movements // Journal of pure and applied mathematics. 1858. V. 55. P. 25–55 (in German).
  4. Darrigol O. Worlds of flow. A history of hydrodynamics from the Bernoullis to Prandtl. Oxford: University Press, 2005.
  5. Rogers W.B. On the formation of rotating rings by air and liquids under certain conditions of discharge // Amer. J. Sci., Second Ser. 1858. V. 26. P. 246–258.
  6. Guthrie F. On drops // Proc. R. Soc. Lond. 1863. V. 13. P. 444–457.
  7. Guthrie F. On drops – Part II // Proc. R. Soc. Lond. 1863. V. 13. P. 457–483.
  8. Thomson J.J., Newall H.F. On the formation of vortex rings by drops falling into liquids, and some allied phenomena // Proc. R. Soc. Lond. 1885. V. 29. P. 417–436.
  9. Thompson D.W. On Growth and Form. 2nd ed. Mineola: Dover, 1992.
  10. СтепановаЕ.В.,ЧашечкинЮ.Д.Переносмаркеравсоставномвихре//Изв.РАН.МЖГ.2010.№6.С.12–29. https://doi.org/10.1134/S0015462810060025
  11. Saha A., Wei Y., Tang X., Law C.K. Kinematics of vortex ring generated by a drop upon impacting a liquid pool // J. of Fluid Mech. 2019. V. 875. P. 842–853. https://doi.org/10.1017/jfm.2019.503
  12. Беляев В.С., Савинков А.М., Чашечкин Ю.Д. Динамика ламинарных вихревых колец в стратифицированной жидкости // ПМТФ. 1987. Т. 28. № 1. С. 37–47. https://doi.org/10.1007/BF00918769
  13. Lenard Ph. Uber die Schwingungen fallender Tropfen // Ann. Phys. Chem. 1887. V. 30. P. 209–243. https://doi.org/10.1515/9783112361986-014
  14. Rayleigh L. On the capillary phenomena of jets // Proc. R. Soc. Lond. 1879. V. 29. P. 71–97.
  15. Коршунов А. И. Колебания оторвавшейся от перемычки капли воды // Изв. РАН. МЖГ. 2015. № 4. C. 139–143. https://doi.org/10.1134/S001546281504013416
  16. Hu L., She L., Fang Y., Su R., Fu X. Deformation characteristics of droplet generated by Rayleigh jet breakup // AIP Advances. 2021. V. 11. P. 045310. https://doi.org/10.1063/5.0045196
  17. Zhang B., Ling Y., Tsai P.-H., Wang A.-B., Popinet S., Zaleski S. Short-term oscillation and falling dynamics for a water drop dripping in quiescent air // Phys. Rev. Fluids. 2019. V. 4. P. 123604. https://doi.org/10.1103/PhysRevFluids.4.123604
  18. Ширяев А.А. О собственных частотах осцилляций поверхности свободнопадающей составной капли идеальной жидкости // Изв. РАН. МЖГ. 2020. № 3. С. 3–11.
  19. Григорьев А.И., Колбнева Н.Ю., Ширяева С.О. Об акустическом излучении слабо заряженных капель, осциллирующих во внешнем однородном электростатическом поле // Изв. РАН. МЖГ. 2022. № 5, С. 1–14. https://doi.org/10.31857/S0568528122050061 https://doi.org/10.1134/S0015462822050068
  20. Григорьев А.И., Колбнева Н.Ю., Ширяева С.О. Квадрупольное электромагнитное излучение заряженной капли, осциллирующей в суперпозиции коллинеарных гравитационного и электростатического полей // Изв. РАН. МЖГ. 2019. № 5. С. 70–82. https://doi.org/10.1134/S0568528119050049
  21. Worthington A.M., Cole R.S. Impact with a liquid surface, studied by the aid of instantaneous photography // Phil. Trans. R. Soc. Lond. A. 1897. V. 189. P. 137–148. https://doi.org/10.1098/rsta.1897.0005
  22. Worthington A.M. A study of splashes. London: Longmans, Green and Co, 1908.
  23. Castillo-Orozco E., Davanlou A., Choudhury P.K., Kumar R. Droplet impact on deep liquid pools: Rayleigh jet to formation of secondary droplets // Phys. Rev. 2015. V. E92. P. 053022. https://doi.org/10.1103/PhysRevE.92.053022
  24. Ogawa A., Utsuno K., Mutou M., Kouzen S., Shimotake Y., Satou Y. Morphological study of cavity and Worthington jet formations for newtonian and non-newtonian liquids // Partic. Science and Tech. 2006. V. 24. P. 181–225.
  25. Майер В.В. Кумулятивный эффект в простых опытах. М.: Наука, 1989. 194 с.
  26. Cai Y.K. Phenomena of a liquid drop falling to a liquid surface // Exp. in Fluids. 1989. V. 7. P. 388–394. https://doi.org/10.1007/BF00193420
  27. Shin J., McMahon T.A. The tuning of a splash // Phys. Fluids. 1990. V. 2. P. 1312–1317. https://doi.org/10.1063/1.857581
  28. Michon G.-J., Josserand C., Seon T. Jet dynamics post drop impact on a deep pool // Phys. Rev. Fluids. 2017. V. 2. P. 023601. https://doi.org/10.1103/PhysRevFluids.2.023601
  29. Zeleny J. The Electrical Discharge from Liquid Points, and a Hydrostatic Method of Measuring the Electric Intensity at Their Surfaces // Phys. Rev. 1914. V. 3. № 2. P. 69–91. https://doi.org/10.1103/physrev.3.69
  30. Zeleny J. On the conditions of instability of electrified drops, with applications to the electrical discharge from liquid points // Proc. Cambridge Philos. Soc. 1915. V. 18. P. 71–83.
  31. Zeleny J. Instability of Electrified Liquid Surfaces // Phys. Rev. 1917. V. 10. № 1. P. 1–6. https://doi.org/10.1103/physrev.10.1
  32. Jones A.T. The sound of splashes // Science. 1920. V. 52. P. 295–296.
  33. Knudsen P.V.O., Alford R.S., Emling J.W. Underwater ambient noise // J. of Marine Res. 1948. V. 7. № 3. P. 410–429.
  34. Prosperetti A., Oguz H.N. The impact of drops on liquid surfaces and the underwater noise of rain // Ann. Rev. Fluid Mech. 1993. V. 25. P. 577–602.
  35. Prokhorov V.E. Underwater gas bubbles produced by droplet impact: Mechanism to trigger volumetric oscillations // Phys. of Fluids. 2023. V. 35. № 3. P. 033314. https://doi.org/10.1063/5.0140484
  36. Howe B.M., Miksis-Olds J., Rehm E., Sagen H., Worcester P.F., Haralabus G. Observing the oceans acoustically // Frontiers in Marine Science. 2019. V. 6. P. 426. https://doi.org/10.3389/fmars.2019.00426
  37. Liu S., Li Q., Shang D., Tang R., Zhang Q. Measurement of underwater acoustic energy radiated by single raindrops // Sensors. 2021. V. 21. № 8. P. 2687.
  38. Schwock F., Abadi S. Characterizing underwater noise during rain at the northeast Pacific continental margin // J. of the Acous. Soc. of America. 2021. V. 149. P. 4579–4595. https://doi.org/10.1121/10.0005440
  39. Edgerton H.E., Killian J.R.Jr. Flash. Boston: Hale, Cushman and Flint, 1939.
  40. Ersoy N.E., Eslamian M. Capillary surface wave formation and mixing of miscible liquids during droplet impact onto a liquid film // Phys. of Fluids. 2019. V. 31. № 1. P. 012107.
  41. Chashechkin Yu.D. Foundations of engineering mathematics applied for fluid flows // Axioms. 2021. V. 10. P. 286. https://doi.org/10.3390/axioms10040286
  42. Veron F. Ocean Spray // Ann. Rev. of Fluid Mech. 2015. V. 47. P. 507–538. https://doi.org/10.1146/annurev-fluid-010814-014651
  43. Zhou K., Wang S., Lu X., Chen H., Wang L., Chen J., Yang X., Wang X. Production flux and chemical characteristics of spray aerosol generated from raindrop impact on seawater and soil // J. Geophys. Res. 2020. V. 125. № 13. P. e2019JD032052. https://doi.org/10.1029/2019JD032052
  44. Bourouiba L. The fluid dynamics of disease transmission // Ann. Rev. Fluid Mech. 2021. V. 53. P. 473–508. https://doi.org/10.1146/annurev-fluid-060220-113712
  45. Bhagat R.B., Wykes M.S.D., Dalziel S.B., Linden P.F. Effects of ventilation on the indoor spread of COVID-19 // J. Fluid Mech. 2020. V. 903. F1. https://doi.org/10.1017/jfm.2020.720
  46. Marcotte F., Michon G.-J., Seon T., Josserand C. Ejecta, corolla, and splashes from drop impacts on viscous fluids // Phys. Rev. Lett. 2019. V. 122. № 1. P. 014501.
  47. Guo Zhen Z., Zhao Hui L., De Yong F. Experiments on ring wave packet generated by water drop // Chin. Sci. Bull. 2008. V. 53. P. 1634–1638. https://doi.org/10.1007/s11434-008-0246
  48. Чашечкин Ю. Д., Прохоров В. Е. Гидродинамика удара капли: короткие волны на поверхности венца // ДАН. 2013. Т. 451. № 1. С. 41–45. https://doi.org/10.7868/S0869565213190109
  49. Blanken N., Saleem M.S., Thoraval M.-J., Antonini C. Impact of compound drops: a perspective // Current Opinion in Colloid & Interface Science. 2020. V. 51. P. 101389. https://doi.org/10.1016/j.cocis.2020.09.002
  50. Hasegawa K., Nara T. Energy conservation during single droplet impact on deep liquid pool and jet formation // AIP Advances. 2019. V. 9. P. 085218. https://doi.org/10.1063/1.511358
  51. Xu Z., Wang T., Che Z. Cavity deformation and bubble entrapment during the impact of droplets on a liquid pool // Phys. Rev. 2022. V. E106. P. 055108. https://doi.org/10.1103/PhysRevE.106.055108
  52. Lee J.S., Park S.J., Lee J.H. et al. Origin and dynamics of vortex rings in drop splashing // Nature Commun. 2015. V. 6. P. 8187. https://doi.org/10.1038/ncomms9187
  53. Lee J.S., Weon B.M., Park S.J., Kim J.T., Pyo J., Fezzaa K., Je J.H. Air evolution during drop impact on liquid pool // Nature. Scientific Rep. 2020. V. 10. P. 5790. https://doi.org/10.1038/s41598-020-62705-5
  54. Castrejon-Pita A.A., Castrejon-Pita J.R., Hutchings I.M. Experimental observation of von Karman vortices during drop impact // Phys. Rev. E. 2012. V. 86. P. 045301(R). https://doi.org/10.1103/physreve.86.045301
  55. Brackbill J.U., Kothe D.B., Zemach C. A new method for modeling surface tension effects on fluid // J. Comp. Phys. 1992. V. 100. P. 335–354. https://doi.org/10.1016/0021-9991(92)90240-Y
  56. Wang H., Liu S., Bayeul-Laine A.-C., Murphy D., Katz J., Coutier-Delgosha O. Analysis of high-speed drop impact onto deep liquid pool // J. of Fluid Mech. 2023. V. 972. P. A31. https://doi.org/10.1017/jfm.2023.701
  57. Chashechkin Y.D, Ilinykh A.Y. Fine flow structure at the miscible fluids contact domain boundary in the impact mode of free-falling drop coalescence // Fluids. 2023. V. 8. № 10. P. 269. https://doi.org/10.3390/fluids8100269
  58. Ландау Л.Д., Лифшиц Е.М. Гидродинамика. М.: Наука, 1986.
  59. Muller P. The equations of oceanic motions. Cambridge: CUP, 2006.
  60. Vallis G.K. Atmospheric and oceanic fluid dynamics. Cambridge: CUP, 2017.
  61. Khatavkar V., Anderson P., Duineveld P., Meijer H. Diffuse-interface modelling of droplet impact // J. Fluid Mech. 2007. V. 581. P. 97–127. https://doi.org/10.1017/S002211200700554X
  62. Dinic J., Sharma V. Computational analysis of self-similar capillary-driven thinning and pinch-off dynamics during dripping using the volume-of-fluid method // Phys. Fluids. 2019. V. 31. P. 021211. https://doi.org/10.1063/1.5061715
  63. Guilizzoni M., Frontera G. Crater depth after the impact of multiple drops into deep pools // Fluids. 2022. V. 7. P. 50. https://doi.org/ 10.3390/fluids7020050
  64. Anthony C.R., Wee H., Garg V., Thete S.S., Kamat P.M., Wagoner B.W., Wilkes E.D., Notz P.K., Chen A.U., Suryo R., Sambath K., Panditaratne J.C., Liao Y.-C., Basaran O.A. Sharp interface methods for simulation and analysis of free surface flows with singularities: breakup and coalescence // Ann. Rev. Fluid Mech. 2023. V. 55. P. 707–747. https://doi.org/10.1146/annurev-fluid-120720014714
  65. Zhang Y.J., Liu P.Q., Qu Q.L., Hu T.X. Energy conversion during the crown evolution of the drop impact upon films // Int. J. Multiph. Flow. 2019. V. 115. P. 40–61. https://doi.org/10.1016/j.ijmultiphaseflow.2019.03.023
  66. Ma H., Liu C., Li X., Huang H., Dong J. Deformation characteristics and energy conversion during droplet impact on a water surface // Phys. Fluids. 2019. V. 31. P. 062108. https://doi.org/10.1063/1.5099228
  67. Karim M.A., Suszynski W.J. Physics of dynamic contact line: Hydrodynamics theory versus molecular kinetic theory // Fluids. 2022. V. 7. P. 318. https://doi.org/10.3390/fluids7100318
  68. Feistel R., Harvey A.H., Pawlowicz R. International Association for the Properties of Water and Steam. Advisory Note No. 6: Relationship between various IAPWS documents and the International Thermodynamic Equation of Seawater – 2010 (TEOS-10). 2016 September 1–5, Dresden, Germany.
  69. Feistel R. Thermodynamic properties of seawater, ice and humid air: TEOS-10, before and beyond // Ocean Sciences. 2018. V. 14. P. 471–502.
  70. Harvey A.H., Hruby J., Meier K. Improved and always improving: reference formulations for thermophysical properties of water // J. of Phys. and Chem. Ref. Data. 2023. V. 52. P. 011501. https://doi.org/ 10.1063/5.0125524
  71. Eisenberg D., Kauzmann W. The Structure and Properties of Water (Oxford Classic Texts in the Physical Sciences). Oxford: Oxford University Press, 2005.
  72. Teschke O., de Souza E.F. Water molecule clusters measured at water/air interfaces using atomic force microscopy // Phys. Chem. Chem. Phys. 2005. V. 7. № 22. P. 3856–3865. https://doi.org/10.1039/B511257E
  73. Bunkin N.F., Suyazov N.V., Shkirin A.V., Ignat’ev P.S., Indukaev K.V. Study of Nanostructure of highly purified water by measuring scattering matrix elements of laser radiation // Phys. Wave Phenom. 2008. V. 16. P. 243–260. https://doi.org/10.3103/S1541308X08040018
  74. Malenkov G.G. Structure and dynamics of surfaces of thin films and water microdroplets // Colloid Journal. 2010. V. 72. № 5. P. 649–659. https://doi.org/10.1134/S1061933X1005011X
  75. Chashechkin Y.D., Ochirov A.A. Periodic flows in a viscous stratified fluid in a homogeneous gravitational field // Mathematics. 2023. V. 11. P. 4443. https://doi.org/10.3390/math11214443
  76. Chashechkin Yu.D. Conventional partial and new complete solutions of the fundamental equations of fluid mechanics in the problem of periodic internal waves with accompanying ligaments generation // Mathematics. 2021. V. 9. № 6. P. 586. https://doi.org/10.3390/math9060586
  77. Chashechkin Yu.D. Singularly perturbed components of flows – linear precursors of shock waves // Math. Model. Nat. Phenom. 2018. V. 13. № 2. P. 1–29. https://doi.org/10.1051/mmnp/2018020
  78. Ильиных А.Ю., Чашечкин Ю.Д. Гидродинамика погружающейся капли: линейчатые структуры на поверхности венца // Изв. РАН. МЖГ. 2017. № 2. С. 152–165. https://doi.org/10.1134/S0015462817020144
  79. Vlahovska P.M. Electrohydrodynamics of drops and vesicles // Ann. Rev. of Fluid Mech. 2019. V. 51. P. 305–330. https://doi.org/10.1146/annurev-fluid-122316050120
  80. Notz P.K., Basaran O.A. Dynamics of drop formation in an electric field // J. of Colloid and Interface Sci. 1999. V. 213. № 1. P. 218–237. https://doi.org/10.1006/jcis.1999.6136
  81. Li E.Q, Thoraval M.-J., Marston J.O., Thoroddsen S.T. Early azimuthal instability during drop impact // J. Fluid Mech. 2018. V. 848. P. 821–835. https://doi.org/10.1017/jfm.2018.383
  82. Чашечкин Ю.Д. Пакеты капиллярных и акустических волн импакта капли // Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2021. T. 94. № 1. С. 73–92. https://doi.org/10.18698/1812-3368-2021-1-73-92
  83. Chashechkin Yu. D., Ochirov A. A. Periodic waves and ligaments on the surface of a viscous exponentially stratified fluid in a uniform gravity field // Axioms. 2022. V. 11. № 8. P. 402.
  84. Rein M. Phenomena of liquid drop impact on solid and liquid surfaces // Fluid Dyn. Research. 1993. V. 12. № 2. P. 61–93.
  85. Lee Y., Shin S., Choi G., Jeon H., Kim Y., Kim H. Symmetry breaking of Worthington jets by gradients in liquid pool depth // Phys. Fluids. 2020. V. 32. P. 112104. https://doi.org/ 10.1063/5.0028067
  86. Deegan R.D. Wavelength selection in the crown splash // Phys. of Fluids. 2010. V. 22. P. 122105. https://doi.org/10.1063/1.3526743
  87. Оkabe J., Inoue S. The Generation of Vortex Ring // Rep. Res. Inst. Appl. Mech. 1960. V. 8. № 32. P. 91–101.
  88. Оkabe J., Inoue S. The Generation of Vortex Rings II // Rep. Res. Inst. Appl. Mech. 1961. V. 9. P. 147–161.
  89. Lee J.S., Weon B.M., Je J.H., Fezzaa K. How does an air film evolve into a bubble during drop impact? // Phys. Rev. Lett. 2012. V. 109. P. 204501. https://doi.org/10.1103/PhysRevLett.109.204501
  90. УИУ “ГФК ИПМех РАН”: Гидрофизический комплекс для моделирования гидродинамических процессов в окружающей среде и их воздействия на подводные технические объекты, а также распространения примесей в океане и атмосфере. Сайт: http://www.ipmnet.ru/uniqequip/gfk/#equip
  91. Васильев Л.А. Теневые методы. М.: Наука. 1968, 400 с.
  92. Deka H., Tsai P.H., Biswas G., Dalal A., Ray B., Wang A.-B. Dynamics of formation and oscillation of non-spherical drops // Chem. Engin. Science. 2019. V. 201. P. 413–423. https://doi.org/10.1016/j.ces.2019.03.008
  93. Jiang Х., Xu E., Meng X., Li H.Z. The effect of viscosity ratio on drop pinch-off dynamics in two-fluid flow // J. of Indust. and Engin. Chem. 2020. V. 91. P. 347–354. https://doi.org/10.1016/j.jiec.2020.08.019
  94. Thievenaz V., Sauret A. Pinch-off of viscoelastic particulate suspensions // Phys. Rev. Fluids. 2021. V. 6. P. L062301.
  95. Proc. Nat. Acad. Sci. USA. 2022. V. 119. № 13. P. e2120893119. https://doi.org/ 10.1073/pnas.2120893119
  96. Zhu P., Wang L. Droplet pinch-off with pressure fluctuations // Chem. Engin. Science. 2019. V. 196. P. 333–343. https://doi.org/10.1016/j.ces.2018.11.016
  97. Dockery J.D., Duygu Y.A., Dickerson A.K. Pendant drop motion and stability in vertical airflow // Phys. of Fluids. 2024. V. 36. P. 027107. https://doi.org/10.1063/5.0187843
  98. Majumder A., Ghosh D., Das P.K. Dynamics of drop formation, growth and pinching phenomena from a submerged nozzle // Chem. Engin. Science. 2021. V. 245. P. 116808. https://doi.org/10.1016/j.ces.2021.116808
  99. Cloupeau M., Prunet-Foch B. Electrostatic spraying of liquids: Main functioning modes // J. of Electrostatics. 1990. V. 25. № 2. P. 165–184. https://doi.org/10.1016/0304-3886(90)90025-q
  100. Eow J.S., Ghadiri M., Sharif A. Experimental studies of deformation and break-up of aqueous drops in high electric fields // Colloids and Surfaces A: Physicochem Eng. Aspects. 2003. V. 225. P. 193–210.
  101. Chashechkin Yu.D., Prokhorov V.E. High-resolution visualization of the gravitational separation of a water drop under an electrostatic field // Tech. Phys. 2023. V. 68. № 11. P. 1431–1441. https://doi.org/10.61011/JTF.2023.11.56485.151-23
  102. Agrawal M., Katiyar R.K., Karri B., Sahu K.C. Experimental investigation of a nonspherical water droplet falling in air // Phys. of Fluids. 2020. V. 32. № 11. P. 112105. https://doi.org/10.1063/5.0031642
  103. Jian Z., Channa M.A., Kherbeche A., Chizari H., Thoroddsen S.T., Thoraval M.J. To split or not to split: dynamics of an air disk formed under a drop impacting on a pool // Phys. Rev. Letters. 2020. V. 124. № 18. P. 184501. https://doi.org/10.1103/PhysRevLett.124.184501
  104. Chashechkin Yu.D., Ilinykh A.Y. Intrusive and impact modes of a falling drop coalescence with a target fluid at rest // Axioms. 2023. V. 12. № 4. P. 374. https://doi.org/10.3390/axioms12040374
  105. Rodriguez F., Mesler R. The penetration of drop-formed vortex rings into pools of liquid // J. of Colloid and Interface Sci. 1988. V. 121. № 1. P. 121–129.
  106. Peck B., Sigurdson L. The three-dimensional vortex structure of an impacting water drop // Phys. of Fluids. 1994. V. 6. № 2. P. 564–576.
  107. Zhang Y., Mu Z., Wei Y., Jamil H., Yang Y. Evolution of the heavy impacting droplet: Via a vortex ring to a bifurcation flower. Phys Fluids. 2021:113603. https://doi.org/10.1063/5.0064072
  108. Sharma S., Singh A.P., Basu S. On the dynamics of vortex–droplet co-axial interaction: insights into droplet and vortex dynamics // J. of Fluid Mech. 2021. V. 918. P. A37. https://doi.org/10.1017/jfm.2021.363
  109. Zou J., Wang P.F., Zhang T.R., Fu X. Experimental study of a drop bouncing on a liquid surface // Phys. of Fluids. 2011. V. 23. № 4. P. 044101. https://doi.org/10.1063/1.3575298
  110. Yu X., Zhang Y., Hu R., Luo X. Water droplet bouncing dynamics // Nano Energy. 2021. V. 81. P. 105647. https://doi.org/10.1016/j.nanoen.2020.105647
  111. Чашечкин Ю.Д. Эволюция тонкоструктурного распределение вещества свободно падающей капли в смешивающихся жидкостях // Изв. РАН. Физика атмосферы и океана. 2019. Т. 55. № 3. С. 67–77. https://doi.org/10.1134/S0001433819020026
  112. Kuhlman J.M., Hillen N.L. Droplet impact cavity film thickness measurements versus time after drop impact and cavity radius for thin static residual liquid layer thicknesses // Exp. Therm. Fluid Sci. 2016. V. 77. P. 246–256. https://doi.org/10.1016/j.expthermflusci.2016.04.020
  113. Чашечкин Ю.Д., Ильиных А.Ю. Визуализация областей контакта сред в течениях импакта капли с химическими реакциями // Доклады РАН. Физика, технические науки. 2021. Т. 500. С. 39–47. https://doi.org/10.31857/S2686740021050023
  114. Lherm V., Deguen R., Alboussie`re T., Landeau M. Rayleigh–Taylor instability in drop impact experiments // Phys. Rev. Fluids. 2021. V. 6. № 11. P. 110501. https://doi.org/10.1103/PhysRevFluids.6.110501
  115. Lherm V., Deguen R., Alboussie`re T., Landeau M. Rayleigh–Taylor instability in impact cratering experiments // J. Fluid Mech. 2022. V. 937. P. A20. https://doi.org/10.1017/jfm.2022.111
  116. Ильиных А.Ю., Чашечкин Ю.Д. Тонкая структура картины растекания свободно падающей капли в покоящейся жидкости // Изв. РАН. МЖГ. 2021. № 4. C. 3–8. https://doi.org/10.1134/S001546282104008X
  117. Rayleigh L. Some applications of photography // Nature. 1891. V. 44. P. 249–254. https://doi.org/10.1038/044249e0
  118. Чашечкин Ю.Д., Ильиных А.Ю. Перенос вещества капли в толщу принимающей жидкости в начальной стадии процесса слияния // Изв. РАН. МЖГ. 2023. № 1. C. 54–68. https://doi.org/10.31857/S056852812260031X
  119. Das S.K., Dalal A., Breuer M., Biswas G. Evolution of jets during drop impact on a deep liquid pool // Phys. Fluids. 2022. V. 34. № 2. P. 022110. https://doi.org/10.1063/5.0081064
  120. Ilinykh A.Y. Spreading of a multicomponent drop in water: solutions and suspensions // Fluid Dyn. & Mat. Proc. 2020. V. 16. № 4. P. 723–735. https://doi.org/10.32604/fdmp.2020.08987
  121. Charles G.E., Mason S.G. The mechanism of partial coalescence of liquid drops at liquid/liquid interfaces // J. of Colloid Science. 1960. V. 15. № 2. P. 105–122. https://doi.org/м10.1016/0095-8522(60)90012-x
  122. Savino R., Paterna D., Lappa M. Marangoni flotation of liquid droplets // J. of Fluid Mech. 2003. V. 479. P. 307–326. https://doi.org/м10.1017/S0022112002003610
  123. Chen X., Mandre S., Feng J.J. Partial coalescence between a drop and a liquid-liquid interface // Phys. of Fluids. 2006. V. 18. № 5. P. 051705. https://doi.org/10.1063/1.2201470
  124. Tang X., Saha A., Law C.K., Sun C. Bouncing drop on liquid film: dynamics of interfacial gas layer // Phys. Fluids. 2019. V. 31. № 1. P. 013304. https://doi.org/10.1063/1.5063257
  125. Wu Z., Hao J., Lu J., Xu L., Hu G., Floryan J.M. Small droplet bouncing on a deep pool // Phys. Fluids. 2020. V. 32. № 1. P. 012107. https://doi.org/10.1063/1.5132350
  126. Chashechkin Y.D., Ilinykh A.Y. Complete coalescence, partial bounce and rebound: different regimes resulting from the interaction of a free falling drop with a target fluid // Fluid Dyn. & Mat. Proc. 2020. V. 16. № 4. P. 801–811. https://doi.org/10.32604/fdmp.2020.09168
  127. Lakshman S., Tewes W., Harth K., Snoeijer J.H., Lohse D. Deformation and relaxation of viscous thin films under bouncing drops // J. of Fluid Mech. 2021. V. 920. P. A3. https://doi.org/10.1017/jfm.2021.378
  128. Sanjay V., Lakshman S., Chantelot P., Snoeijer J.H., Lohse D. Drop impact on viscous liquid films // J. of Fluid Mech. 2023. V. 958. P. A25. https://doi.org/10.1017/jfm.2023.13
  129. Kazachkov I. On the modeling of non-classical problems involving liquid jets and films and related heat transfer processes // Fluid Dyn. & Mat. Proc. 2019. V. 15. № 5. P. 491–507. https://doi.org/10.32604/fdmp.2019.06477
  130. Melikhov V.I., Melikhov O.I., Yakush S.E. Fluid mechanics and thermal physics of steam explosions. Moscow: IPMech RAS, 2020. [In Russian]
  131. Yakush S.E., Sivakov N.S., Melikhov V.I., Melikhov O.I. Modelling of water jet impact on molten metal // J. of Physics: Conference Series. 2021. V. 2119. P. 012073. https://doi.org/10.1088/1742-6596/2119/1/012073
  132. Yakush S.E., Sivakov N.S., Melikhov V.I., Melikhov O.I. Numerical modeling of water jet plunging in molten heavy metal pool // Mathematics. 2024. V. 12. P. 12. https:// doi.org/10.3390/math12010012
  133. Gillot G., Derec C., Genevaux J.-M., Simon L., Benyahia L. A new insight on a mechanism of airborne and underwater sound of a drop impacting a liquid surface // Phys. Fluids. 2020. V. 32. P. 062004. https://doi.org/10.1063/5.0010464
  134. Gillot G., Simon L., Genevaux J.-M., Benyahia L. Acoustic signatures and bubble entrainment mechanisms of a drop impacting a water surface with surfactant // Phys. Fluids. 2021. V. 33. P. 077114. https://doi.org/10.1063/5.0055361
  135. Prosperetti A., Crum L.A., Pumphrey H.C. The underwater noise of rain // J. Geophys. Res.: Oceans. 1989. V. 94. № C3. P. 3255–3259.
  136. Kathiravelu G., Lucke T., Nichols P. Rain drop measurement techniques: a review // Water. 2016. V. 8. № 1. P. 29. https://doi.org/10.3390/w8010029
  137. Prokhorov V.E. Acoustic shock emission in a collision of a drop with water surface // Fluid Dyn. & Mat. Proc. 2020. V. 16. № 4. P. 737–746. https://doi.org/10.32604/fdmp.2020.08988
  138. Prokhorov V.E. Acoustics of oscillating bubbles when a drop hits the water surface // Phys. Fluids. 2021. V. 33. P. 083314. https://doi.org/10.1063/5.0058582
  139. Friedrich J., Schafer M. Towards an acoustic simulation of a water drop impacting in a water pool // Flow Turbulence Combust. 2020. V. 105. P. 1231–1247. https://doi.org/10.1007/s10494-020-00130-4
  140. Beacham S.T., Tilger C.F., Oehlschlaeger M.A. Sound generation by water drop impact on surfaces // Exp. Thermal. and Fluid Science. 2020. V. 117. P. 110138. https://doi.org/10.1016/j.expthermflusci.2020.110138
  141. Phillips S., Agarwal A., Jordan P. The sound produced by a dripping tap is driven by resonant oscillations of an entrapped air bubble // Scientific Reports. 2018. V. 8. № 1. P. 1–12. https://doi.org/10.1038/s41598-018-27913-0
  142. Чашечкин Ю.Д., Прохоров В.Е. Акустика периодических и множественных ударов капель о водную поверхность // Акустический журнал. 2023. T.69. № 3. C. 330–339. https://doi.org/10.31857/S0320791922700071
  143. Alkhatib M.I.I., Amin T., Kwin C.T., Hermawan A.A., R.N. Pauwels V. Towards the development of a citizens’ science-based acoustic rainfall sensing system // 633. P. 130973. https://doi.org/10.1016/j.jhydrol.2024.130973
  144. Xie F., Tikhonov D. S., Schnell M. Electric nuclear quadrupole coupling reveals dissociation of HCl with a few water molecules // Science. 2024. V. 384. № 6703. P. 1435–1440. https://doi.org/10.1126/science.ado7049

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025