ЗАКОНОМЕРНОСТИ РАСПРЕДЕЛЕНИЯ ВЕЩЕСТВА СВОБОДНО ПАДАЮЩЕЙ ОКРАШЕННОЙ КАПЛИ ВПРОЗРАЧНОЙПРИНИМАЮЩЕЙЖИДКОСТИ (ОБЗОР)
- Авторы: Чашечкин Ю.Д.1
-
Учреждения:
- Институт проблем механики им. А.Ю. Ишлинского РАН
- Выпуск: № 1 (2025)
- Страницы: 22-65
- Раздел: Статьи
- URL: https://snv63.ru/1024-7084/article/view/683780
- DOI: https://doi.org/10.31857/S1024708425010025
- EDN: https://elibrary.ru/DUHUWQ
- ID: 683780
Цитировать
Аннотация
Анализируются результаты визуализации процессов переноса вещества свободно падающих окрашенных капель, смешивающихся с прозрачной принимающей жидкостью. Параметризация проводится на основе системы фундаментальных уравнений механики жидкостей, включающей уравнения состояния для плотности и потенциала Гиббса. Обсуждается вклад различных механизмов передачи энергии: макроскопических (с течениями, волнами, вихрями) и микроскопических (диссипативных и конверсионных). Влияние радиационного переноса не рассматривается. Описывается техника современного эксперимента, позволяющая одновременно с высокоразрешающей видеорегистрацией цветных картин течения записывать сопутствующие акустические сигналы. Анализируется структура, динамика и энергетика течений при различных значениях отношений плотностей сливающихся жидкостей, кинетической и потенциальной поверхностной энергии (ППЭ) капли. Определены условия установления выделенных режимов: интрузивного втекания капли, импактного распада на волокна и промежуточного режима зависания и отскока. При малой контактной скорости, в интрузивном режиме, плавно втекающая в толщу жидкости капля образует связный объем. В импактном режиме в пятне контакта образуются тонкие струйки, содержащие вещество обеих сред. Струйки пронзают дно и стенки каверны, растекаются по поверхности жидкости и вылетают в воздух. Волокнистые следы струек образуют линейчатые и ретикулярные структуры на поверхности и в толще жидкости. В промежуточном режиме капля может зависнуть на поверхности жидкости, соприкоснуться, частично слиться и отскочить с потерей вещества. Прослежена эволюция газовых полостей и пузырьков, излучающие акустические пакеты. Отмечается необходимость учета всех механизмов передачи полной энергии при описании гидродинамики и акустики капельных течений.
Ключевые слова
Об авторах
Ю. Д. Чашечкин
Институт проблем механики им. А.Ю. Ишлинского РАН
Email: chakin@ipmnet.ru
Москва, Россия
Список литературы
- Thomson W. Vortex atom // Mathematical and Physical Papers. Cambridge: Cambridge University Press, 1882–1911.
- Silliman R.H. William Thomson: Smoke Rings and Nineteenth-Century Atomism // ISIS. 1963. V. 54. № 4. P. 461–474. http://www.jstor.org/stable/228151
- Helmholtz H. About integrals of the hydrodynamic equations, which correspond to the vortex movements // Journal of pure and applied mathematics. 1858. V. 55. P. 25–55 (in German).
- Darrigol O. Worlds of flow. A history of hydrodynamics from the Bernoullis to Prandtl. Oxford: University Press, 2005.
- Rogers W.B. On the formation of rotating rings by air and liquids under certain conditions of discharge // Amer. J. Sci., Second Ser. 1858. V. 26. P. 246–258.
- Guthrie F. On drops // Proc. R. Soc. Lond. 1863. V. 13. P. 444–457.
- Guthrie F. On drops – Part II // Proc. R. Soc. Lond. 1863. V. 13. P. 457–483.
- Thomson J.J., Newall H.F. On the formation of vortex rings by drops falling into liquids, and some allied phenomena // Proc. R. Soc. Lond. 1885. V. 29. P. 417–436.
- Thompson D.W. On Growth and Form. 2nd ed. Mineola: Dover, 1992.
- СтепановаЕ.В.,ЧашечкинЮ.Д.Переносмаркеравсоставномвихре//Изв.РАН.МЖГ.2010.№6.С.12–29. https://doi.org/10.1134/S0015462810060025
- Saha A., Wei Y., Tang X., Law C.K. Kinematics of vortex ring generated by a drop upon impacting a liquid pool // J. of Fluid Mech. 2019. V. 875. P. 842–853. https://doi.org/10.1017/jfm.2019.503
- Беляев В.С., Савинков А.М., Чашечкин Ю.Д. Динамика ламинарных вихревых колец в стратифицированной жидкости // ПМТФ. 1987. Т. 28. № 1. С. 37–47. https://doi.org/10.1007/BF00918769
- Lenard Ph. Uber die Schwingungen fallender Tropfen // Ann. Phys. Chem. 1887. V. 30. P. 209–243. https://doi.org/10.1515/9783112361986-014
- Rayleigh L. On the capillary phenomena of jets // Proc. R. Soc. Lond. 1879. V. 29. P. 71–97.
- Коршунов А. И. Колебания оторвавшейся от перемычки капли воды // Изв. РАН. МЖГ. 2015. № 4. C. 139–143. https://doi.org/10.1134/S001546281504013416
- Hu L., She L., Fang Y., Su R., Fu X. Deformation characteristics of droplet generated by Rayleigh jet breakup // AIP Advances. 2021. V. 11. P. 045310. https://doi.org/10.1063/5.0045196
- Zhang B., Ling Y., Tsai P.-H., Wang A.-B., Popinet S., Zaleski S. Short-term oscillation and falling dynamics for a water drop dripping in quiescent air // Phys. Rev. Fluids. 2019. V. 4. P. 123604. https://doi.org/10.1103/PhysRevFluids.4.123604
- Ширяев А.А. О собственных частотах осцилляций поверхности свободнопадающей составной капли идеальной жидкости // Изв. РАН. МЖГ. 2020. № 3. С. 3–11.
- Григорьев А.И., Колбнева Н.Ю., Ширяева С.О. Об акустическом излучении слабо заряженных капель, осциллирующих во внешнем однородном электростатическом поле // Изв. РАН. МЖГ. 2022. № 5, С. 1–14. https://doi.org/10.31857/S0568528122050061 https://doi.org/10.1134/S0015462822050068
- Григорьев А.И., Колбнева Н.Ю., Ширяева С.О. Квадрупольное электромагнитное излучение заряженной капли, осциллирующей в суперпозиции коллинеарных гравитационного и электростатического полей // Изв. РАН. МЖГ. 2019. № 5. С. 70–82. https://doi.org/10.1134/S0568528119050049
- Worthington A.M., Cole R.S. Impact with a liquid surface, studied by the aid of instantaneous photography // Phil. Trans. R. Soc. Lond. A. 1897. V. 189. P. 137–148. https://doi.org/10.1098/rsta.1897.0005
- Worthington A.M. A study of splashes. London: Longmans, Green and Co, 1908.
- Castillo-Orozco E., Davanlou A., Choudhury P.K., Kumar R. Droplet impact on deep liquid pools: Rayleigh jet to formation of secondary droplets // Phys. Rev. 2015. V. E92. P. 053022. https://doi.org/10.1103/PhysRevE.92.053022
- Ogawa A., Utsuno K., Mutou M., Kouzen S., Shimotake Y., Satou Y. Morphological study of cavity and Worthington jet formations for newtonian and non-newtonian liquids // Partic. Science and Tech. 2006. V. 24. P. 181–225.
- Майер В.В. Кумулятивный эффект в простых опытах. М.: Наука, 1989. 194 с.
- Cai Y.K. Phenomena of a liquid drop falling to a liquid surface // Exp. in Fluids. 1989. V. 7. P. 388–394. https://doi.org/10.1007/BF00193420
- Shin J., McMahon T.A. The tuning of a splash // Phys. Fluids. 1990. V. 2. P. 1312–1317. https://doi.org/10.1063/1.857581
- Michon G.-J., Josserand C., Seon T. Jet dynamics post drop impact on a deep pool // Phys. Rev. Fluids. 2017. V. 2. P. 023601. https://doi.org/10.1103/PhysRevFluids.2.023601
- Zeleny J. The Electrical Discharge from Liquid Points, and a Hydrostatic Method of Measuring the Electric Intensity at Their Surfaces // Phys. Rev. 1914. V. 3. № 2. P. 69–91. https://doi.org/10.1103/physrev.3.69
- Zeleny J. On the conditions of instability of electrified drops, with applications to the electrical discharge from liquid points // Proc. Cambridge Philos. Soc. 1915. V. 18. P. 71–83.
- Zeleny J. Instability of Electrified Liquid Surfaces // Phys. Rev. 1917. V. 10. № 1. P. 1–6. https://doi.org/10.1103/physrev.10.1
- Jones A.T. The sound of splashes // Science. 1920. V. 52. P. 295–296.
- Knudsen P.V.O., Alford R.S., Emling J.W. Underwater ambient noise // J. of Marine Res. 1948. V. 7. № 3. P. 410–429.
- Prosperetti A., Oguz H.N. The impact of drops on liquid surfaces and the underwater noise of rain // Ann. Rev. Fluid Mech. 1993. V. 25. P. 577–602.
- Prokhorov V.E. Underwater gas bubbles produced by droplet impact: Mechanism to trigger volumetric oscillations // Phys. of Fluids. 2023. V. 35. № 3. P. 033314. https://doi.org/10.1063/5.0140484
- Howe B.M., Miksis-Olds J., Rehm E., Sagen H., Worcester P.F., Haralabus G. Observing the oceans acoustically // Frontiers in Marine Science. 2019. V. 6. P. 426. https://doi.org/10.3389/fmars.2019.00426
- Liu S., Li Q., Shang D., Tang R., Zhang Q. Measurement of underwater acoustic energy radiated by single raindrops // Sensors. 2021. V. 21. № 8. P. 2687.
- Schwock F., Abadi S. Characterizing underwater noise during rain at the northeast Pacific continental margin // J. of the Acous. Soc. of America. 2021. V. 149. P. 4579–4595. https://doi.org/10.1121/10.0005440
- Edgerton H.E., Killian J.R.Jr. Flash. Boston: Hale, Cushman and Flint, 1939.
- Ersoy N.E., Eslamian M. Capillary surface wave formation and mixing of miscible liquids during droplet impact onto a liquid film // Phys. of Fluids. 2019. V. 31. № 1. P. 012107.
- Chashechkin Yu.D. Foundations of engineering mathematics applied for fluid flows // Axioms. 2021. V. 10. P. 286. https://doi.org/10.3390/axioms10040286
- Veron F. Ocean Spray // Ann. Rev. of Fluid Mech. 2015. V. 47. P. 507–538. https://doi.org/10.1146/annurev-fluid-010814-014651
- Zhou K., Wang S., Lu X., Chen H., Wang L., Chen J., Yang X., Wang X. Production flux and chemical characteristics of spray aerosol generated from raindrop impact on seawater and soil // J. Geophys. Res. 2020. V. 125. № 13. P. e2019JD032052. https://doi.org/10.1029/2019JD032052
- Bourouiba L. The fluid dynamics of disease transmission // Ann. Rev. Fluid Mech. 2021. V. 53. P. 473–508. https://doi.org/10.1146/annurev-fluid-060220-113712
- Bhagat R.B., Wykes M.S.D., Dalziel S.B., Linden P.F. Effects of ventilation on the indoor spread of COVID-19 // J. Fluid Mech. 2020. V. 903. F1. https://doi.org/10.1017/jfm.2020.720
- Marcotte F., Michon G.-J., Seon T., Josserand C. Ejecta, corolla, and splashes from drop impacts on viscous fluids // Phys. Rev. Lett. 2019. V. 122. № 1. P. 014501.
- Guo Zhen Z., Zhao Hui L., De Yong F. Experiments on ring wave packet generated by water drop // Chin. Sci. Bull. 2008. V. 53. P. 1634–1638. https://doi.org/10.1007/s11434-008-0246
- Чашечкин Ю. Д., Прохоров В. Е. Гидродинамика удара капли: короткие волны на поверхности венца // ДАН. 2013. Т. 451. № 1. С. 41–45. https://doi.org/10.7868/S0869565213190109
- Blanken N., Saleem M.S., Thoraval M.-J., Antonini C. Impact of compound drops: a perspective // Current Opinion in Colloid & Interface Science. 2020. V. 51. P. 101389. https://doi.org/10.1016/j.cocis.2020.09.002
- Hasegawa K., Nara T. Energy conservation during single droplet impact on deep liquid pool and jet formation // AIP Advances. 2019. V. 9. P. 085218. https://doi.org/10.1063/1.511358
- Xu Z., Wang T., Che Z. Cavity deformation and bubble entrapment during the impact of droplets on a liquid pool // Phys. Rev. 2022. V. E106. P. 055108. https://doi.org/10.1103/PhysRevE.106.055108
- Lee J.S., Park S.J., Lee J.H. et al. Origin and dynamics of vortex rings in drop splashing // Nature Commun. 2015. V. 6. P. 8187. https://doi.org/10.1038/ncomms9187
- Lee J.S., Weon B.M., Park S.J., Kim J.T., Pyo J., Fezzaa K., Je J.H. Air evolution during drop impact on liquid pool // Nature. Scientific Rep. 2020. V. 10. P. 5790. https://doi.org/10.1038/s41598-020-62705-5
- Castrejon-Pita A.A., Castrejon-Pita J.R., Hutchings I.M. Experimental observation of von Karman vortices during drop impact // Phys. Rev. E. 2012. V. 86. P. 045301(R). https://doi.org/10.1103/physreve.86.045301
- Brackbill J.U., Kothe D.B., Zemach C. A new method for modeling surface tension effects on fluid // J. Comp. Phys. 1992. V. 100. P. 335–354. https://doi.org/10.1016/0021-9991(92)90240-Y
- Wang H., Liu S., Bayeul-Laine A.-C., Murphy D., Katz J., Coutier-Delgosha O. Analysis of high-speed drop impact onto deep liquid pool // J. of Fluid Mech. 2023. V. 972. P. A31. https://doi.org/10.1017/jfm.2023.701
- Chashechkin Y.D, Ilinykh A.Y. Fine flow structure at the miscible fluids contact domain boundary in the impact mode of free-falling drop coalescence // Fluids. 2023. V. 8. № 10. P. 269. https://doi.org/10.3390/fluids8100269
- Ландау Л.Д., Лифшиц Е.М. Гидродинамика. М.: Наука, 1986.
- Muller P. The equations of oceanic motions. Cambridge: CUP, 2006.
- Vallis G.K. Atmospheric and oceanic fluid dynamics. Cambridge: CUP, 2017.
- Khatavkar V., Anderson P., Duineveld P., Meijer H. Diffuse-interface modelling of droplet impact // J. Fluid Mech. 2007. V. 581. P. 97–127. https://doi.org/10.1017/S002211200700554X
- Dinic J., Sharma V. Computational analysis of self-similar capillary-driven thinning and pinch-off dynamics during dripping using the volume-of-fluid method // Phys. Fluids. 2019. V. 31. P. 021211. https://doi.org/10.1063/1.5061715
- Guilizzoni M., Frontera G. Crater depth after the impact of multiple drops into deep pools // Fluids. 2022. V. 7. P. 50. https://doi.org/ 10.3390/fluids7020050
- Anthony C.R., Wee H., Garg V., Thete S.S., Kamat P.M., Wagoner B.W., Wilkes E.D., Notz P.K., Chen A.U., Suryo R., Sambath K., Panditaratne J.C., Liao Y.-C., Basaran O.A. Sharp interface methods for simulation and analysis of free surface flows with singularities: breakup and coalescence // Ann. Rev. Fluid Mech. 2023. V. 55. P. 707–747. https://doi.org/10.1146/annurev-fluid-120720014714
- Zhang Y.J., Liu P.Q., Qu Q.L., Hu T.X. Energy conversion during the crown evolution of the drop impact upon films // Int. J. Multiph. Flow. 2019. V. 115. P. 40–61. https://doi.org/10.1016/j.ijmultiphaseflow.2019.03.023
- Ma H., Liu C., Li X., Huang H., Dong J. Deformation characteristics and energy conversion during droplet impact on a water surface // Phys. Fluids. 2019. V. 31. P. 062108. https://doi.org/10.1063/1.5099228
- Karim M.A., Suszynski W.J. Physics of dynamic contact line: Hydrodynamics theory versus molecular kinetic theory // Fluids. 2022. V. 7. P. 318. https://doi.org/10.3390/fluids7100318
- Feistel R., Harvey A.H., Pawlowicz R. International Association for the Properties of Water and Steam. Advisory Note No. 6: Relationship between various IAPWS documents and the International Thermodynamic Equation of Seawater – 2010 (TEOS-10). 2016 September 1–5, Dresden, Germany.
- Feistel R. Thermodynamic properties of seawater, ice and humid air: TEOS-10, before and beyond // Ocean Sciences. 2018. V. 14. P. 471–502.
- Harvey A.H., Hruby J., Meier K. Improved and always improving: reference formulations for thermophysical properties of water // J. of Phys. and Chem. Ref. Data. 2023. V. 52. P. 011501. https://doi.org/ 10.1063/5.0125524
- Eisenberg D., Kauzmann W. The Structure and Properties of Water (Oxford Classic Texts in the Physical Sciences). Oxford: Oxford University Press, 2005.
- Teschke O., de Souza E.F. Water molecule clusters measured at water/air interfaces using atomic force microscopy // Phys. Chem. Chem. Phys. 2005. V. 7. № 22. P. 3856–3865. https://doi.org/10.1039/B511257E
- Bunkin N.F., Suyazov N.V., Shkirin A.V., Ignat’ev P.S., Indukaev K.V. Study of Nanostructure of highly purified water by measuring scattering matrix elements of laser radiation // Phys. Wave Phenom. 2008. V. 16. P. 243–260. https://doi.org/10.3103/S1541308X08040018
- Malenkov G.G. Structure and dynamics of surfaces of thin films and water microdroplets // Colloid Journal. 2010. V. 72. № 5. P. 649–659. https://doi.org/10.1134/S1061933X1005011X
- Chashechkin Y.D., Ochirov A.A. Periodic flows in a viscous stratified fluid in a homogeneous gravitational field // Mathematics. 2023. V. 11. P. 4443. https://doi.org/10.3390/math11214443
- Chashechkin Yu.D. Conventional partial and new complete solutions of the fundamental equations of fluid mechanics in the problem of periodic internal waves with accompanying ligaments generation // Mathematics. 2021. V. 9. № 6. P. 586. https://doi.org/10.3390/math9060586
- Chashechkin Yu.D. Singularly perturbed components of flows – linear precursors of shock waves // Math. Model. Nat. Phenom. 2018. V. 13. № 2. P. 1–29. https://doi.org/10.1051/mmnp/2018020
- Ильиных А.Ю., Чашечкин Ю.Д. Гидродинамика погружающейся капли: линейчатые структуры на поверхности венца // Изв. РАН. МЖГ. 2017. № 2. С. 152–165. https://doi.org/10.1134/S0015462817020144
- Vlahovska P.M. Electrohydrodynamics of drops and vesicles // Ann. Rev. of Fluid Mech. 2019. V. 51. P. 305–330. https://doi.org/10.1146/annurev-fluid-122316050120
- Notz P.K., Basaran O.A. Dynamics of drop formation in an electric field // J. of Colloid and Interface Sci. 1999. V. 213. № 1. P. 218–237. https://doi.org/10.1006/jcis.1999.6136
- Li E.Q, Thoraval M.-J., Marston J.O., Thoroddsen S.T. Early azimuthal instability during drop impact // J. Fluid Mech. 2018. V. 848. P. 821–835. https://doi.org/10.1017/jfm.2018.383
- Чашечкин Ю.Д. Пакеты капиллярных и акустических волн импакта капли // Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2021. T. 94. № 1. С. 73–92. https://doi.org/10.18698/1812-3368-2021-1-73-92
- Chashechkin Yu. D., Ochirov A. A. Periodic waves and ligaments on the surface of a viscous exponentially stratified fluid in a uniform gravity field // Axioms. 2022. V. 11. № 8. P. 402.
- Rein M. Phenomena of liquid drop impact on solid and liquid surfaces // Fluid Dyn. Research. 1993. V. 12. № 2. P. 61–93.
- Lee Y., Shin S., Choi G., Jeon H., Kim Y., Kim H. Symmetry breaking of Worthington jets by gradients in liquid pool depth // Phys. Fluids. 2020. V. 32. P. 112104. https://doi.org/ 10.1063/5.0028067
- Deegan R.D. Wavelength selection in the crown splash // Phys. of Fluids. 2010. V. 22. P. 122105. https://doi.org/10.1063/1.3526743
- Оkabe J., Inoue S. The Generation of Vortex Ring // Rep. Res. Inst. Appl. Mech. 1960. V. 8. № 32. P. 91–101.
- Оkabe J., Inoue S. The Generation of Vortex Rings II // Rep. Res. Inst. Appl. Mech. 1961. V. 9. P. 147–161.
- Lee J.S., Weon B.M., Je J.H., Fezzaa K. How does an air film evolve into a bubble during drop impact? // Phys. Rev. Lett. 2012. V. 109. P. 204501. https://doi.org/10.1103/PhysRevLett.109.204501
- УИУ “ГФК ИПМех РАН”: Гидрофизический комплекс для моделирования гидродинамических процессов в окружающей среде и их воздействия на подводные технические объекты, а также распространения примесей в океане и атмосфере. Сайт: http://www.ipmnet.ru/uniqequip/gfk/#equip
- Васильев Л.А. Теневые методы. М.: Наука. 1968, 400 с.
- Deka H., Tsai P.H., Biswas G., Dalal A., Ray B., Wang A.-B. Dynamics of formation and oscillation of non-spherical drops // Chem. Engin. Science. 2019. V. 201. P. 413–423. https://doi.org/10.1016/j.ces.2019.03.008
- Jiang Х., Xu E., Meng X., Li H.Z. The effect of viscosity ratio on drop pinch-off dynamics in two-fluid flow // J. of Indust. and Engin. Chem. 2020. V. 91. P. 347–354. https://doi.org/10.1016/j.jiec.2020.08.019
- Thievenaz V., Sauret A. Pinch-off of viscoelastic particulate suspensions // Phys. Rev. Fluids. 2021. V. 6. P. L062301.
- Proc. Nat. Acad. Sci. USA. 2022. V. 119. № 13. P. e2120893119. https://doi.org/ 10.1073/pnas.2120893119
- Zhu P., Wang L. Droplet pinch-off with pressure fluctuations // Chem. Engin. Science. 2019. V. 196. P. 333–343. https://doi.org/10.1016/j.ces.2018.11.016
- Dockery J.D., Duygu Y.A., Dickerson A.K. Pendant drop motion and stability in vertical airflow // Phys. of Fluids. 2024. V. 36. P. 027107. https://doi.org/10.1063/5.0187843
- Majumder A., Ghosh D., Das P.K. Dynamics of drop formation, growth and pinching phenomena from a submerged nozzle // Chem. Engin. Science. 2021. V. 245. P. 116808. https://doi.org/10.1016/j.ces.2021.116808
- Cloupeau M., Prunet-Foch B. Electrostatic spraying of liquids: Main functioning modes // J. of Electrostatics. 1990. V. 25. № 2. P. 165–184. https://doi.org/10.1016/0304-3886(90)90025-q
- Eow J.S., Ghadiri M., Sharif A. Experimental studies of deformation and break-up of aqueous drops in high electric fields // Colloids and Surfaces A: Physicochem Eng. Aspects. 2003. V. 225. P. 193–210.
- Chashechkin Yu.D., Prokhorov V.E. High-resolution visualization of the gravitational separation of a water drop under an electrostatic field // Tech. Phys. 2023. V. 68. № 11. P. 1431–1441. https://doi.org/10.61011/JTF.2023.11.56485.151-23
- Agrawal M., Katiyar R.K., Karri B., Sahu K.C. Experimental investigation of a nonspherical water droplet falling in air // Phys. of Fluids. 2020. V. 32. № 11. P. 112105. https://doi.org/10.1063/5.0031642
- Jian Z., Channa M.A., Kherbeche A., Chizari H., Thoroddsen S.T., Thoraval M.J. To split or not to split: dynamics of an air disk formed under a drop impacting on a pool // Phys. Rev. Letters. 2020. V. 124. № 18. P. 184501. https://doi.org/10.1103/PhysRevLett.124.184501
- Chashechkin Yu.D., Ilinykh A.Y. Intrusive and impact modes of a falling drop coalescence with a target fluid at rest // Axioms. 2023. V. 12. № 4. P. 374. https://doi.org/10.3390/axioms12040374
- Rodriguez F., Mesler R. The penetration of drop-formed vortex rings into pools of liquid // J. of Colloid and Interface Sci. 1988. V. 121. № 1. P. 121–129.
- Peck B., Sigurdson L. The three-dimensional vortex structure of an impacting water drop // Phys. of Fluids. 1994. V. 6. № 2. P. 564–576.
- Zhang Y., Mu Z., Wei Y., Jamil H., Yang Y. Evolution of the heavy impacting droplet: Via a vortex ring to a bifurcation flower. Phys Fluids. 2021:113603. https://doi.org/10.1063/5.0064072
- Sharma S., Singh A.P., Basu S. On the dynamics of vortex–droplet co-axial interaction: insights into droplet and vortex dynamics // J. of Fluid Mech. 2021. V. 918. P. A37. https://doi.org/10.1017/jfm.2021.363
- Zou J., Wang P.F., Zhang T.R., Fu X. Experimental study of a drop bouncing on a liquid surface // Phys. of Fluids. 2011. V. 23. № 4. P. 044101. https://doi.org/10.1063/1.3575298
- Yu X., Zhang Y., Hu R., Luo X. Water droplet bouncing dynamics // Nano Energy. 2021. V. 81. P. 105647. https://doi.org/10.1016/j.nanoen.2020.105647
- Чашечкин Ю.Д. Эволюция тонкоструктурного распределение вещества свободно падающей капли в смешивающихся жидкостях // Изв. РАН. Физика атмосферы и океана. 2019. Т. 55. № 3. С. 67–77. https://doi.org/10.1134/S0001433819020026
- Kuhlman J.M., Hillen N.L. Droplet impact cavity film thickness measurements versus time after drop impact and cavity radius for thin static residual liquid layer thicknesses // Exp. Therm. Fluid Sci. 2016. V. 77. P. 246–256. https://doi.org/10.1016/j.expthermflusci.2016.04.020
- Чашечкин Ю.Д., Ильиных А.Ю. Визуализация областей контакта сред в течениях импакта капли с химическими реакциями // Доклады РАН. Физика, технические науки. 2021. Т. 500. С. 39–47. https://doi.org/10.31857/S2686740021050023
- Lherm V., Deguen R., Alboussie`re T., Landeau M. Rayleigh–Taylor instability in drop impact experiments // Phys. Rev. Fluids. 2021. V. 6. № 11. P. 110501. https://doi.org/10.1103/PhysRevFluids.6.110501
- Lherm V., Deguen R., Alboussie`re T., Landeau M. Rayleigh–Taylor instability in impact cratering experiments // J. Fluid Mech. 2022. V. 937. P. A20. https://doi.org/10.1017/jfm.2022.111
- Ильиных А.Ю., Чашечкин Ю.Д. Тонкая структура картины растекания свободно падающей капли в покоящейся жидкости // Изв. РАН. МЖГ. 2021. № 4. C. 3–8. https://doi.org/10.1134/S001546282104008X
- Rayleigh L. Some applications of photography // Nature. 1891. V. 44. P. 249–254. https://doi.org/10.1038/044249e0
- Чашечкин Ю.Д., Ильиных А.Ю. Перенос вещества капли в толщу принимающей жидкости в начальной стадии процесса слияния // Изв. РАН. МЖГ. 2023. № 1. C. 54–68. https://doi.org/10.31857/S056852812260031X
- Das S.K., Dalal A., Breuer M., Biswas G. Evolution of jets during drop impact on a deep liquid pool // Phys. Fluids. 2022. V. 34. № 2. P. 022110. https://doi.org/10.1063/5.0081064
- Ilinykh A.Y. Spreading of a multicomponent drop in water: solutions and suspensions // Fluid Dyn. & Mat. Proc. 2020. V. 16. № 4. P. 723–735. https://doi.org/10.32604/fdmp.2020.08987
- Charles G.E., Mason S.G. The mechanism of partial coalescence of liquid drops at liquid/liquid interfaces // J. of Colloid Science. 1960. V. 15. № 2. P. 105–122. https://doi.org/м10.1016/0095-8522(60)90012-x
- Savino R., Paterna D., Lappa M. Marangoni flotation of liquid droplets // J. of Fluid Mech. 2003. V. 479. P. 307–326. https://doi.org/м10.1017/S0022112002003610
- Chen X., Mandre S., Feng J.J. Partial coalescence between a drop and a liquid-liquid interface // Phys. of Fluids. 2006. V. 18. № 5. P. 051705. https://doi.org/10.1063/1.2201470
- Tang X., Saha A., Law C.K., Sun C. Bouncing drop on liquid film: dynamics of interfacial gas layer // Phys. Fluids. 2019. V. 31. № 1. P. 013304. https://doi.org/10.1063/1.5063257
- Wu Z., Hao J., Lu J., Xu L., Hu G., Floryan J.M. Small droplet bouncing on a deep pool // Phys. Fluids. 2020. V. 32. № 1. P. 012107. https://doi.org/10.1063/1.5132350
- Chashechkin Y.D., Ilinykh A.Y. Complete coalescence, partial bounce and rebound: different regimes resulting from the interaction of a free falling drop with a target fluid // Fluid Dyn. & Mat. Proc. 2020. V. 16. № 4. P. 801–811. https://doi.org/10.32604/fdmp.2020.09168
- Lakshman S., Tewes W., Harth K., Snoeijer J.H., Lohse D. Deformation and relaxation of viscous thin films under bouncing drops // J. of Fluid Mech. 2021. V. 920. P. A3. https://doi.org/10.1017/jfm.2021.378
- Sanjay V., Lakshman S., Chantelot P., Snoeijer J.H., Lohse D. Drop impact on viscous liquid films // J. of Fluid Mech. 2023. V. 958. P. A25. https://doi.org/10.1017/jfm.2023.13
- Kazachkov I. On the modeling of non-classical problems involving liquid jets and films and related heat transfer processes // Fluid Dyn. & Mat. Proc. 2019. V. 15. № 5. P. 491–507. https://doi.org/10.32604/fdmp.2019.06477
- Melikhov V.I., Melikhov O.I., Yakush S.E. Fluid mechanics and thermal physics of steam explosions. Moscow: IPMech RAS, 2020. [In Russian]
- Yakush S.E., Sivakov N.S., Melikhov V.I., Melikhov O.I. Modelling of water jet impact on molten metal // J. of Physics: Conference Series. 2021. V. 2119. P. 012073. https://doi.org/10.1088/1742-6596/2119/1/012073
- Yakush S.E., Sivakov N.S., Melikhov V.I., Melikhov O.I. Numerical modeling of water jet plunging in molten heavy metal pool // Mathematics. 2024. V. 12. P. 12. https:// doi.org/10.3390/math12010012
- Gillot G., Derec C., Genevaux J.-M., Simon L., Benyahia L. A new insight on a mechanism of airborne and underwater sound of a drop impacting a liquid surface // Phys. Fluids. 2020. V. 32. P. 062004. https://doi.org/10.1063/5.0010464
- Gillot G., Simon L., Genevaux J.-M., Benyahia L. Acoustic signatures and bubble entrainment mechanisms of a drop impacting a water surface with surfactant // Phys. Fluids. 2021. V. 33. P. 077114. https://doi.org/10.1063/5.0055361
- Prosperetti A., Crum L.A., Pumphrey H.C. The underwater noise of rain // J. Geophys. Res.: Oceans. 1989. V. 94. № C3. P. 3255–3259.
- Kathiravelu G., Lucke T., Nichols P. Rain drop measurement techniques: a review // Water. 2016. V. 8. № 1. P. 29. https://doi.org/10.3390/w8010029
- Prokhorov V.E. Acoustic shock emission in a collision of a drop with water surface // Fluid Dyn. & Mat. Proc. 2020. V. 16. № 4. P. 737–746. https://doi.org/10.32604/fdmp.2020.08988
- Prokhorov V.E. Acoustics of oscillating bubbles when a drop hits the water surface // Phys. Fluids. 2021. V. 33. P. 083314. https://doi.org/10.1063/5.0058582
- Friedrich J., Schafer M. Towards an acoustic simulation of a water drop impacting in a water pool // Flow Turbulence Combust. 2020. V. 105. P. 1231–1247. https://doi.org/10.1007/s10494-020-00130-4
- Beacham S.T., Tilger C.F., Oehlschlaeger M.A. Sound generation by water drop impact on surfaces // Exp. Thermal. and Fluid Science. 2020. V. 117. P. 110138. https://doi.org/10.1016/j.expthermflusci.2020.110138
- Phillips S., Agarwal A., Jordan P. The sound produced by a dripping tap is driven by resonant oscillations of an entrapped air bubble // Scientific Reports. 2018. V. 8. № 1. P. 1–12. https://doi.org/10.1038/s41598-018-27913-0
- Чашечкин Ю.Д., Прохоров В.Е. Акустика периодических и множественных ударов капель о водную поверхность // Акустический журнал. 2023. T.69. № 3. C. 330–339. https://doi.org/10.31857/S0320791922700071
- Alkhatib M.I.I., Amin T., Kwin C.T., Hermawan A.A., R.N. Pauwels V. Towards the development of a citizens’ science-based acoustic rainfall sensing system // 633. P. 130973. https://doi.org/10.1016/j.jhydrol.2024.130973
- Xie F., Tikhonov D. S., Schnell M. Electric nuclear quadrupole coupling reveals dissociation of HCl with a few water molecules // Science. 2024. V. 384. № 6703. P. 1435–1440. https://doi.org/10.1126/science.ado7049
Дополнительные файлы
