Твердотельные тонкопленочные литий-ионные аккумуляторы (обзор)

Обложка

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Рассмотрены основные особенности полностью твердотельных литий-ионных аккумуляторов и аналогичных аккумуляторов с металлическим литиевым электродом. Отмечены основные области применения таких аккумуляторов. Подробно рассмотрены твердые неорганические электролиты и материалы электродов. Кратко указаны основные производители.

Полный текст

Доступ закрыт

Об авторах

А. М. Скундин

Институт физической химии и электрохимии им. А. Н. Фрумкина РАН

Автор, ответственный за переписку.
Email: askundin@mail.ru
Россия, Москва

Т. Л. Кулова

Институт физической химии и электрохимии им. А. Н. Фрумкина РАН

Email: askundin@mail.ru
Россия, Москва

Список литературы

  1. Kulova, T., Mironenko, A., Rudy, A., and Skundin, A. All Solid State Thin-Film Lithium-Ion Batteries: Materials, Technology, and Diagnostics, CRC Press. Taylor & Francis Group. 2021. 214 p. ISBN 9780367086824
  2. Guo, Y., Wu, S., He, Y., Kang, F., Chen, L., Li, H., and Yang, Q., Solid-state lithium batteries: Safety and prospects, eScience, 2022, vol. 2, p. 138. https://doi.org/10.1016/j.esci.2022.02.008
  3. Patil, A., Patil, V., Shin, D.W., Choi, J., Paik, D., and Yoon, S., Issue and challenges facing rechargeable thin film lithium batteries, Mat. Res. Bull., 2008, vol. 43, p. 1913. doi: 10.1016/j.materresbull.2007.08.031
  4. Oudenhoven, J.F.M., Baggetto, L., and Notten, P.H.L., All-Solid-State Lithium-Ion Microbatteries: A Review of Various Three-Dimensional Concepts, Adv. Energy Mater., 2011, vol. 1, p. 10. https://doi.org/10.1002/aenm.201000002
  5. Zhou, Y., Xue, M., and Fu, Z., Nanostructured thin film electrodes for lithium storage and all-solid-state thin-film lithium batteries, J. Power Sources, 2013, vol. 234, p. 310. http://dx.doi.org/10.1016/j.jpowsour.2013.01.183
  6. Ko, J. and Yoon, Y.S., Lithium phosphorus oxynitride thin films for rechargeable lithium batteries: Applications from thin-film batteries as micro batteries to surface modification for large-scale batteries, Ceram. Int., 2022, vol. 48, p. 10372. https://doi.org/10.1016/j.ceramint.2022.02.173
  7. Sun, C., Liu, J., Gong, Y., Wilkinsone, D.P., and Zhang, J., Recent advances in all-solid-state rechargeable lithium batteries, Nano Energy, 2017, vol. 33, p. 363. http://dx.doi.org/10.1016/j.nanoen.2017.01.028
  8. Patil, A., Patil, V., Choi, J., Kim, J., and Yoon, S., Solid Electrolytes for Rechargeable Thin Film Lithium Batteries: A Review, J. Nanosci. Nanotechnol., 2017, vol. 17, p. 29. doi: 10.1166/jnn.2017.12699
  9. Xu, R.C., Xia, X.H., Zhang, S.Z., Xie, D., Wang, X.L., and Tu, J.P., Interfacial challenges and progress for inorganic all-solid-state lithium batteries, Electrochim. Acta, 2018, vol. 284, p. 177. https://doi.org/10.1016/j.electacta.2018.07.191
  10. Moitzheim, S., Put, B., and Vereecken, P.M., Advances in 3D Thin-Film Li-Ion Batteries, Adv. Mater. Interfaces, 2019, vol. 6, article # 1900805. doi: 10.1002/admi.201900805
  11. Clement, B., Lyu, M., Kulkarni, E.S., Lin, T., Hua, Y., Lockett, V., Greig, C., and Wanga, L., Recent Advances in Printed Thin-Film Batteries, Engineering, 2022, vol. 13, article # 238. https://doi.org/10.1016/j.eng.2022.04.002
  12. Yu, Y., Gong, M., Dong, C., and Xu, X., Thin-film deposition techniques in surface and interface engineering of solid-state lithium batteries, Next Nanotechnol., 2023, vol. 3–4, article # 100028. https://doi.org/10.1016/j.nxnano.2023.100028
  13. Machín, A., Morant, C., and Márquez, F., Advancements and Challenges in Solid-State Battery Technology: An In-Depth Review of Solid Electrolytes and Anode Innovations, Batteries, 2023, vol. 10, article # 29. https://doi.org/10.3390/batteries10010029
  14. Jetybayeva, A., Aaron, D.S., Belharouak, I., and Mench, M.M., Critical review on recently developed lithium and non-lithium anode-based solid-state lithium-ion batteries, J. Power Sources, 2023, vol. 566, article # 232914. https://doi.org/10.1016/j.jpowsour.2023.232914
  15. Wu, D., Chen, L., Li, H., and Wu, F., Solid-state lithium batteries-from fundamental research to industrial progress, Prog. Mater. Sci., 2023, vol. 139, article # 101182. https://doi.org/10.1016/j.pmatsci.2023.101182
  16. Shalaby, M.S., Alziyadi, M.O., Gamal, H., and Hamdy, S., Solid-state lithium-ion battery: The key components enhance the performance and efficiency of anode, cathode, and solid electrolytes, J. Alloys Comp., 2023, vol. 969, article # 172318. https://doi.org/10.1016/j.jallcom.2023.172318
  17. Bates, J.B., Dudney, N.J., Gruzalski, G.R., Zuhr, R.A., Choudhury, A., Luck, C.F., and Robertson, J.D., Electrical properties of amorphous lithium electrolyte thin films, Solid State Ionics, 1992, vol. 53–56, p. 647. https://doi.org/10.1016/0167-2738(92)90442-R
  18. Bates, J.B., Dudney, N.J., Gruzalski, G.R., Zuhr, R.A., Choudhury, A., Luck, C.F., and Robertson, J.D., Fabrication and characterization of amorphous lithium electrolyte thin films and rechargeable thin-film batteries, J. Power Sources, 1993, vol. 43/44, p. 103. https://doi.org/10.1016/0378-7753(93)80106-Y
  19. Bates, J.B., Dudney, N.J., Lubben, D.C., Gruzalski, G.R., Kwak, B.S., Yu, X., and Zuhr, R.A., Thin-film rechargeable lithium batteries, J. Power Sources, 1995, vol. 54, p. 58. https://doi.org/10.1016/0378-7753(94)02040-A
  20. Wang, B., Bates, J.B., Hart, F.X., Sales, B.C., Zuhr, R.A., and Robertson, J.D., Characterization of Thin-Film Rechargeable Lithium Batteries with Lithium Cobalt Oxide Cathodes, J. Electrochem. Soc., 1996, vol. 143, p. 3203. doi: 10.1149/1.1837188
  21. Notten, P.H.L., Roozeboom, F., Niessen, R.A.H., and Baggetto, L., 3-D Integrated All-Solid-State Rechargeable Batteries, Adv. Mater., 2007, vol. 19, p. 4564. doi: 10.1002/adma.200702398
  22. Ferrari, S., Loveridge, M., Beattie, S.D., Jahn, M., Dashwood, R.J., and Bhagat, R., Latest advances in the manufacturing of 3D rechargeable lithium microbatteries. J. Power Sources, 2015, vol. 286, p. 25. http://dx.doi.org/10.1016/j.jpowsour.2015.03.133
  23. Long, J.W., Dunn, B., Rolison, D.R., and White, H.S., Three-dimensional battery architectures, Chem. Rev., 2004, vol. 104, p. 4463. https://doi.org/10.1021/cr020740l
  24. Edstrom, K., Brandell, D., Gustafsson, T., and Nyholm, L., Electrodeposition as a Tool for 3D Microbattery Fabrication, Interface, 2011, vol. 20, no. 2, p. 41. doi: 10.1149/2.F05112if [open access]
  25. Roberts, M., Johns, P., Owen, J., Brandell, D., Edstrom, K., El Enany, G., Guery, C., Golodnitsky, D., Lacey, M., Lecoeur, C., Mazor, H., Peled, E., Perre, E., Shaijumon, M.M., Simon, P., and Taberna, P.-L., 3D lithium ion batteries – from fundamentals to fabrication, J. Mater. Chem., 2011, vol. 21, p. 9876. doi: 10.1039/c0jm04396f
  26. Arthur, T.S., Bates, D.J., Cirigliano, N., Johnson, D.C., Malati, P., Mosby, J.M., Perre, E., Rawls, M.T., Prieto, A.L., and Dunn, B., Three-dimensional electrodes and battery architectures, MRS Bull., 2011, vol. 36, p. 523. https://doi.org/10.1557/mrs.2011.156
  27. Rolison, D.R., Long, J.W., Lytle, J.C., Fischer, A.E., Rhodes, C.P., McEvoy, T.M., Bourga, M.E., and Lubers, A.M., Multifunctional 3D nanoarchitectures for energy storage and conversion, Chem. Soc. Rev., 2009, vol. 38, p. 226. https://doi.org/10.1039/B801151F
  28. Zhang, F., Wei, M., Viswanathan, V.V., Swart, B., Shao, Y., Wu, G., and Zhou, C., 3D printing technologies for electrochemical energy storage, Nano Energy, 2017, vol. 40, p. 418. http://dx.doi.org/10.1016/j.nanoen.2017.08.037
  29. Sun, K., Wei, T.-S., Ahn, B.Y., Seo, J.Y., Dillon, S.J., and Lewis, J.A., 3D Printing of Interdigitated Li-Ion Microbattery Architectures, Adv. Mater., 2013, vol. 25, p. 4539. doi: 10.1002/adma.201301036
  30. Wei, M., Zhang, F., Wang, W., Alexandridis, P., Zhou, C., and Wu, G., 3D direct writing fabrication of electrodes for electrochemical storage devices, J. Power Sources, 2017, vol. 354, p. 134. http://dx.doi.org/10.1016/j.jpowsour.2017.04.042
  31. Yang, Y., Jeong, S., Hu, L., Wu, H., Lee, S.W., and Cui, Y., Transparent Lithium-Ion Batteries, Proc. Natl. Acad. Sci. U.S.A., 2011, vol. 108, p. 13013. www.pnas.org/cgi/doi/10.1073/pnas.1102873108
  32. Oukassi, S., Baggetto, L., Dubarry, C., Le Van-Jodin, L., Poncet, S., and Salot, R., Transparent Thin Film Solid-State Lithium Ion Batteries, ACS Appl. Mater. Interfaces, 2019, vol. 11, p. 683. doi: 10.1021/acsami.8b16364
  33. Zhang, Z., Shao, Y., Lotsch, B., Hu, Y.S., Li, H., Janek, J., Nazar, L.F., Nan, C., Maier, J., Armand, M., and Chen, L., New horizons for inorganic solid state ion conductors, Energy Environ. Sci., 2018, vol. 11, p. 1945. doi: 10.1039/c8ee01053f
  34. Takada, K., Progress in solid electrolytes toward realizing solid-state lithium batteries, J. Power Sources, 2018, vol. 394, p. 74. https://doi.org/10.1016/j.jpowsour.2018.05.003
  35. Campanella, D., Belanger, D., and Paolella, A., Beyond garnets, phosphates and phosphosulfides solid electrolytes: New ceramic perspectives for all solid lithium metal batteries, J. Power Sources, 2021, vol. 482, article # 228949. https://doi.org/10.1016/j.jpowsour.2020.228949
  36. Thangadurai, V., Narayanan, S., and Pinzaru, D., Garnet-type solid-state fast Li ion conductors for Li batteries: critical review, Chem. Soc. Rev., 2014, vol. 43, p. 4714. doi: 10.1039/c4cs00020j
  37. Guo, R., Zhang, K., Zhao, W., Hu, Z., Li, S., Zhong, Y., Yang, R., Wang, X., Wang, J., Wu, C., and Bai, Y., Interfacial Challenges and Strategies toward Practical Sulfide-Based Solid-State Lithium Batteries, Energy Mater. Adv., 2023, vol. 4, article #0022. https://doi.org/10.34133/energymatadv.0022
  38. Liu, D., Zhu, W., Feng, Z., Guerfi, A., Vijh, A., and Zaghib, K., Recent progress in sulfide-based solid electrolytes for Li-ion batteries, Mat. Sci. Eng. B, 2016, vol. 213, p. 169. http://dx.doi.org/10.1016/j.mseb.2016.03.005
  39. Zhang, X., Wang, J., Hu, D., Du, W., Hou, C., Jiang, H., Wei, Y., Liu, X., Jiang, F., Sun, J., Yuan, H., and Huang, X., High-performance lithium metal batteries based on composite solid-state electrolytes with high ceramic content, Energy Storage Mater., 2024, vol. 65, article # 103089. https://doi.org/10.1016/j.ensm.2023.103089
  40. Zhang, Z., Wang, X., Li, X., Zhao, J., Liu, G., Yu, W., Dong, X., and Wang, J., Review on composite solid electrolytes for solid-state lithium-ion batteries, Mater. Today Sustainability, 2023, vol. 21, article # 100316. https://doi.org/10.1016/j.mtsust.2023.100316
  41. Devaraj, L., Thummalapalli, S.V., Fonseca, N., Nazir, H., Song, K., and Kannan, A.M., Comprehending garnet solid electrolytes and interfaces in all-solid lithium-ion batteries, Mater. Today Sustainability, 2024, vol. 25, article # 100614. https://doi.org/10.1016/j.mtsust.2023.100614
  42. Han, Y., Chen, Y., Huang, Y., Zhang, M., Li, Z., and Wang, Y., Recent progress on garnet-type oxide electrolytes for all-solid-state lithium-ion batteries, Ceram. Int., 2023, vol. 49, p. 29375. https://doi.org/10.1016/j.ceramint.2023.06.153
  43. Joo, K.H., Sohn, H.J., Vinatier, P., Pecquenard, B., and Levasseur, A., Lithium Ion Conducting Lithium Sulfur Oxynitride Thin Film, Electrochem. Solid State Lett., 2004, vol. 7, p. A256. doi: 10.1149/1.1769317
  44. Jones, S.D., Akridge, J.R., and Shokoohi, F.K., Thin film rechargeable Li batteries, Solid State Ionics, 1994, vol. 69, p. 357. https://doi.org/10.1016/0167-2738(94)90423-5
  45. Ujiie, S., Hayashi, A., and Tatsumisago, M., Preparation and ionic conductivity of (100–x)(0.8Li2S0.2P2S5)·xLiI glass–ceramic electrolytes, J. Solid State Electrochem., 2013, vol. 17, p. 675. https://doi.org/10.1007/s10008-012-1900-7
  46. Jung, W.D., Kim, J., Choi, S., Kim, S., Jeon, M., Jung, H., Chung, K.Y., Lee, J., Kim, B., Lee, J., and Kim, H., Superionic Halogen-Rich Li-Argyrodites Using In Situ Nanocrystal Nucleation and Rapid Crystal Growth, Nano Lett., 2020, vol. 20, p. 2303. https://doi.org/10.1021/acs.nanolett.9b04597
  47. Zhang, Z., Wu, L., Zhou, D., Weng, W., and Yao, X., Flexible Sulfide Electrolyte Thin Membrane with Ultrahigh Ionic Conductivity for All-Solid-State Lithium Batteries, Nano Lett., 2021, vol. 21, p. 5233. https://doi.org/10.1021/acs.nanolett.1c01344
  48. Fu, J., Superionic conductivity of glass-ceramics in the system Li2O–Al2O3–TiO2–P2O5, Solid State Ionics, 1997, vol. 96, p. 195. https://doi.org/10.1016/S0167-2738(97)00018-0
  49. Mizuno, F., Hayashi, A., Tadanaga, K., and Tatsumisago, M., New, Highly Ion-Conductive Crystals Precipitated from Li2S–P2S5 Glasses, Adv. Mater., 2005, vol. 17, p. 918. doi: 10.1002/adma.200401286
  50. Tatsumisago, M., Glassy materials based on Li2S for all-solid-state lithium secondary batteries, Solid State Ionics, 2004, vol. 175, p. 13. https://doi.org/10.1016/j.ssi.2004.09.012
  51. Seino, Y., Ota, T., Takada, K., Hayashi, A., and Tatsumisago, M., A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries, Energy Environ. Sci., 2014, vol. 7, p. 627. doi: 10.1039/c3ee41655k
  52. Stramare, S., Thangadurai, V., and Weppner, W., Lithium Lanthanum Titanates: A Review, Chem. Mater., 2003, vol. 15, p. 3974. https://doi.org/10.1021/cm0300516
  53. Bohnke, O., The fast lithium-ion conducting oxides Li3xLa2/3–xTiO3 from fundamentals to application, Solid State Ionics, 2008, vol. 179, p. 9. doi: 10.1016/j.ssi.2007.12.022
  54. Kanno, R. and Murayama, M., Lithium Ionic Conductor Thio-LISICON: The Li2S–GeS2–P2S5 System, J. Electrochem. Soc., 2001, vol. 148, p. A742. doi: 10.1149/1.1379028
  55. Takada, K., Inada, T., Kajiyama, A., Sasaki, H., Kondo, S., Watanabe, M., Murayama, M., and Kanno, R., Solid-state lithium battery with graphite anode, Solid State Ionics, 2003, vol. 158, p. 269. https://doi.org/10.1016/S0167-2738(02)00823-8
  56. Kamaya, N., Homma, K., Yamakawa, Y., Hirayama, M., Kanno, R., Yonemura, M., Kamiyama, T., Kato, Y., Hama, S., Kawamoto, K., and Matsui, A., A lithium superionic conductor, Nat. Mater., 2011, vol. 10, p. 682. doi: 10.1038/NMAT3066
  57. Murugan, R., Weppner, W., Schmid-Beurmann, P., and Thangadurai, V., Structure and lithium ion conductivity of bismuth containing lithium garnets Li5La3Bi2O12 and Li6SrLa2Bi2O12, Mater. Sci. Eng. B., 2007, vol. 143, p. 14. https://doi.org/10.1016/j.mseb.2007.07.009
  58. Ohta, S., Kobayashi, T., and Asaoka, T., High lithium ionic conductivity in the garnet type oxide Li7–xLa3 (Zr2–x, Nbx)O12, J. Power Sources, 2011, vol. 196, p. 3342. https://doi.org/10.1016/j.jpowsour.2010.11.089
  59. El Shinawi, H. and Janek, J., Stabilization of cubic lithium-stuffed garnets of the type ‘‘Li7La3Zr2O12’’ by addition of gallium, J. Power Sources, 2013, vol. 225, p. 13. https://doi.org/10.1016/j.jpowsour.2012.09.111
  60. Allen, J.L., Wolfenstine, J., Rangasamy, E., and Sakamoto, J., Effect of substitution (Ta, Al, Ga) on the conductivity of Li7La3Zr2O12, J. Power Sources, 2012, vol. 206, p. 315. https://doi.org/10.1016/j.jpowsour.2012.01.131
  61. Shen, Y., Zhang, Y., Han, S., Wang, J., Peng, Z., and Chen L., Unlocking the Energy Capabilities of Lithium Metal Electrode with Solid-State Electrolytes, Joule, 2018, vol. 2, p. 1674. https://doi.org/10.1016/j.joule.2018.06.021
  62. Dudney, N., Thin film micro-batteries, Interface, 2008, no. 3, p. 44. doi: 10.1149/2.F04083IF
  63. Neudecker, B.J., Dudney, N.J., and Bates, J.B., “Lithium-Free” Thin-Film Battery with in situ Plated Li Anode, J. Electrochem. Soc., 2000, vol. 147, p. 517. doi: 10.1149/1.1393226
  64. Baggetto, L., Niessen, R.A.H., and Notten, P.H.L., On the activation and charge transfer kinetics of evaporated silicon electrode/electrolyte interfaces, Electrochim. Acta, 2009, vol. 54, p. 5937. doi: 10.1016/j.electacta.2009.05.070
  65. Phan, V.P., Pecquenard, B., and Le Cras, F., High-Performance All-Solid-State Cells Fabricated With Silicon Electrodes, Adv. Funct. Mater., 2012, vol. 22, p. 2580. https://doi.org/10.1002/adfm.201200104
  66. Sakabe, J., Ohta, N., Ohnishi, T., Mitsuishi, K., and Takada, K., Porous amorphous silicon film anodes for high-capacity and stable all-solid-state lithium batteries, Commun. Chem., 2018, vol. 1, article # 24. https://doi.org/10.1038/s42004-018-0026-y
  67. Miyazaki, R., Ohta, N., Ohnishi, T., Sakaguchi, I., and Takada, K., An amorphous Si film anode for all-solid-state lithium batteries, J. Power Sources, 2014, vol. 272, p. 541. http://dx.doi.org/10.1016/j.jpowsour.2014.08.109
  68. Miyazaki, R., Ohta, N., Ohnishi, T., and Takada, K., Anode properties of silicon-rich amorphous silicon suboxide films in all-solid-state lithium batteries, J. Power Sources, 2016, vol. 329, p. 41. http://dx.doi.org/10.1016/j.jpowsour.2016.08.070
  69. Ping, W., Yang, C., Bao, Y., Wang, C., Xie, H., Hitz, E., Cheng, J., Li, T., and Hu, L., A silicon anode for garnet-based all-solid-state batteries: Interfaces and nanomechanics, Energy Storage Mater., 2019, vol. 21, p. 246. https://doi.org/10.1016/j.ensm.2019.06.024
  70. Cangaz, S., Hippauf, F., Reuter, F.S., Doerfler, S., Abendroth, T., Althues, H., and Kaskel, S., Enabling High-Energy Solid-State Batteries with Stable Anode Interphase by the Use of Columnar Silicon Anodes, Adv. Energy Mater., 2020, vol. 10, article # 2001320. doi: 10.1002/aenm.202001320
  71. Tan, D.H.S., Chen, Y., Yang, H., Bao, W., Sreenarayanan, B., Doux, J., Li, W., Lu, B., Ham, S., Sayahpour, B., Scharf, J., Wu, E.A., Deysher, G., Han, H.E., Hah, H.J., Jeong, H., Lee, J.B., Chen, Z., and Meng, Y.S., Carbon-free high-loading silicon anodes enabled by sulfide solid electrolytes, Science, 2021, vol. 373, p. 1494. doi: 10.1126/science.abg7217
  72. Okuno, R., Yamamoto, M., Terauchi, Y., and Takahashi, M., Stable cyclability of porous Si anode applied for sulfide-based all solid-state batteries, ACS Appl. Energy Mater., 2019, vol. 2, p. 7005. doi: 10.1021/acsaem.9b01517
  73. Kato, A., Yamamoto, M., Sakuda, A., Hayashi, A., and Tatsumisago, M., Mechanical properties of Li2S – P2S5 glasses with lithium halides and application in all-solid-state batteries, ACS Appl. Energy Mater., 2018, vol. 1, p. 1002. doi: 10.1021/acsaem.7b00140
  74. Cervera, R.B., Suzuki, N., Ohnishi, T., Osada, M., Mitsuishi, K., Kambara, T., and Takada, K., High performance silicon-based anodes in solid-state lithium batteries, Energy Environ. Sci., 2014, vol. 7, p. 662. https://doi.org/10.1039/c3ee43306d
  75. Рогинская, Ю.Е., Кулова, Т.Л., Скундин, А.М., Брук, М.А., Клочихина, А.В., Козлова, Н.В., Кальнов, В.А., Логинов, Б. А. Структура и свойства нового типа наноструктурных композитных электродов для литий-ионных аккумуляторов. Журн. физ. химии. 2008. Т. 82. С. 1852. [Roginskaya, Yu.E., Kulova, T.L., Skundin, A.M., Bruk, M.A., Klochikhina, A.V., Kozlova, N.V., Kal’nov, V.A., and Loginov, B.A., The Structure and Properties of a New Type of Nanostructured Composite Si/C Electrodes for Lithium Ion Accumulators, Russ. J. Phys. Chem. A, 2008, vol. 82, p. 1655.] doi: 10.1134/S0036024408100063
  76. Рогинская, Ю.Е., Кулова, Т.Л., Скундин, А.М., Брук, М.А., Жихарев, Е.Н., Кальнов, В.А., Логинов, Б. А. Новый тип наноструктурированных композитных Si/C-электродов. Электрохимия. 2008. Т. 44. С. 1289. [Roginskaya, Yu.E., Kulova, T.L., Skundin, A.M., Bruk, M.A., Zhikharev, E.N., Kal’nov, V.A., and Loginov, B.A., New Type of the Nanostructured Composite Si/C Electrodes, Russ. J. Electrochem., 2008, vol. 44, p. 1197.] doi: 10.1134/S1023193508110025
  77. Li, W., Yang, R., Wang, X., Wang, T., Zheng, J., and Li, X.J., Intercalated Si/C films as the anode for Li-ion batteries with near theoretical stable capacity prepared by dual plasma deposition, J. Power Sources, 2013, vol. 221, p. 242. https://doi.org/10.1016/j.jpowsour.2012.08.042
  78. Kim, J.-B., Lim, S.-H., and Lee, S.-M., Structural Change in Si Phase of Fe/Si Multilayer Thin-Film Anodes during Li Insertion/Extraction Reaction, J. Electrochem. Soc., 2006, vol. 153, p. A455. doi: 10.1149/1.2158567
  79. Hwang, C.-M. and Park, J.-W., Electrochemical characterizations of multi-layer and composite silicon–germanium anodes for Li-ion batteries using magnetron sputtering, J. Power Sources, 2011, vol. 196, p. 6772. https://doi.org/10.1016/j.jpowsour.2010.10.061
  80. Demirkan, M.T., Trahey, L., and Karabacak, T., Cycling performance of density modulated multilayer silicon thin film anodes in Li-ion batteries, J. Power Sources, 2015, vol. 273, p. 52. https://doi.org/10.1016/j.jpowsour.2014.09.027
  81. Demirkan, M.T., Yurukcu, M., Dursun, B., Demir-Cakan, R., and Karabacak, T., Evaluation of double-layer density modulated Si thin films as Li-ion battery anodes, Mater. Res. Express, 2017, vol. 4, article # 106405. https://doi.org/10.1088/2053-1591/aa8f88
  82. Рудый, А.С., Мироненко, А.А., Наумов, В.В., Скундин, А.М., Кулова, Т.Л., Федоров, И.С., Васильев, С. В. Твердотельный литий-ионный аккумулятор: структура, технология и характеристики. Письма в ЖТФ. 2020. Т. 46. № 5. С. 15. doi: 10.21883/PJTF.2020.05.49101.18083 [Rudyi, A.S., Mironenko, A.A., Naumov, V.V., Skundin, A.M., Kulova, T.L., Fedorov, I.S., and Vasil’ev, S.V., A Solid-State Lithium-Ion Battery: Structure, Technology, and Characteristics, Tech. Phys. Lett., 2020, vol. 46, no. 3, p. 217.] doi: 10.1134/S1063785020030141
  83. Кулова, Т.Л., Мазалецкий, Л.А., Мироненко, А.А., Рудый, А.С., Скундин, А.М., Торцева, Ю.С., Федоров, И. С. Экспериментальное исследование влияния пористости тонкопленочных анодов на основе кремния на их зарядно-разрядные характеристики. Микроэлектроника. 2021. Т. 50. № 1. С. 49. doi: 10.31857/S0544126920060071 [Kulova, T.L., Mazaletsky, L.A., Mironenko, A.A., Rudy, A.S., Skundin, A.M., Tortseva, Yu.S., and Fedorov, I.S., Experimental Study of the Influence of the Porosity of Thin-Film Silicon-Based Anodes on Their Charge-Discharge Characteristics, Russ. Microelectron., 2021, vol. 50, no. 1, p. 45.] doi: 10.1134/S1063739720060074
  84. Рудый, А.С., Мироненко, А.А., Наумов, В.В., Федоров, И.С., Скундин, А.М., Торцева, Ю. С. Тонкопленочные твердотельные литий-ионные аккумуляторы системы LiCoO2/LiPON/Si@O@Al. Микроэлектроника. 2021. Т. 50. № 5. С. 370. doi: 10.31857/S0544126921050057 [Rudy, A.S., Mironenko, A.A., Naumov, V.V., Fedorov, I.S., Skundin, A.M., and Tortseva, Yu.S., Thin-Film Solid State Lithium-Ion Batteries of the LiCoO2/Lipon/Si@O@Al System, Russ. Microelectron., 2021, vol. 50, no. 5, p. 333.] doi: 10.1134/S106373972105005X
  85. Kurbatov, S., Mironenko, A., Naumov, V., Skundin, A., and Rudy, A., Effect of the Etching Profile of a Si Substrate on the Capacitive Characteristics of Three-Dimensional Solid-State Lithium-Ion Batteries, Batteries, 2021, vol. 7, Article # 65. https://doi.org/10.3390/batteries7040065
  86. Rudy, A.S., Kurbatov, S.V., Mironenko, A.A., Naumov, V.V., Skundin, A.M., and Egorova, Yu.S., Effect of Si-Based Anode Lithiation on Charging Characteristics of All-Solid-State Lithium-Ion Battery, Batteries, 2022, vol. 8, Article # 87. https://doi.org/10.3390/batteries8080087
  87. Rudy, A.S., Skundin, A.M., Mironenko, A.A., and Naumov, V.V., Current Effect on the Performances of All-Solid-State Lithium-Ion Batteries – Peukert’s Law, Batteries, 2023, vol. 9, article # 370. https://doi.org/10.3390/batteries9070370
  88. Dunlap, N.A, Kim, S., Jeong, J.J., Oh, K.H., and Lee, S., Simple and inexpensive coal-tar-pitch derived Si-C anode composite for all solid-state Li-ion batteries, Solid State Ionics, 2018, vol. 324, p. 207. https://doi.org/10.1016/j.ssi.2018.07.013
  89. Whiteley, J.M., Kim, J.W., Piper, D.M., and Se-Hee Lee, S., High-Capacity and Highly Reversible Silicon-Tin Hybrid Anode for Solid-State Lithium-Ion Batteries, J. Electrochem. Soc., 2016, vol. 163, p. A251. doi: 10.1149/2.0701602jes
  90. Son, S.B., Kim, S.C., Kang, C.S., Yersak, T.A., Kim, Y.C., Lee, C.G., Moon, S.H., Cho, J.S., Moon, J.T., Oh, K.H., and Lee, S.H., A Highly Reversible Nano-Si Anode Enabled by Mechanical Confinement in an Electrochemically Activated LixTi4Ni4Si7 Matrix, Adv. Energy Mater., 2012, vol. 2, p. 1226. doi: 10.1002/aenm.201200180
  91. Yersak, T.A., Son, S.B., Cho, J.S., Suh, S.S., Kim, Y.U., Moon, J.T., Oh, K.H., and Lee, S.H., An All-Solid-State Li-Ion Battery with a Pre-Lithiated Si-Ti-Ni Alloy Anode, J. Electrochem. Soc., 2013, vol. 160, p. A1497. doi: 10.1149/2.086309jes
  92. Yamamoto, M., Terauchi, Y., Sakuda, A., and Takahashi, M., Slurry mixing for fabricating silicon-composite electrodes in all-solid-state batteries with high areal capacity and cycling stability, J. Power Sources, 2018, vol. 402, p. 506. https://doi.org/10.1016/j.jpowsour.2018.09.070
  93. Kim, D.H., Lee, H.A., Song, Y.B., Park, J.W., Lee, S., and Jung, Y.S., Sheet-type Li6PS5Cl-infiltrated Si anodes fabricated by solution process for all-solid-state lithium-ion batteries, J. Power Sources, 2019, vol. 426, p. 143. https://doi.org/10.1016/j.jpowsour.2019.04.028
  94. Kanazawa, S., Baba, T., Yoneda, K., Mizuhata, M., and Kanno, I., Deposition and performance of all solid-state thin-film lithium-ion batteries composed of amorphous Si/LiPON/VO-LiPO multilayers, Thin Solid Films, 2020, vol. 697, article # 137840. https://doi.org/10.1016/j.tsf.2020.137840
  95. Chai, L., Wang, X., Su, B., Li, X., and Xue, W., Insight into the decay mechanism of non-ultra-thin silicon film anode for lithium-ion batteries, Electrochim. Acta, 2023, vol. 448, article # 142112. https://doi.org/10.1016/j.electacta.2023.142112
  96. Ohzuku, T., Ueda, A., and Yamamoto, N., Zero-Strain Insertion Material of Li[Li1/3Ti5/3]O4 for Rechargeable Lithium Cells, J. Electrochem. Soc., 1995, vol. 142, p. 1431. doi: 10.1149/1.2048592
  97. Minami, K., Hayashi, A., Ujiie, S., and Tatsumisago, M., Electrical and electrochemical properties of glass–ceramic electrolytes in the systems Li2S–P2S5–P2S3 and Li2S–P2S5–P2O5, Solid State Ionics, 2011, vol. 192, p. 122. doi: 10.1016/j.ssi.2010.06.018
  98. Tatsumisago, M. and Hayashi, A., Superionic glasses and glass–ceramics in the Li2S–P2S5 system for all-solid-state lithium secondary batteries, Solid State Ionics, 2012, vol. 225, p. 342. doi: 10.1016/j.ssi.2012.03.013
  99. Kato, Y., Hori, S., Saito, T., Suzuki, K., Hirayama, M., Mitsui, A., Yonemura, M., Iba, H., and Kanno, R., High-power all-solid-state batteries using sulfide superionic conductors, Nano Energy, 2016, vol. 1, article # 16030. doi: 10.1038/NENERGY.2016.30
  100. Song, S., Hong, S., Park, H.Y., Lim, Y.C., and Lee, K.C., Cycling-Driven Structural Changes in a Thin-Film Lithium Battery on Flexible Substrate, Electrochem. Solid-State Lett., 2009, vol. 12, p. A159. doi: 10.1149/1.3139530
  101. Yamamoto, T., Iwasaki, H., Suzuki, Y., Sakakura, M., Fujii, Y., Motoyama, M., and Iriyama, Y., A Li-free inverted-stack all-solid-state thin film battery using crystalline cathode material, Electrochem. Commun., 2019, vol. 105, article # 106494. https://doi.org/10.1016/j.elecom.2019.106494
  102. Koo, M., Park, K., Lee, S.H., Suh, M., Jeon, D.Y., Choi, J.W., Kang, K., and Lee, K.J., Bendable Inorganic Thin-Film Battery for Fully Flexible Electronic Systems, Nano Lett., 2012, vol. 12, p. 4810. dx.doi.org/10.1021/nl302254v
  103. Xiao, D., Tong, J., Feng, Y., Zhong, G., Li, W., and Yang, C., Improved performance of all-solid-state lithium batteries using LiPON electrolyte prepared with Li-rich sputtering target, Solid State Ionics, 2018, vol. 324, p. 202. https://doi.org/10.1016/j.ssi.2018.07.011
  104. Haruyama, J., Sodeyama, K., Han, L., Takada, K., and Tateyama, Y., Space–Charge Layer Effect at Interface between Oxide Cathode and Sulfide Electrolyte in All-Solid-State Lithium-Ion Battery, Chem. Mater., 2014, vol. 26, p. 4248. https://doi.org/10.1021/cm5016959
  105. Haruyama, J., Sodeyama, K., and Tateyama, Y., Cation Mixing Properties toward Co Diffusion at the LiCoO2 Cathode/Sulfide Electrolyte Interface in a Solid-State Battery, ACS Appl. Mater. Interfaces, 2017, vol. 9, p. 286. doi: 10.1021/acsami.6b08435
  106. Sakuda, A., Hayashi, A., and Tatsumisago, M., Interfacial Observation between LiCoO2 Electrode and Li2S–P2S5 Solid Electrolytes of All-Solid-State Lithium Secondary Batteries Using Transmission Electron Microscopy, Chem. Mater., 2010, vol. 22, p. 949. doi: 10.1021/cm901819c
  107. Woo, J.H., Trevey, J.E., Cavanagh, A.S., Choi, Y.S., Kim, S.C., George, S.M., Oh, K.H., and Lee, S., Nanoscale Interface Modification of LiCoO2 by Al2O3 Atomic Layer Deposition for Solid-State Li Batteries, J. Electrochem. Soc., 2012, vol. 159, p. A1120. doi: 10.1149/2.085207jes
  108. Ohta, N., Takada, K., Sakaguchi, I., Zhang, L., Ma, R., Fukuda, K., Osada, M., and Sasaki, T., LiNbO3-coated LiCoO2 as cathode material for all solid-state lithium secondary batteries, Electrochem. Commun., 2007, vol. 9, p. 1486. doi: 10.1016/j.elecom.2007.02.008
  109. Ohta, N., Takada, K., Zhang, L., Ma, R., Osada, M., and Sasaki, T., Enhancement of the High-Rate Capability of Solid-State Lithium Batteries by Nanoscale Interfacial Modification, Adv. Mater., 2006, vol. 18, p. 2226. doi: 10.1002/adma.200502604
  110. Kato, T., Hamanaka, T., Yamamoto, K., Hirayama, T., Sagane, F., Motoyama, M., and Iriyama, Y., In-situ Li7La3Zr2O12/LiCoO2 interface modification for advanced all-solid-state battery, J. Power Sources, 2014, vol. 260, p. 292. http://dx.doi.org/10.1016/j.jpowsour.2014.02.102
  111. Ohta, S., Kobayashi, T., Seki, J., and Asaoka, T., Electrochemical performance of an all-solid-state lithium ion battery with garnet-type oxide electrolyte, J. Power Sources, 2012, vol. 202, p. 332. doi: 10.1016/j.jpowsour.2011.10.064
  112. Kotobuki, M., Suzuki, Y., Munakata, H., Kanamura, K., Sato, Y., Yamamoto, K., and Yoshida, T., Fabrication of Three-Dimensional Battery Using Ceramic Electrolyte with Honeycomb Structure by Sol–Gel Process, J. Electrochem. Soc., 2010, vol. 157, p. A493. doi: 10.1149/1.3308459
  113. Li, C., Zhang, B., and Fu, Z., Physical and electrochemical characterization of amorphous lithium lanthanum titanate solid electrolyte thin-film fabricated by e-beam evaporation, Thin Solid Films, 2006, vol. 515, p. 1886. doi: 10.1016/j.tsf.2006.07.026
  114. Kotobuki, M., Suzuki, Y., Munakata, H., Kanamura, K., Sato, Y., Yamamoto, K., and Yoshida, T., Compatibility of LiCoO2 and LiMn2O4 cathode materials for Li0.55La0.35TiO3 electrolyte to fabricate all-solid-state lithium battery, J. Power Sources, 2010, vol. 195, p. 5784. doi: 10.1016/j.jpowsour.2010.03.004
  115. Visbal, H., Aihara, Y., Ito, S., Watanabe, T., Park, Y., and Doo, S., The effect of diamond-like carbon coating on LiNi0.8Co0.15Al0.05O2 particles for all solid-state lithium-ion batteries based on Li2SeP2S5 glass-ceramics, J. Power Sources, 2016, vol. 314, p. 85. http://dx.doi.org/10.1016/j.jpowsour.2016.02.088
  116. Seino, Y., Ota, T., and Takada, K., High rate capabilities of all-solid-state lithium secondary batteries using Li4Ti5O12-coated LiNi0.8Co0.15Al0.05O2 and a sulfide-based solid electrolyte, J. Power Sources, 2011, vol. 196, p. 6488. doi: 10.1016/j.jpowsour.2011.03.090
  117. Sakuda, A., Takeuchi, T., and Kobayashi, H., Electrode morphology in all-solid-state lithium secondary batteries consisting of LiNi1/3Co1/3Mn1/3O2 and Li2S–P2S5 solid electrolytes, Solid State Ionics, 2016, vol. 285, p. 112. http://dx.doi.org/10.1016/j.ssi.2015.09.010
  118. Kitsche, D., Tang, Y., Ma, Y., Goonetilleke, D., Sann, J., Walther, F., Bianchini, M., Janek, J., and Brezesinski, T., High Performance All-Solid-State Batteries with a Ni-Rich NCM Cathode Coated by Atomic Layer Deposition and Lithium Thiophosphate Solid Electrolyte, ACS Appl. Energy Mater., 2021, vol. 4, p. 7338. https://doi.org/10.1021/acsaem.1c01487
  119. Ding, J., Sun, Q., and Fu, Z., Layered Li(Ni1/4Co1/2Mn1/3) O2 as Cathode Material for All-Solid-State Thin-Film Rechargeable Lithium-Ion Batteries, Electrochem. Solid State Lett., 2010, vol. 13, p. A105. doi: 10.1149/1.3432254
  120. Neudecker, B.J., Zuhr, R.A., Robertson, J.D., and Bates, J.B., Lithium Manganese Nickel Oxides Lix (MnyNi1–y)2–xO2. II. Electrochemical Studies on Thin-Film Batteries, J. Electrochem. Soc., 1998, vol. 145, p. 4160. doi: 10.1149/1.1838930
  121. Hoshina, K., Yoshima, K., Kotobuki, M., and Kanamura, K., Fabrication of LiNi0.5Mn1.5O4 thin film cathode by PVP sol–gel process and its application of all-solid-state lithium ion batteries using Li1+xAlxTi2–x (PO4)3 solid electrolyte, Solid State Ionics, 2012, vol. 209–210, p. 30. doi: 10.1016/j.ssi.2011.12.018
  122. Lethien, C., Zegaoui, M., Roussel, P., Tilmant, P., Rolland, N., and Rolland, P.A., Micro-patterning of LiPON and lithium iron phosphate material deposited onto silicon nanopillars array for lithium ion solid state 3D micro-battery, Microelectron. Eng., 2011, vol. 88, p. 3172. doi: 10.1016/j.mee.2011.06.022
  123. Dobbelaere, T., Mattelaer, F., Dendooven, J., Vereecken, P., and Detavernier, C., Plasma-Enhanced Atomic Layer Deposition of Iron Phosphate as a Positive Electrode for 3D Lithium-Ion Microbatteries, Chem. Mater., 2016, vol. 28, p. 3435. doi: 10.1021/acs.chemmater.6b00853
  124. Aboulaich, A., Bouchet, R., Delaizir, G., Seznec, V., Tortet, L., Morcrette, M., Rozier, P., Tarascon, J.-M., Viallet, V., and Dollé, D., A New Approach to Develop Safe All-Inorganic Monolithic Li-Ion Batteries, Adv. Energy Mater., 2011, vol. 1, p. 179. doi: 10.1002/aenm.201000050
  125. Kobayashi, E., Plashnitsa, L.S., Doi, T., Okada, S., and Yamaki, J., Electrochemical properties of Li symmetric solid-state cell with NASICON-type solid electrolyte and electrodes, Electrochem. Commun., 2010, vol. 12, p. 894. doi: 10.1016/j.elecom.2010.04.014
  126. Huang, F., Fu, Z.W., Chu, Y.Q., Liu, W.Y., and Qin, Q.Z., Characterization of Composite 0.5Ag: V2O5 Thin-Film Electrodes for Lithium-Ion Rocking Chair and All-Solid-State Batteries, Electrochem. Solid State Lett., 2004, vol. 7, p. A180. doi: 10.1149/1.1736591
  127. Jeon, E.J., Shin, Y.W., Nam, S.C., Cho, W.I., and Yoon, Y.S., Characterization of All-Solid-State Thin-Film Batteries with V2O5 Thin-Film Cathodes Using Ex Situ and In Situ Processes, J. Electrochem. Soc., 2001, vol. 148, p. A318. doi: 10.1149/1.1354609
  128. Navone, C., Baddour-Hadjean, R., Pereira-Ramos, J.P., and Salot, R., Sputtered Crystalline V2O5 Thin Films for All-Solid-State Lithium Microbatteries, J. Electrochem. Soc., 2009, vol. 156, p. A763. doi: 10.1149/1.3170922
  129. Matsumura, T., Nakano, K., Kanno, R., Hirano, A., Imanishi, N., and Takeda, Y., Nickel sulfides as a cathode for all-solid-state ceramic lithium batteries, J. Power Sources, 2007, vol. 174, p. 632. doi: 10.1016/j.jpowsour.2007.06.168
  130. Aso, K., Sakuda, A., Hayashi, A., and Tatsumisago, M., All-Solid-State Lithium Secondary Batteries Using NiS-Carbon Fiber Composite Electrodes Coated with Li2S–P2S5 Solid Electrolytes by Pulsed Laser Deposition, ACS Appl. Mater. Interfaces, 2013, vol. 5, p. 686. dx.doi.org/10.1021/am302164e
  131. Jones, S.D. and Akridge, J.R., Development and performance of a rechargeable thin-film state microbattery, J. Power Sources, 1995, vol. 54, p. 63. https://doi.org/10.1016/0378-7753(94)02041-Z
  132. Chen, M., Yin, X., Reddy, M.V., and Adams, S., All-solid-state MoS2/Li6PS5Br/In–Li batteries as a novel type of Li/S battery, J. Mater. Chem. A, 2015, vol. 3, p. 10698. doi: 10.1039/c5ta02372f
  133. Mauger, A., Julien, C.M., Paolella, A., Armand, M., and Zaghib, K., Building Better Batteries in the Solid State: A Review, Materials, 2019, vol. 12, article # 3892. doi: 10.3390/ma12233892
  134. Singer, C., Schnell, J., and Reinhart, G., Scalable Processing Routes for the Production of All-Solid-State Batteries – Modeling Interdependencies of Product and Process, Energy Technol., 2021, vol. 9, article # 2000665. https://doi.org/10.1002/ente.202000665
  135. Xiao, Y., Wang, Y., Bo, S., Kim, J.C., Miara, L.J., and Ceder, G., Understanding interface stability in solid-state batteries, Nat. Rev. Mater., 2020, vol. 5, p. 105. https://doi.org/10.1038/s41578-019-0157-5
  136. Fan, L., He, H., and Nan, C., Tailoring inorganic–polymer composites for the mass production of solid-state batteries, Nat. Rev. Mater., 2021, vol. 6, p. 1003. https://doi.org/10.1038/s41578-021-00320-0
  137. Banerjee, A., Wang, X., Fang, C., Wu, E.A., and Meng, Y.S., Interfaces and Interphases in All-Solid-State Batteries with Inorganic Solid Electrolytes, Chem. Rev., 2020, vol. 120, p. 6878. https://doi.org/10.1021/acs.chemrev.0c00101

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Схема полностью твердотельного тонкопленочного литий-ионного аккумулятора.

Скачать (63KB)
3. Рис. 2. 3D-конструкция с встречно-штыревыми массивами электродов.

Скачать (55KB)
4. Рис. 3. “Губчатая” конструкция 3D-аккумулятора. 1 – активный материал положительного электрода, 2 – электролит, 3 – активный материал отрицательного электрода (из [24], open access).

Скачать (169KB)
5. Рис. 4. Температурная зависимость удельной проводимости твердых электролитов. 1 – LiPON, 2 – Li3.6Si0.6P0.4O4, 3 – Li0.5La0.5TiO3, 4 – стеклокерамический Li7P3S11, 5 – Li10GeP2S12, 6 – Li9.54Si1.74P1.44S11.7Cl0.3.

Скачать (84KB)

Примечание

1 По материалам доклада на 17-м Международном Совещании “Фундаментальные и прикладные проблемы ионики твердого тела”, Черноголовка, 16–23 июня 2024 г.


© Российская академия наук, 2025