Твердотельные тонкопленочные литий-ионные аккумуляторы (обзор)
- Авторы: Скундин А.М.1, Кулова Т.Л.1
-
Учреждения:
- Институт физической химии и электрохимии им. А. Н. Фрумкина РАН
- Выпуск: Том 61, № 1 (2025)
- Страницы: 47-70
- Раздел: Специальный выпуск на основе докладов на 17-м Международном Совещании “Фундаментальные и прикладные проблемы ионики твердого тела” (Черноголовка, 16–23 июня 2024 г.)
- URL: https://snv63.ru/0424-8570/article/view/683946
- DOI: https://doi.org/10.31857/S0424857025010029
- EDN: https://elibrary.ru/DKXKDQ
- ID: 683946
Цитировать
Аннотация
Рассмотрены основные особенности полностью твердотельных литий-ионных аккумуляторов и аналогичных аккумуляторов с металлическим литиевым электродом. Отмечены основные области применения таких аккумуляторов. Подробно рассмотрены твердые неорганические электролиты и материалы электродов. Кратко указаны основные производители.
Ключевые слова
Полный текст

Об авторах
А. М. Скундин
Институт физической химии и электрохимии им. А. Н. Фрумкина РАН
Автор, ответственный за переписку.
Email: askundin@mail.ru
Россия, Москва
Т. Л. Кулова
Институт физической химии и электрохимии им. А. Н. Фрумкина РАН
Email: askundin@mail.ru
Россия, Москва
Список литературы
- Kulova, T., Mironenko, A., Rudy, A., and Skundin, A. All Solid State Thin-Film Lithium-Ion Batteries: Materials, Technology, and Diagnostics, CRC Press. Taylor & Francis Group. 2021. 214 p. ISBN 9780367086824
- Guo, Y., Wu, S., He, Y., Kang, F., Chen, L., Li, H., and Yang, Q., Solid-state lithium batteries: Safety and prospects, eScience, 2022, vol. 2, p. 138. https://doi.org/10.1016/j.esci.2022.02.008
- Patil, A., Patil, V., Shin, D.W., Choi, J., Paik, D., and Yoon, S., Issue and challenges facing rechargeable thin film lithium batteries, Mat. Res. Bull., 2008, vol. 43, p. 1913. doi: 10.1016/j.materresbull.2007.08.031
- Oudenhoven, J.F.M., Baggetto, L., and Notten, P.H.L., All-Solid-State Lithium-Ion Microbatteries: A Review of Various Three-Dimensional Concepts, Adv. Energy Mater., 2011, vol. 1, p. 10. https://doi.org/10.1002/aenm.201000002
- Zhou, Y., Xue, M., and Fu, Z., Nanostructured thin film electrodes for lithium storage and all-solid-state thin-film lithium batteries, J. Power Sources, 2013, vol. 234, p. 310. http://dx.doi.org/10.1016/j.jpowsour.2013.01.183
- Ko, J. and Yoon, Y.S., Lithium phosphorus oxynitride thin films for rechargeable lithium batteries: Applications from thin-film batteries as micro batteries to surface modification for large-scale batteries, Ceram. Int., 2022, vol. 48, p. 10372. https://doi.org/10.1016/j.ceramint.2022.02.173
- Sun, C., Liu, J., Gong, Y., Wilkinsone, D.P., and Zhang, J., Recent advances in all-solid-state rechargeable lithium batteries, Nano Energy, 2017, vol. 33, p. 363. http://dx.doi.org/10.1016/j.nanoen.2017.01.028
- Patil, A., Patil, V., Choi, J., Kim, J., and Yoon, S., Solid Electrolytes for Rechargeable Thin Film Lithium Batteries: A Review, J. Nanosci. Nanotechnol., 2017, vol. 17, p. 29. doi: 10.1166/jnn.2017.12699
- Xu, R.C., Xia, X.H., Zhang, S.Z., Xie, D., Wang, X.L., and Tu, J.P., Interfacial challenges and progress for inorganic all-solid-state lithium batteries, Electrochim. Acta, 2018, vol. 284, p. 177. https://doi.org/10.1016/j.electacta.2018.07.191
- Moitzheim, S., Put, B., and Vereecken, P.M., Advances in 3D Thin-Film Li-Ion Batteries, Adv. Mater. Interfaces, 2019, vol. 6, article # 1900805. doi: 10.1002/admi.201900805
- Clement, B., Lyu, M., Kulkarni, E.S., Lin, T., Hua, Y., Lockett, V., Greig, C., and Wanga, L., Recent Advances in Printed Thin-Film Batteries, Engineering, 2022, vol. 13, article # 238. https://doi.org/10.1016/j.eng.2022.04.002
- Yu, Y., Gong, M., Dong, C., and Xu, X., Thin-film deposition techniques in surface and interface engineering of solid-state lithium batteries, Next Nanotechnol., 2023, vol. 3–4, article # 100028. https://doi.org/10.1016/j.nxnano.2023.100028
- Machín, A., Morant, C., and Márquez, F., Advancements and Challenges in Solid-State Battery Technology: An In-Depth Review of Solid Electrolytes and Anode Innovations, Batteries, 2023, vol. 10, article # 29. https://doi.org/10.3390/batteries10010029
- Jetybayeva, A., Aaron, D.S., Belharouak, I., and Mench, M.M., Critical review on recently developed lithium and non-lithium anode-based solid-state lithium-ion batteries, J. Power Sources, 2023, vol. 566, article # 232914. https://doi.org/10.1016/j.jpowsour.2023.232914
- Wu, D., Chen, L., Li, H., and Wu, F., Solid-state lithium batteries-from fundamental research to industrial progress, Prog. Mater. Sci., 2023, vol. 139, article # 101182. https://doi.org/10.1016/j.pmatsci.2023.101182
- Shalaby, M.S., Alziyadi, M.O., Gamal, H., and Hamdy, S., Solid-state lithium-ion battery: The key components enhance the performance and efficiency of anode, cathode, and solid electrolytes, J. Alloys Comp., 2023, vol. 969, article # 172318. https://doi.org/10.1016/j.jallcom.2023.172318
- Bates, J.B., Dudney, N.J., Gruzalski, G.R., Zuhr, R.A., Choudhury, A., Luck, C.F., and Robertson, J.D., Electrical properties of amorphous lithium electrolyte thin films, Solid State Ionics, 1992, vol. 53–56, p. 647. https://doi.org/10.1016/0167-2738(92)90442-R
- Bates, J.B., Dudney, N.J., Gruzalski, G.R., Zuhr, R.A., Choudhury, A., Luck, C.F., and Robertson, J.D., Fabrication and characterization of amorphous lithium electrolyte thin films and rechargeable thin-film batteries, J. Power Sources, 1993, vol. 43/44, p. 103. https://doi.org/10.1016/0378-7753(93)80106-Y
- Bates, J.B., Dudney, N.J., Lubben, D.C., Gruzalski, G.R., Kwak, B.S., Yu, X., and Zuhr, R.A., Thin-film rechargeable lithium batteries, J. Power Sources, 1995, vol. 54, p. 58. https://doi.org/10.1016/0378-7753(94)02040-A
- Wang, B., Bates, J.B., Hart, F.X., Sales, B.C., Zuhr, R.A., and Robertson, J.D., Characterization of Thin-Film Rechargeable Lithium Batteries with Lithium Cobalt Oxide Cathodes, J. Electrochem. Soc., 1996, vol. 143, p. 3203. doi: 10.1149/1.1837188
- Notten, P.H.L., Roozeboom, F., Niessen, R.A.H., and Baggetto, L., 3-D Integrated All-Solid-State Rechargeable Batteries, Adv. Mater., 2007, vol. 19, p. 4564. doi: 10.1002/adma.200702398
- Ferrari, S., Loveridge, M., Beattie, S.D., Jahn, M., Dashwood, R.J., and Bhagat, R., Latest advances in the manufacturing of 3D rechargeable lithium microbatteries. J. Power Sources, 2015, vol. 286, p. 25. http://dx.doi.org/10.1016/j.jpowsour.2015.03.133
- Long, J.W., Dunn, B., Rolison, D.R., and White, H.S., Three-dimensional battery architectures, Chem. Rev., 2004, vol. 104, p. 4463. https://doi.org/10.1021/cr020740l
- Edstrom, K., Brandell, D., Gustafsson, T., and Nyholm, L., Electrodeposition as a Tool for 3D Microbattery Fabrication, Interface, 2011, vol. 20, no. 2, p. 41. doi: 10.1149/2.F05112if [open access]
- Roberts, M., Johns, P., Owen, J., Brandell, D., Edstrom, K., El Enany, G., Guery, C., Golodnitsky, D., Lacey, M., Lecoeur, C., Mazor, H., Peled, E., Perre, E., Shaijumon, M.M., Simon, P., and Taberna, P.-L., 3D lithium ion batteries – from fundamentals to fabrication, J. Mater. Chem., 2011, vol. 21, p. 9876. doi: 10.1039/c0jm04396f
- Arthur, T.S., Bates, D.J., Cirigliano, N., Johnson, D.C., Malati, P., Mosby, J.M., Perre, E., Rawls, M.T., Prieto, A.L., and Dunn, B., Three-dimensional electrodes and battery architectures, MRS Bull., 2011, vol. 36, p. 523. https://doi.org/10.1557/mrs.2011.156
- Rolison, D.R., Long, J.W., Lytle, J.C., Fischer, A.E., Rhodes, C.P., McEvoy, T.M., Bourga, M.E., and Lubers, A.M., Multifunctional 3D nanoarchitectures for energy storage and conversion, Chem. Soc. Rev., 2009, vol. 38, p. 226. https://doi.org/10.1039/B801151F
- Zhang, F., Wei, M., Viswanathan, V.V., Swart, B., Shao, Y., Wu, G., and Zhou, C., 3D printing technologies for electrochemical energy storage, Nano Energy, 2017, vol. 40, p. 418. http://dx.doi.org/10.1016/j.nanoen.2017.08.037
- Sun, K., Wei, T.-S., Ahn, B.Y., Seo, J.Y., Dillon, S.J., and Lewis, J.A., 3D Printing of Interdigitated Li-Ion Microbattery Architectures, Adv. Mater., 2013, vol. 25, p. 4539. doi: 10.1002/adma.201301036
- Wei, M., Zhang, F., Wang, W., Alexandridis, P., Zhou, C., and Wu, G., 3D direct writing fabrication of electrodes for electrochemical storage devices, J. Power Sources, 2017, vol. 354, p. 134. http://dx.doi.org/10.1016/j.jpowsour.2017.04.042
- Yang, Y., Jeong, S., Hu, L., Wu, H., Lee, S.W., and Cui, Y., Transparent Lithium-Ion Batteries, Proc. Natl. Acad. Sci. U.S.A., 2011, vol. 108, p. 13013. www.pnas.org/cgi/doi/10.1073/pnas.1102873108
- Oukassi, S., Baggetto, L., Dubarry, C., Le Van-Jodin, L., Poncet, S., and Salot, R., Transparent Thin Film Solid-State Lithium Ion Batteries, ACS Appl. Mater. Interfaces, 2019, vol. 11, p. 683. doi: 10.1021/acsami.8b16364
- Zhang, Z., Shao, Y., Lotsch, B., Hu, Y.S., Li, H., Janek, J., Nazar, L.F., Nan, C., Maier, J., Armand, M., and Chen, L., New horizons for inorganic solid state ion conductors, Energy Environ. Sci., 2018, vol. 11, p. 1945. doi: 10.1039/c8ee01053f
- Takada, K., Progress in solid electrolytes toward realizing solid-state lithium batteries, J. Power Sources, 2018, vol. 394, p. 74. https://doi.org/10.1016/j.jpowsour.2018.05.003
- Campanella, D., Belanger, D., and Paolella, A., Beyond garnets, phosphates and phosphosulfides solid electrolytes: New ceramic perspectives for all solid lithium metal batteries, J. Power Sources, 2021, vol. 482, article # 228949. https://doi.org/10.1016/j.jpowsour.2020.228949
- Thangadurai, V., Narayanan, S., and Pinzaru, D., Garnet-type solid-state fast Li ion conductors for Li batteries: critical review, Chem. Soc. Rev., 2014, vol. 43, p. 4714. doi: 10.1039/c4cs00020j
- Guo, R., Zhang, K., Zhao, W., Hu, Z., Li, S., Zhong, Y., Yang, R., Wang, X., Wang, J., Wu, C., and Bai, Y., Interfacial Challenges and Strategies toward Practical Sulfide-Based Solid-State Lithium Batteries, Energy Mater. Adv., 2023, vol. 4, article #0022. https://doi.org/10.34133/energymatadv.0022
- Liu, D., Zhu, W., Feng, Z., Guerfi, A., Vijh, A., and Zaghib, K., Recent progress in sulfide-based solid electrolytes for Li-ion batteries, Mat. Sci. Eng. B, 2016, vol. 213, p. 169. http://dx.doi.org/10.1016/j.mseb.2016.03.005
- Zhang, X., Wang, J., Hu, D., Du, W., Hou, C., Jiang, H., Wei, Y., Liu, X., Jiang, F., Sun, J., Yuan, H., and Huang, X., High-performance lithium metal batteries based on composite solid-state electrolytes with high ceramic content, Energy Storage Mater., 2024, vol. 65, article # 103089. https://doi.org/10.1016/j.ensm.2023.103089
- Zhang, Z., Wang, X., Li, X., Zhao, J., Liu, G., Yu, W., Dong, X., and Wang, J., Review on composite solid electrolytes for solid-state lithium-ion batteries, Mater. Today Sustainability, 2023, vol. 21, article # 100316. https://doi.org/10.1016/j.mtsust.2023.100316
- Devaraj, L., Thummalapalli, S.V., Fonseca, N., Nazir, H., Song, K., and Kannan, A.M., Comprehending garnet solid electrolytes and interfaces in all-solid lithium-ion batteries, Mater. Today Sustainability, 2024, vol. 25, article # 100614. https://doi.org/10.1016/j.mtsust.2023.100614
- Han, Y., Chen, Y., Huang, Y., Zhang, M., Li, Z., and Wang, Y., Recent progress on garnet-type oxide electrolytes for all-solid-state lithium-ion batteries, Ceram. Int., 2023, vol. 49, p. 29375. https://doi.org/10.1016/j.ceramint.2023.06.153
- Joo, K.H., Sohn, H.J., Vinatier, P., Pecquenard, B., and Levasseur, A., Lithium Ion Conducting Lithium Sulfur Oxynitride Thin Film, Electrochem. Solid State Lett., 2004, vol. 7, p. A256. doi: 10.1149/1.1769317
- Jones, S.D., Akridge, J.R., and Shokoohi, F.K., Thin film rechargeable Li batteries, Solid State Ionics, 1994, vol. 69, p. 357. https://doi.org/10.1016/0167-2738(94)90423-5
- Ujiie, S., Hayashi, A., and Tatsumisago, M., Preparation and ionic conductivity of (100–x)(0.8Li2S0.2P2S5)·xLiI glass–ceramic electrolytes, J. Solid State Electrochem., 2013, vol. 17, p. 675. https://doi.org/10.1007/s10008-012-1900-7
- Jung, W.D., Kim, J., Choi, S., Kim, S., Jeon, M., Jung, H., Chung, K.Y., Lee, J., Kim, B., Lee, J., and Kim, H., Superionic Halogen-Rich Li-Argyrodites Using In Situ Nanocrystal Nucleation and Rapid Crystal Growth, Nano Lett., 2020, vol. 20, p. 2303. https://doi.org/10.1021/acs.nanolett.9b04597
- Zhang, Z., Wu, L., Zhou, D., Weng, W., and Yao, X., Flexible Sulfide Electrolyte Thin Membrane with Ultrahigh Ionic Conductivity for All-Solid-State Lithium Batteries, Nano Lett., 2021, vol. 21, p. 5233. https://doi.org/10.1021/acs.nanolett.1c01344
- Fu, J., Superionic conductivity of glass-ceramics in the system Li2O–Al2O3–TiO2–P2O5, Solid State Ionics, 1997, vol. 96, p. 195. https://doi.org/10.1016/S0167-2738(97)00018-0
- Mizuno, F., Hayashi, A., Tadanaga, K., and Tatsumisago, M., New, Highly Ion-Conductive Crystals Precipitated from Li2S–P2S5 Glasses, Adv. Mater., 2005, vol. 17, p. 918. doi: 10.1002/adma.200401286
- Tatsumisago, M., Glassy materials based on Li2S for all-solid-state lithium secondary batteries, Solid State Ionics, 2004, vol. 175, p. 13. https://doi.org/10.1016/j.ssi.2004.09.012
- Seino, Y., Ota, T., Takada, K., Hayashi, A., and Tatsumisago, M., A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries, Energy Environ. Sci., 2014, vol. 7, p. 627. doi: 10.1039/c3ee41655k
- Stramare, S., Thangadurai, V., and Weppner, W., Lithium Lanthanum Titanates: A Review, Chem. Mater., 2003, vol. 15, p. 3974. https://doi.org/10.1021/cm0300516
- Bohnke, O., The fast lithium-ion conducting oxides Li3xLa2/3–xTiO3 from fundamentals to application, Solid State Ionics, 2008, vol. 179, p. 9. doi: 10.1016/j.ssi.2007.12.022
- Kanno, R. and Murayama, M., Lithium Ionic Conductor Thio-LISICON: The Li2S–GeS2–P2S5 System, J. Electrochem. Soc., 2001, vol. 148, p. A742. doi: 10.1149/1.1379028
- Takada, K., Inada, T., Kajiyama, A., Sasaki, H., Kondo, S., Watanabe, M., Murayama, M., and Kanno, R., Solid-state lithium battery with graphite anode, Solid State Ionics, 2003, vol. 158, p. 269. https://doi.org/10.1016/S0167-2738(02)00823-8
- Kamaya, N., Homma, K., Yamakawa, Y., Hirayama, M., Kanno, R., Yonemura, M., Kamiyama, T., Kato, Y., Hama, S., Kawamoto, K., and Matsui, A., A lithium superionic conductor, Nat. Mater., 2011, vol. 10, p. 682. doi: 10.1038/NMAT3066
- Murugan, R., Weppner, W., Schmid-Beurmann, P., and Thangadurai, V., Structure and lithium ion conductivity of bismuth containing lithium garnets Li5La3Bi2O12 and Li6SrLa2Bi2O12, Mater. Sci. Eng. B., 2007, vol. 143, p. 14. https://doi.org/10.1016/j.mseb.2007.07.009
- Ohta, S., Kobayashi, T., and Asaoka, T., High lithium ionic conductivity in the garnet type oxide Li7–xLa3 (Zr2–x, Nbx)O12, J. Power Sources, 2011, vol. 196, p. 3342. https://doi.org/10.1016/j.jpowsour.2010.11.089
- El Shinawi, H. and Janek, J., Stabilization of cubic lithium-stuffed garnets of the type ‘‘Li7La3Zr2O12’’ by addition of gallium, J. Power Sources, 2013, vol. 225, p. 13. https://doi.org/10.1016/j.jpowsour.2012.09.111
- Allen, J.L., Wolfenstine, J., Rangasamy, E., and Sakamoto, J., Effect of substitution (Ta, Al, Ga) on the conductivity of Li7La3Zr2O12, J. Power Sources, 2012, vol. 206, p. 315. https://doi.org/10.1016/j.jpowsour.2012.01.131
- Shen, Y., Zhang, Y., Han, S., Wang, J., Peng, Z., and Chen L., Unlocking the Energy Capabilities of Lithium Metal Electrode with Solid-State Electrolytes, Joule, 2018, vol. 2, p. 1674. https://doi.org/10.1016/j.joule.2018.06.021
- Dudney, N., Thin film micro-batteries, Interface, 2008, no. 3, p. 44. doi: 10.1149/2.F04083IF
- Neudecker, B.J., Dudney, N.J., and Bates, J.B., “Lithium-Free” Thin-Film Battery with in situ Plated Li Anode, J. Electrochem. Soc., 2000, vol. 147, p. 517. doi: 10.1149/1.1393226
- Baggetto, L., Niessen, R.A.H., and Notten, P.H.L., On the activation and charge transfer kinetics of evaporated silicon electrode/electrolyte interfaces, Electrochim. Acta, 2009, vol. 54, p. 5937. doi: 10.1016/j.electacta.2009.05.070
- Phan, V.P., Pecquenard, B., and Le Cras, F., High-Performance All-Solid-State Cells Fabricated With Silicon Electrodes, Adv. Funct. Mater., 2012, vol. 22, p. 2580. https://doi.org/10.1002/adfm.201200104
- Sakabe, J., Ohta, N., Ohnishi, T., Mitsuishi, K., and Takada, K., Porous amorphous silicon film anodes for high-capacity and stable all-solid-state lithium batteries, Commun. Chem., 2018, vol. 1, article # 24. https://doi.org/10.1038/s42004-018-0026-y
- Miyazaki, R., Ohta, N., Ohnishi, T., Sakaguchi, I., and Takada, K., An amorphous Si film anode for all-solid-state lithium batteries, J. Power Sources, 2014, vol. 272, p. 541. http://dx.doi.org/10.1016/j.jpowsour.2014.08.109
- Miyazaki, R., Ohta, N., Ohnishi, T., and Takada, K., Anode properties of silicon-rich amorphous silicon suboxide films in all-solid-state lithium batteries, J. Power Sources, 2016, vol. 329, p. 41. http://dx.doi.org/10.1016/j.jpowsour.2016.08.070
- Ping, W., Yang, C., Bao, Y., Wang, C., Xie, H., Hitz, E., Cheng, J., Li, T., and Hu, L., A silicon anode for garnet-based all-solid-state batteries: Interfaces and nanomechanics, Energy Storage Mater., 2019, vol. 21, p. 246. https://doi.org/10.1016/j.ensm.2019.06.024
- Cangaz, S., Hippauf, F., Reuter, F.S., Doerfler, S., Abendroth, T., Althues, H., and Kaskel, S., Enabling High-Energy Solid-State Batteries with Stable Anode Interphase by the Use of Columnar Silicon Anodes, Adv. Energy Mater., 2020, vol. 10, article # 2001320. doi: 10.1002/aenm.202001320
- Tan, D.H.S., Chen, Y., Yang, H., Bao, W., Sreenarayanan, B., Doux, J., Li, W., Lu, B., Ham, S., Sayahpour, B., Scharf, J., Wu, E.A., Deysher, G., Han, H.E., Hah, H.J., Jeong, H., Lee, J.B., Chen, Z., and Meng, Y.S., Carbon-free high-loading silicon anodes enabled by sulfide solid electrolytes, Science, 2021, vol. 373, p. 1494. doi: 10.1126/science.abg7217
- Okuno, R., Yamamoto, M., Terauchi, Y., and Takahashi, M., Stable cyclability of porous Si anode applied for sulfide-based all solid-state batteries, ACS Appl. Energy Mater., 2019, vol. 2, p. 7005. doi: 10.1021/acsaem.9b01517
- Kato, A., Yamamoto, M., Sakuda, A., Hayashi, A., and Tatsumisago, M., Mechanical properties of Li2S – P2S5 glasses with lithium halides and application in all-solid-state batteries, ACS Appl. Energy Mater., 2018, vol. 1, p. 1002. doi: 10.1021/acsaem.7b00140
- Cervera, R.B., Suzuki, N., Ohnishi, T., Osada, M., Mitsuishi, K., Kambara, T., and Takada, K., High performance silicon-based anodes in solid-state lithium batteries, Energy Environ. Sci., 2014, vol. 7, p. 662. https://doi.org/10.1039/c3ee43306d
- Рогинская, Ю.Е., Кулова, Т.Л., Скундин, А.М., Брук, М.А., Клочихина, А.В., Козлова, Н.В., Кальнов, В.А., Логинов, Б. А. Структура и свойства нового типа наноструктурных композитных электродов для литий-ионных аккумуляторов. Журн. физ. химии. 2008. Т. 82. С. 1852. [Roginskaya, Yu.E., Kulova, T.L., Skundin, A.M., Bruk, M.A., Klochikhina, A.V., Kozlova, N.V., Kal’nov, V.A., and Loginov, B.A., The Structure and Properties of a New Type of Nanostructured Composite Si/C Electrodes for Lithium Ion Accumulators, Russ. J. Phys. Chem. A, 2008, vol. 82, p. 1655.] doi: 10.1134/S0036024408100063
- Рогинская, Ю.Е., Кулова, Т.Л., Скундин, А.М., Брук, М.А., Жихарев, Е.Н., Кальнов, В.А., Логинов, Б. А. Новый тип наноструктурированных композитных Si/C-электродов. Электрохимия. 2008. Т. 44. С. 1289. [Roginskaya, Yu.E., Kulova, T.L., Skundin, A.M., Bruk, M.A., Zhikharev, E.N., Kal’nov, V.A., and Loginov, B.A., New Type of the Nanostructured Composite Si/C Electrodes, Russ. J. Electrochem., 2008, vol. 44, p. 1197.] doi: 10.1134/S1023193508110025
- Li, W., Yang, R., Wang, X., Wang, T., Zheng, J., and Li, X.J., Intercalated Si/C films as the anode for Li-ion batteries with near theoretical stable capacity prepared by dual plasma deposition, J. Power Sources, 2013, vol. 221, p. 242. https://doi.org/10.1016/j.jpowsour.2012.08.042
- Kim, J.-B., Lim, S.-H., and Lee, S.-M., Structural Change in Si Phase of Fe/Si Multilayer Thin-Film Anodes during Li Insertion/Extraction Reaction, J. Electrochem. Soc., 2006, vol. 153, p. A455. doi: 10.1149/1.2158567
- Hwang, C.-M. and Park, J.-W., Electrochemical characterizations of multi-layer and composite silicon–germanium anodes for Li-ion batteries using magnetron sputtering, J. Power Sources, 2011, vol. 196, p. 6772. https://doi.org/10.1016/j.jpowsour.2010.10.061
- Demirkan, M.T., Trahey, L., and Karabacak, T., Cycling performance of density modulated multilayer silicon thin film anodes in Li-ion batteries, J. Power Sources, 2015, vol. 273, p. 52. https://doi.org/10.1016/j.jpowsour.2014.09.027
- Demirkan, M.T., Yurukcu, M., Dursun, B., Demir-Cakan, R., and Karabacak, T., Evaluation of double-layer density modulated Si thin films as Li-ion battery anodes, Mater. Res. Express, 2017, vol. 4, article # 106405. https://doi.org/10.1088/2053-1591/aa8f88
- Рудый, А.С., Мироненко, А.А., Наумов, В.В., Скундин, А.М., Кулова, Т.Л., Федоров, И.С., Васильев, С. В. Твердотельный литий-ионный аккумулятор: структура, технология и характеристики. Письма в ЖТФ. 2020. Т. 46. № 5. С. 15. doi: 10.21883/PJTF.2020.05.49101.18083 [Rudyi, A.S., Mironenko, A.A., Naumov, V.V., Skundin, A.M., Kulova, T.L., Fedorov, I.S., and Vasil’ev, S.V., A Solid-State Lithium-Ion Battery: Structure, Technology, and Characteristics, Tech. Phys. Lett., 2020, vol. 46, no. 3, p. 217.] doi: 10.1134/S1063785020030141
- Кулова, Т.Л., Мазалецкий, Л.А., Мироненко, А.А., Рудый, А.С., Скундин, А.М., Торцева, Ю.С., Федоров, И. С. Экспериментальное исследование влияния пористости тонкопленочных анодов на основе кремния на их зарядно-разрядные характеристики. Микроэлектроника. 2021. Т. 50. № 1. С. 49. doi: 10.31857/S0544126920060071 [Kulova, T.L., Mazaletsky, L.A., Mironenko, A.A., Rudy, A.S., Skundin, A.M., Tortseva, Yu.S., and Fedorov, I.S., Experimental Study of the Influence of the Porosity of Thin-Film Silicon-Based Anodes on Their Charge-Discharge Characteristics, Russ. Microelectron., 2021, vol. 50, no. 1, p. 45.] doi: 10.1134/S1063739720060074
- Рудый, А.С., Мироненко, А.А., Наумов, В.В., Федоров, И.С., Скундин, А.М., Торцева, Ю. С. Тонкопленочные твердотельные литий-ионные аккумуляторы системы LiCoO2/LiPON/Si@O@Al. Микроэлектроника. 2021. Т. 50. № 5. С. 370. doi: 10.31857/S0544126921050057 [Rudy, A.S., Mironenko, A.A., Naumov, V.V., Fedorov, I.S., Skundin, A.M., and Tortseva, Yu.S., Thin-Film Solid State Lithium-Ion Batteries of the LiCoO2/Lipon/Si@O@Al System, Russ. Microelectron., 2021, vol. 50, no. 5, p. 333.] doi: 10.1134/S106373972105005X
- Kurbatov, S., Mironenko, A., Naumov, V., Skundin, A., and Rudy, A., Effect of the Etching Profile of a Si Substrate on the Capacitive Characteristics of Three-Dimensional Solid-State Lithium-Ion Batteries, Batteries, 2021, vol. 7, Article # 65. https://doi.org/10.3390/batteries7040065
- Rudy, A.S., Kurbatov, S.V., Mironenko, A.A., Naumov, V.V., Skundin, A.M., and Egorova, Yu.S., Effect of Si-Based Anode Lithiation on Charging Characteristics of All-Solid-State Lithium-Ion Battery, Batteries, 2022, vol. 8, Article # 87. https://doi.org/10.3390/batteries8080087
- Rudy, A.S., Skundin, A.M., Mironenko, A.A., and Naumov, V.V., Current Effect on the Performances of All-Solid-State Lithium-Ion Batteries – Peukert’s Law, Batteries, 2023, vol. 9, article # 370. https://doi.org/10.3390/batteries9070370
- Dunlap, N.A, Kim, S., Jeong, J.J., Oh, K.H., and Lee, S., Simple and inexpensive coal-tar-pitch derived Si-C anode composite for all solid-state Li-ion batteries, Solid State Ionics, 2018, vol. 324, p. 207. https://doi.org/10.1016/j.ssi.2018.07.013
- Whiteley, J.M., Kim, J.W., Piper, D.M., and Se-Hee Lee, S., High-Capacity and Highly Reversible Silicon-Tin Hybrid Anode for Solid-State Lithium-Ion Batteries, J. Electrochem. Soc., 2016, vol. 163, p. A251. doi: 10.1149/2.0701602jes
- Son, S.B., Kim, S.C., Kang, C.S., Yersak, T.A., Kim, Y.C., Lee, C.G., Moon, S.H., Cho, J.S., Moon, J.T., Oh, K.H., and Lee, S.H., A Highly Reversible Nano-Si Anode Enabled by Mechanical Confinement in an Electrochemically Activated LixTi4Ni4Si7 Matrix, Adv. Energy Mater., 2012, vol. 2, p. 1226. doi: 10.1002/aenm.201200180
- Yersak, T.A., Son, S.B., Cho, J.S., Suh, S.S., Kim, Y.U., Moon, J.T., Oh, K.H., and Lee, S.H., An All-Solid-State Li-Ion Battery with a Pre-Lithiated Si-Ti-Ni Alloy Anode, J. Electrochem. Soc., 2013, vol. 160, p. A1497. doi: 10.1149/2.086309jes
- Yamamoto, M., Terauchi, Y., Sakuda, A., and Takahashi, M., Slurry mixing for fabricating silicon-composite electrodes in all-solid-state batteries with high areal capacity and cycling stability, J. Power Sources, 2018, vol. 402, p. 506. https://doi.org/10.1016/j.jpowsour.2018.09.070
- Kim, D.H., Lee, H.A., Song, Y.B., Park, J.W., Lee, S., and Jung, Y.S., Sheet-type Li6PS5Cl-infiltrated Si anodes fabricated by solution process for all-solid-state lithium-ion batteries, J. Power Sources, 2019, vol. 426, p. 143. https://doi.org/10.1016/j.jpowsour.2019.04.028
- Kanazawa, S., Baba, T., Yoneda, K., Mizuhata, M., and Kanno, I., Deposition and performance of all solid-state thin-film lithium-ion batteries composed of amorphous Si/LiPON/VO-LiPO multilayers, Thin Solid Films, 2020, vol. 697, article # 137840. https://doi.org/10.1016/j.tsf.2020.137840
- Chai, L., Wang, X., Su, B., Li, X., and Xue, W., Insight into the decay mechanism of non-ultra-thin silicon film anode for lithium-ion batteries, Electrochim. Acta, 2023, vol. 448, article # 142112. https://doi.org/10.1016/j.electacta.2023.142112
- Ohzuku, T., Ueda, A., and Yamamoto, N., Zero-Strain Insertion Material of Li[Li1/3Ti5/3]O4 for Rechargeable Lithium Cells, J. Electrochem. Soc., 1995, vol. 142, p. 1431. doi: 10.1149/1.2048592
- Minami, K., Hayashi, A., Ujiie, S., and Tatsumisago, M., Electrical and electrochemical properties of glass–ceramic electrolytes in the systems Li2S–P2S5–P2S3 and Li2S–P2S5–P2O5, Solid State Ionics, 2011, vol. 192, p. 122. doi: 10.1016/j.ssi.2010.06.018
- Tatsumisago, M. and Hayashi, A., Superionic glasses and glass–ceramics in the Li2S–P2S5 system for all-solid-state lithium secondary batteries, Solid State Ionics, 2012, vol. 225, p. 342. doi: 10.1016/j.ssi.2012.03.013
- Kato, Y., Hori, S., Saito, T., Suzuki, K., Hirayama, M., Mitsui, A., Yonemura, M., Iba, H., and Kanno, R., High-power all-solid-state batteries using sulfide superionic conductors, Nano Energy, 2016, vol. 1, article # 16030. doi: 10.1038/NENERGY.2016.30
- Song, S., Hong, S., Park, H.Y., Lim, Y.C., and Lee, K.C., Cycling-Driven Structural Changes in a Thin-Film Lithium Battery on Flexible Substrate, Electrochem. Solid-State Lett., 2009, vol. 12, p. A159. doi: 10.1149/1.3139530
- Yamamoto, T., Iwasaki, H., Suzuki, Y., Sakakura, M., Fujii, Y., Motoyama, M., and Iriyama, Y., A Li-free inverted-stack all-solid-state thin film battery using crystalline cathode material, Electrochem. Commun., 2019, vol. 105, article # 106494. https://doi.org/10.1016/j.elecom.2019.106494
- Koo, M., Park, K., Lee, S.H., Suh, M., Jeon, D.Y., Choi, J.W., Kang, K., and Lee, K.J., Bendable Inorganic Thin-Film Battery for Fully Flexible Electronic Systems, Nano Lett., 2012, vol. 12, p. 4810. dx.doi.org/10.1021/nl302254v
- Xiao, D., Tong, J., Feng, Y., Zhong, G., Li, W., and Yang, C., Improved performance of all-solid-state lithium batteries using LiPON electrolyte prepared with Li-rich sputtering target, Solid State Ionics, 2018, vol. 324, p. 202. https://doi.org/10.1016/j.ssi.2018.07.011
- Haruyama, J., Sodeyama, K., Han, L., Takada, K., and Tateyama, Y., Space–Charge Layer Effect at Interface between Oxide Cathode and Sulfide Electrolyte in All-Solid-State Lithium-Ion Battery, Chem. Mater., 2014, vol. 26, p. 4248. https://doi.org/10.1021/cm5016959
- Haruyama, J., Sodeyama, K., and Tateyama, Y., Cation Mixing Properties toward Co Diffusion at the LiCoO2 Cathode/Sulfide Electrolyte Interface in a Solid-State Battery, ACS Appl. Mater. Interfaces, 2017, vol. 9, p. 286. doi: 10.1021/acsami.6b08435
- Sakuda, A., Hayashi, A., and Tatsumisago, M., Interfacial Observation between LiCoO2 Electrode and Li2S–P2S5 Solid Electrolytes of All-Solid-State Lithium Secondary Batteries Using Transmission Electron Microscopy, Chem. Mater., 2010, vol. 22, p. 949. doi: 10.1021/cm901819c
- Woo, J.H., Trevey, J.E., Cavanagh, A.S., Choi, Y.S., Kim, S.C., George, S.M., Oh, K.H., and Lee, S., Nanoscale Interface Modification of LiCoO2 by Al2O3 Atomic Layer Deposition for Solid-State Li Batteries, J. Electrochem. Soc., 2012, vol. 159, p. A1120. doi: 10.1149/2.085207jes
- Ohta, N., Takada, K., Sakaguchi, I., Zhang, L., Ma, R., Fukuda, K., Osada, M., and Sasaki, T., LiNbO3-coated LiCoO2 as cathode material for all solid-state lithium secondary batteries, Electrochem. Commun., 2007, vol. 9, p. 1486. doi: 10.1016/j.elecom.2007.02.008
- Ohta, N., Takada, K., Zhang, L., Ma, R., Osada, M., and Sasaki, T., Enhancement of the High-Rate Capability of Solid-State Lithium Batteries by Nanoscale Interfacial Modification, Adv. Mater., 2006, vol. 18, p. 2226. doi: 10.1002/adma.200502604
- Kato, T., Hamanaka, T., Yamamoto, K., Hirayama, T., Sagane, F., Motoyama, M., and Iriyama, Y., In-situ Li7La3Zr2O12/LiCoO2 interface modification for advanced all-solid-state battery, J. Power Sources, 2014, vol. 260, p. 292. http://dx.doi.org/10.1016/j.jpowsour.2014.02.102
- Ohta, S., Kobayashi, T., Seki, J., and Asaoka, T., Electrochemical performance of an all-solid-state lithium ion battery with garnet-type oxide electrolyte, J. Power Sources, 2012, vol. 202, p. 332. doi: 10.1016/j.jpowsour.2011.10.064
- Kotobuki, M., Suzuki, Y., Munakata, H., Kanamura, K., Sato, Y., Yamamoto, K., and Yoshida, T., Fabrication of Three-Dimensional Battery Using Ceramic Electrolyte with Honeycomb Structure by Sol–Gel Process, J. Electrochem. Soc., 2010, vol. 157, p. A493. doi: 10.1149/1.3308459
- Li, C., Zhang, B., and Fu, Z., Physical and electrochemical characterization of amorphous lithium lanthanum titanate solid electrolyte thin-film fabricated by e-beam evaporation, Thin Solid Films, 2006, vol. 515, p. 1886. doi: 10.1016/j.tsf.2006.07.026
- Kotobuki, M., Suzuki, Y., Munakata, H., Kanamura, K., Sato, Y., Yamamoto, K., and Yoshida, T., Compatibility of LiCoO2 and LiMn2O4 cathode materials for Li0.55La0.35TiO3 electrolyte to fabricate all-solid-state lithium battery, J. Power Sources, 2010, vol. 195, p. 5784. doi: 10.1016/j.jpowsour.2010.03.004
- Visbal, H., Aihara, Y., Ito, S., Watanabe, T., Park, Y., and Doo, S., The effect of diamond-like carbon coating on LiNi0.8Co0.15Al0.05O2 particles for all solid-state lithium-ion batteries based on Li2SeP2S5 glass-ceramics, J. Power Sources, 2016, vol. 314, p. 85. http://dx.doi.org/10.1016/j.jpowsour.2016.02.088
- Seino, Y., Ota, T., and Takada, K., High rate capabilities of all-solid-state lithium secondary batteries using Li4Ti5O12-coated LiNi0.8Co0.15Al0.05O2 and a sulfide-based solid electrolyte, J. Power Sources, 2011, vol. 196, p. 6488. doi: 10.1016/j.jpowsour.2011.03.090
- Sakuda, A., Takeuchi, T., and Kobayashi, H., Electrode morphology in all-solid-state lithium secondary batteries consisting of LiNi1/3Co1/3Mn1/3O2 and Li2S–P2S5 solid electrolytes, Solid State Ionics, 2016, vol. 285, p. 112. http://dx.doi.org/10.1016/j.ssi.2015.09.010
- Kitsche, D., Tang, Y., Ma, Y., Goonetilleke, D., Sann, J., Walther, F., Bianchini, M., Janek, J., and Brezesinski, T., High Performance All-Solid-State Batteries with a Ni-Rich NCM Cathode Coated by Atomic Layer Deposition and Lithium Thiophosphate Solid Electrolyte, ACS Appl. Energy Mater., 2021, vol. 4, p. 7338. https://doi.org/10.1021/acsaem.1c01487
- Ding, J., Sun, Q., and Fu, Z., Layered Li(Ni1/4Co1/2Mn1/3) O2 as Cathode Material for All-Solid-State Thin-Film Rechargeable Lithium-Ion Batteries, Electrochem. Solid State Lett., 2010, vol. 13, p. A105. doi: 10.1149/1.3432254
- Neudecker, B.J., Zuhr, R.A., Robertson, J.D., and Bates, J.B., Lithium Manganese Nickel Oxides Lix (MnyNi1–y)2–xO2. II. Electrochemical Studies on Thin-Film Batteries, J. Electrochem. Soc., 1998, vol. 145, p. 4160. doi: 10.1149/1.1838930
- Hoshina, K., Yoshima, K., Kotobuki, M., and Kanamura, K., Fabrication of LiNi0.5Mn1.5O4 thin film cathode by PVP sol–gel process and its application of all-solid-state lithium ion batteries using Li1+xAlxTi2–x (PO4)3 solid electrolyte, Solid State Ionics, 2012, vol. 209–210, p. 30. doi: 10.1016/j.ssi.2011.12.018
- Lethien, C., Zegaoui, M., Roussel, P., Tilmant, P., Rolland, N., and Rolland, P.A., Micro-patterning of LiPON and lithium iron phosphate material deposited onto silicon nanopillars array for lithium ion solid state 3D micro-battery, Microelectron. Eng., 2011, vol. 88, p. 3172. doi: 10.1016/j.mee.2011.06.022
- Dobbelaere, T., Mattelaer, F., Dendooven, J., Vereecken, P., and Detavernier, C., Plasma-Enhanced Atomic Layer Deposition of Iron Phosphate as a Positive Electrode for 3D Lithium-Ion Microbatteries, Chem. Mater., 2016, vol. 28, p. 3435. doi: 10.1021/acs.chemmater.6b00853
- Aboulaich, A., Bouchet, R., Delaizir, G., Seznec, V., Tortet, L., Morcrette, M., Rozier, P., Tarascon, J.-M., Viallet, V., and Dollé, D., A New Approach to Develop Safe All-Inorganic Monolithic Li-Ion Batteries, Adv. Energy Mater., 2011, vol. 1, p. 179. doi: 10.1002/aenm.201000050
- Kobayashi, E., Plashnitsa, L.S., Doi, T., Okada, S., and Yamaki, J., Electrochemical properties of Li symmetric solid-state cell with NASICON-type solid electrolyte and electrodes, Electrochem. Commun., 2010, vol. 12, p. 894. doi: 10.1016/j.elecom.2010.04.014
- Huang, F., Fu, Z.W., Chu, Y.Q., Liu, W.Y., and Qin, Q.Z., Characterization of Composite 0.5Ag: V2O5 Thin-Film Electrodes for Lithium-Ion Rocking Chair and All-Solid-State Batteries, Electrochem. Solid State Lett., 2004, vol. 7, p. A180. doi: 10.1149/1.1736591
- Jeon, E.J., Shin, Y.W., Nam, S.C., Cho, W.I., and Yoon, Y.S., Characterization of All-Solid-State Thin-Film Batteries with V2O5 Thin-Film Cathodes Using Ex Situ and In Situ Processes, J. Electrochem. Soc., 2001, vol. 148, p. A318. doi: 10.1149/1.1354609
- Navone, C., Baddour-Hadjean, R., Pereira-Ramos, J.P., and Salot, R., Sputtered Crystalline V2O5 Thin Films for All-Solid-State Lithium Microbatteries, J. Electrochem. Soc., 2009, vol. 156, p. A763. doi: 10.1149/1.3170922
- Matsumura, T., Nakano, K., Kanno, R., Hirano, A., Imanishi, N., and Takeda, Y., Nickel sulfides as a cathode for all-solid-state ceramic lithium batteries, J. Power Sources, 2007, vol. 174, p. 632. doi: 10.1016/j.jpowsour.2007.06.168
- Aso, K., Sakuda, A., Hayashi, A., and Tatsumisago, M., All-Solid-State Lithium Secondary Batteries Using NiS-Carbon Fiber Composite Electrodes Coated with Li2S–P2S5 Solid Electrolytes by Pulsed Laser Deposition, ACS Appl. Mater. Interfaces, 2013, vol. 5, p. 686. dx.doi.org/10.1021/am302164e
- Jones, S.D. and Akridge, J.R., Development and performance of a rechargeable thin-film state microbattery, J. Power Sources, 1995, vol. 54, p. 63. https://doi.org/10.1016/0378-7753(94)02041-Z
- Chen, M., Yin, X., Reddy, M.V., and Adams, S., All-solid-state MoS2/Li6PS5Br/In–Li batteries as a novel type of Li/S battery, J. Mater. Chem. A, 2015, vol. 3, p. 10698. doi: 10.1039/c5ta02372f
- Mauger, A., Julien, C.M., Paolella, A., Armand, M., and Zaghib, K., Building Better Batteries in the Solid State: A Review, Materials, 2019, vol. 12, article # 3892. doi: 10.3390/ma12233892
- Singer, C., Schnell, J., and Reinhart, G., Scalable Processing Routes for the Production of All-Solid-State Batteries – Modeling Interdependencies of Product and Process, Energy Technol., 2021, vol. 9, article # 2000665. https://doi.org/10.1002/ente.202000665
- Xiao, Y., Wang, Y., Bo, S., Kim, J.C., Miara, L.J., and Ceder, G., Understanding interface stability in solid-state batteries, Nat. Rev. Mater., 2020, vol. 5, p. 105. https://doi.org/10.1038/s41578-019-0157-5
- Fan, L., He, H., and Nan, C., Tailoring inorganic–polymer composites for the mass production of solid-state batteries, Nat. Rev. Mater., 2021, vol. 6, p. 1003. https://doi.org/10.1038/s41578-021-00320-0
- Banerjee, A., Wang, X., Fang, C., Wu, E.A., and Meng, Y.S., Interfaces and Interphases in All-Solid-State Batteries with Inorganic Solid Electrolytes, Chem. Rev., 2020, vol. 120, p. 6878. https://doi.org/10.1021/acs.chemrev.0c00101
Дополнительные файлы

Примечание
1 По материалам доклада на 17-м Международном Совещании “Фундаментальные и прикладные проблемы ионики твердого тела”, Черноголовка, 16–23 июня 2024 г.