All solid state thin-film lithium-ion batteries (review)
- Авторлар: Skundin А.M.1, Kulova Т.L.1
-
Мекемелер:
- Frumkin Institute of Physical Chemistry and Electrochemistry, RAS
- Шығарылым: Том 61, № 1 (2025)
- Беттер: 47-70
- Бөлім: Special issue based on the reports at the 17th International Meeting “Fundamental and Applied Problems of Solid State Ionics” (Chernogolovka, June 16–23, 2024)
- URL: https://snv63.ru/0424-8570/article/view/683946
- DOI: https://doi.org/10.31857/S0424857025010029
- EDN: https://elibrary.ru/DKXKDQ
- ID: 683946
Дәйексөз келтіру
Аннотация
The main features of all-solid-state lithium-ion batteries and similar batteries with a lithium metal electrode are considered. The main areas of application of such batteries are noted. Solid inorganic electrolytes and electrode materials are considered in detail. The main manufacturers are briefly listed.
Негізгі сөздер
Толық мәтін

Авторлар туралы
А. Skundin
Frumkin Institute of Physical Chemistry and Electrochemistry, RAS
Хат алмасуға жауапты Автор.
Email: askundin@mail.ru
Ресей, Moscow
Т. Kulova
Frumkin Institute of Physical Chemistry and Electrochemistry, RAS
Email: askundin@mail.ru
Ресей, Moscow
Әдебиет тізімі
- Kulova, T., Mironenko, A., Rudy, A., and Skundin, A. All Solid State Thin-Film Lithium-Ion Batteries: Materials, Technology, and Diagnostics, CRC Press. Taylor & Francis Group. 2021. 214 p. ISBN 9780367086824
- Guo, Y., Wu, S., He, Y., Kang, F., Chen, L., Li, H., and Yang, Q., Solid-state lithium batteries: Safety and prospects, eScience, 2022, vol. 2, p. 138. https://doi.org/10.1016/j.esci.2022.02.008
- Patil, A., Patil, V., Shin, D.W., Choi, J., Paik, D., and Yoon, S., Issue and challenges facing rechargeable thin film lithium batteries, Mat. Res. Bull., 2008, vol. 43, p. 1913. doi: 10.1016/j.materresbull.2007.08.031
- Oudenhoven, J.F.M., Baggetto, L., and Notten, P.H.L., All-Solid-State Lithium-Ion Microbatteries: A Review of Various Three-Dimensional Concepts, Adv. Energy Mater., 2011, vol. 1, p. 10. https://doi.org/10.1002/aenm.201000002
- Zhou, Y., Xue, M., and Fu, Z., Nanostructured thin film electrodes for lithium storage and all-solid-state thin-film lithium batteries, J. Power Sources, 2013, vol. 234, p. 310. http://dx.doi.org/10.1016/j.jpowsour.2013.01.183
- Ko, J. and Yoon, Y.S., Lithium phosphorus oxynitride thin films for rechargeable lithium batteries: Applications from thin-film batteries as micro batteries to surface modification for large-scale batteries, Ceram. Int., 2022, vol. 48, p. 10372. https://doi.org/10.1016/j.ceramint.2022.02.173
- Sun, C., Liu, J., Gong, Y., Wilkinsone, D.P., and Zhang, J., Recent advances in all-solid-state rechargeable lithium batteries, Nano Energy, 2017, vol. 33, p. 363. http://dx.doi.org/10.1016/j.nanoen.2017.01.028
- Patil, A., Patil, V., Choi, J., Kim, J., and Yoon, S., Solid Electrolytes for Rechargeable Thin Film Lithium Batteries: A Review, J. Nanosci. Nanotechnol., 2017, vol. 17, p. 29. doi: 10.1166/jnn.2017.12699
- Xu, R.C., Xia, X.H., Zhang, S.Z., Xie, D., Wang, X.L., and Tu, J.P., Interfacial challenges and progress for inorganic all-solid-state lithium batteries, Electrochim. Acta, 2018, vol. 284, p. 177. https://doi.org/10.1016/j.electacta.2018.07.191
- Moitzheim, S., Put, B., and Vereecken, P.M., Advances in 3D Thin-Film Li-Ion Batteries, Adv. Mater. Interfaces, 2019, vol. 6, article # 1900805. doi: 10.1002/admi.201900805
- Clement, B., Lyu, M., Kulkarni, E.S., Lin, T., Hua, Y., Lockett, V., Greig, C., and Wanga, L., Recent Advances in Printed Thin-Film Batteries, Engineering, 2022, vol. 13, article # 238. https://doi.org/10.1016/j.eng.2022.04.002
- Yu, Y., Gong, M., Dong, C., and Xu, X., Thin-film deposition techniques in surface and interface engineering of solid-state lithium batteries, Next Nanotechnol., 2023, vol. 3–4, article # 100028. https://doi.org/10.1016/j.nxnano.2023.100028
- Machín, A., Morant, C., and Márquez, F., Advancements and Challenges in Solid-State Battery Technology: An In-Depth Review of Solid Electrolytes and Anode Innovations, Batteries, 2023, vol. 10, article # 29. https://doi.org/10.3390/batteries10010029
- Jetybayeva, A., Aaron, D.S., Belharouak, I., and Mench, M.M., Critical review on recently developed lithium and non-lithium anode-based solid-state lithium-ion batteries, J. Power Sources, 2023, vol. 566, article # 232914. https://doi.org/10.1016/j.jpowsour.2023.232914
- Wu, D., Chen, L., Li, H., and Wu, F., Solid-state lithium batteries-from fundamental research to industrial progress, Prog. Mater. Sci., 2023, vol. 139, article # 101182. https://doi.org/10.1016/j.pmatsci.2023.101182
- Shalaby, M.S., Alziyadi, M.O., Gamal, H., and Hamdy, S., Solid-state lithium-ion battery: The key components enhance the performance and efficiency of anode, cathode, and solid electrolytes, J. Alloys Comp., 2023, vol. 969, article # 172318. https://doi.org/10.1016/j.jallcom.2023.172318
- Bates, J.B., Dudney, N.J., Gruzalski, G.R., Zuhr, R.A., Choudhury, A., Luck, C.F., and Robertson, J.D., Electrical properties of amorphous lithium electrolyte thin films, Solid State Ionics, 1992, vol. 53–56, p. 647. https://doi.org/10.1016/0167-2738(92)90442-R
- Bates, J.B., Dudney, N.J., Gruzalski, G.R., Zuhr, R.A., Choudhury, A., Luck, C.F., and Robertson, J.D., Fabrication and characterization of amorphous lithium electrolyte thin films and rechargeable thin-film batteries, J. Power Sources, 1993, vol. 43/44, p. 103. https://doi.org/10.1016/0378-7753(93)80106-Y
- Bates, J.B., Dudney, N.J., Lubben, D.C., Gruzalski, G.R., Kwak, B.S., Yu, X., and Zuhr, R.A., Thin-film rechargeable lithium batteries, J. Power Sources, 1995, vol. 54, p. 58. https://doi.org/10.1016/0378-7753(94)02040-A
- Wang, B., Bates, J.B., Hart, F.X., Sales, B.C., Zuhr, R.A., and Robertson, J.D., Characterization of Thin-Film Rechargeable Lithium Batteries with Lithium Cobalt Oxide Cathodes, J. Electrochem. Soc., 1996, vol. 143, p. 3203. doi: 10.1149/1.1837188
- Notten, P.H.L., Roozeboom, F., Niessen, R.A.H., and Baggetto, L., 3-D Integrated All-Solid-State Rechargeable Batteries, Adv. Mater., 2007, vol. 19, p. 4564. doi: 10.1002/adma.200702398
- Ferrari, S., Loveridge, M., Beattie, S.D., Jahn, M., Dashwood, R.J., and Bhagat, R., Latest advances in the manufacturing of 3D rechargeable lithium microbatteries. J. Power Sources, 2015, vol. 286, p. 25. http://dx.doi.org/10.1016/j.jpowsour.2015.03.133
- Long, J.W., Dunn, B., Rolison, D.R., and White, H.S., Three-dimensional battery architectures, Chem. Rev., 2004, vol. 104, p. 4463. https://doi.org/10.1021/cr020740l
- Edstrom, K., Brandell, D., Gustafsson, T., and Nyholm, L., Electrodeposition as a Tool for 3D Microbattery Fabrication, Interface, 2011, vol. 20, no. 2, p. 41. doi: 10.1149/2.F05112if [open access]
- Roberts, M., Johns, P., Owen, J., Brandell, D., Edstrom, K., El Enany, G., Guery, C., Golodnitsky, D., Lacey, M., Lecoeur, C., Mazor, H., Peled, E., Perre, E., Shaijumon, M.M., Simon, P., and Taberna, P.-L., 3D lithium ion batteries – from fundamentals to fabrication, J. Mater. Chem., 2011, vol. 21, p. 9876. doi: 10.1039/c0jm04396f
- Arthur, T.S., Bates, D.J., Cirigliano, N., Johnson, D.C., Malati, P., Mosby, J.M., Perre, E., Rawls, M.T., Prieto, A.L., and Dunn, B., Three-dimensional electrodes and battery architectures, MRS Bull., 2011, vol. 36, p. 523. https://doi.org/10.1557/mrs.2011.156
- Rolison, D.R., Long, J.W., Lytle, J.C., Fischer, A.E., Rhodes, C.P., McEvoy, T.M., Bourga, M.E., and Lubers, A.M., Multifunctional 3D nanoarchitectures for energy storage and conversion, Chem. Soc. Rev., 2009, vol. 38, p. 226. https://doi.org/10.1039/B801151F
- Zhang, F., Wei, M., Viswanathan, V.V., Swart, B., Shao, Y., Wu, G., and Zhou, C., 3D printing technologies for electrochemical energy storage, Nano Energy, 2017, vol. 40, p. 418. http://dx.doi.org/10.1016/j.nanoen.2017.08.037
- Sun, K., Wei, T.-S., Ahn, B.Y., Seo, J.Y., Dillon, S.J., and Lewis, J.A., 3D Printing of Interdigitated Li-Ion Microbattery Architectures, Adv. Mater., 2013, vol. 25, p. 4539. doi: 10.1002/adma.201301036
- Wei, M., Zhang, F., Wang, W., Alexandridis, P., Zhou, C., and Wu, G., 3D direct writing fabrication of electrodes for electrochemical storage devices, J. Power Sources, 2017, vol. 354, p. 134. http://dx.doi.org/10.1016/j.jpowsour.2017.04.042
- Yang, Y., Jeong, S., Hu, L., Wu, H., Lee, S.W., and Cui, Y., Transparent Lithium-Ion Batteries, Proc. Natl. Acad. Sci. U.S.A., 2011, vol. 108, p. 13013. www.pnas.org/cgi/doi/10.1073/pnas.1102873108
- Oukassi, S., Baggetto, L., Dubarry, C., Le Van-Jodin, L., Poncet, S., and Salot, R., Transparent Thin Film Solid-State Lithium Ion Batteries, ACS Appl. Mater. Interfaces, 2019, vol. 11, p. 683. doi: 10.1021/acsami.8b16364
- Zhang, Z., Shao, Y., Lotsch, B., Hu, Y.S., Li, H., Janek, J., Nazar, L.F., Nan, C., Maier, J., Armand, M., and Chen, L., New horizons for inorganic solid state ion conductors, Energy Environ. Sci., 2018, vol. 11, p. 1945. doi: 10.1039/c8ee01053f
- Takada, K., Progress in solid electrolytes toward realizing solid-state lithium batteries, J. Power Sources, 2018, vol. 394, p. 74. https://doi.org/10.1016/j.jpowsour.2018.05.003
- Campanella, D., Belanger, D., and Paolella, A., Beyond garnets, phosphates and phosphosulfides solid electrolytes: New ceramic perspectives for all solid lithium metal batteries, J. Power Sources, 2021, vol. 482, article # 228949. https://doi.org/10.1016/j.jpowsour.2020.228949
- Thangadurai, V., Narayanan, S., and Pinzaru, D., Garnet-type solid-state fast Li ion conductors for Li batteries: critical review, Chem. Soc. Rev., 2014, vol. 43, p. 4714. doi: 10.1039/c4cs00020j
- Guo, R., Zhang, K., Zhao, W., Hu, Z., Li, S., Zhong, Y., Yang, R., Wang, X., Wang, J., Wu, C., and Bai, Y., Interfacial Challenges and Strategies toward Practical Sulfide-Based Solid-State Lithium Batteries, Energy Mater. Adv., 2023, vol. 4, article #0022. https://doi.org/10.34133/energymatadv.0022
- Liu, D., Zhu, W., Feng, Z., Guerfi, A., Vijh, A., and Zaghib, K., Recent progress in sulfide-based solid electrolytes for Li-ion batteries, Mat. Sci. Eng. B, 2016, vol. 213, p. 169. http://dx.doi.org/10.1016/j.mseb.2016.03.005
- Zhang, X., Wang, J., Hu, D., Du, W., Hou, C., Jiang, H., Wei, Y., Liu, X., Jiang, F., Sun, J., Yuan, H., and Huang, X., High-performance lithium metal batteries based on composite solid-state electrolytes with high ceramic content, Energy Storage Mater., 2024, vol. 65, article # 103089. https://doi.org/10.1016/j.ensm.2023.103089
- Zhang, Z., Wang, X., Li, X., Zhao, J., Liu, G., Yu, W., Dong, X., and Wang, J., Review on composite solid electrolytes for solid-state lithium-ion batteries, Mater. Today Sustainability, 2023, vol. 21, article # 100316. https://doi.org/10.1016/j.mtsust.2023.100316
- Devaraj, L., Thummalapalli, S.V., Fonseca, N., Nazir, H., Song, K., and Kannan, A.M., Comprehending garnet solid electrolytes and interfaces in all-solid lithium-ion batteries, Mater. Today Sustainability, 2024, vol. 25, article # 100614. https://doi.org/10.1016/j.mtsust.2023.100614
- Han, Y., Chen, Y., Huang, Y., Zhang, M., Li, Z., and Wang, Y., Recent progress on garnet-type oxide electrolytes for all-solid-state lithium-ion batteries, Ceram. Int., 2023, vol. 49, p. 29375. https://doi.org/10.1016/j.ceramint.2023.06.153
- Joo, K.H., Sohn, H.J., Vinatier, P., Pecquenard, B., and Levasseur, A., Lithium Ion Conducting Lithium Sulfur Oxynitride Thin Film, Electrochem. Solid State Lett., 2004, vol. 7, p. A256. doi: 10.1149/1.1769317
- Jones, S.D., Akridge, J.R., and Shokoohi, F.K., Thin film rechargeable Li batteries, Solid State Ionics, 1994, vol. 69, p. 357. https://doi.org/10.1016/0167-2738(94)90423-5
- Ujiie, S., Hayashi, A., and Tatsumisago, M., Preparation and ionic conductivity of (100–x)(0.8Li2S0.2P2S5)·xLiI glass–ceramic electrolytes, J. Solid State Electrochem., 2013, vol. 17, p. 675. https://doi.org/10.1007/s10008-012-1900-7
- Jung, W.D., Kim, J., Choi, S., Kim, S., Jeon, M., Jung, H., Chung, K.Y., Lee, J., Kim, B., Lee, J., and Kim, H., Superionic Halogen-Rich Li-Argyrodites Using In Situ Nanocrystal Nucleation and Rapid Crystal Growth, Nano Lett., 2020, vol. 20, p. 2303. https://doi.org/10.1021/acs.nanolett.9b04597
- Zhang, Z., Wu, L., Zhou, D., Weng, W., and Yao, X., Flexible Sulfide Electrolyte Thin Membrane with Ultrahigh Ionic Conductivity for All-Solid-State Lithium Batteries, Nano Lett., 2021, vol. 21, p. 5233. https://doi.org/10.1021/acs.nanolett.1c01344
- Fu, J., Superionic conductivity of glass-ceramics in the system Li2O–Al2O3–TiO2–P2O5, Solid State Ionics, 1997, vol. 96, p. 195. https://doi.org/10.1016/S0167-2738(97)00018-0
- Mizuno, F., Hayashi, A., Tadanaga, K., and Tatsumisago, M., New, Highly Ion-Conductive Crystals Precipitated from Li2S–P2S5 Glasses, Adv. Mater., 2005, vol. 17, p. 918. doi: 10.1002/adma.200401286
- Tatsumisago, M., Glassy materials based on Li2S for all-solid-state lithium secondary batteries, Solid State Ionics, 2004, vol. 175, p. 13. https://doi.org/10.1016/j.ssi.2004.09.012
- Seino, Y., Ota, T., Takada, K., Hayashi, A., and Tatsumisago, M., A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries, Energy Environ. Sci., 2014, vol. 7, p. 627. doi: 10.1039/c3ee41655k
- Stramare, S., Thangadurai, V., and Weppner, W., Lithium Lanthanum Titanates: A Review, Chem. Mater., 2003, vol. 15, p. 3974. https://doi.org/10.1021/cm0300516
- Bohnke, O., The fast lithium-ion conducting oxides Li3xLa2/3–xTiO3 from fundamentals to application, Solid State Ionics, 2008, vol. 179, p. 9. doi: 10.1016/j.ssi.2007.12.022
- Kanno, R. and Murayama, M., Lithium Ionic Conductor Thio-LISICON: The Li2S–GeS2–P2S5 System, J. Electrochem. Soc., 2001, vol. 148, p. A742. doi: 10.1149/1.1379028
- Takada, K., Inada, T., Kajiyama, A., Sasaki, H., Kondo, S., Watanabe, M., Murayama, M., and Kanno, R., Solid-state lithium battery with graphite anode, Solid State Ionics, 2003, vol. 158, p. 269. https://doi.org/10.1016/S0167-2738(02)00823-8
- Kamaya, N., Homma, K., Yamakawa, Y., Hirayama, M., Kanno, R., Yonemura, M., Kamiyama, T., Kato, Y., Hama, S., Kawamoto, K., and Matsui, A., A lithium superionic conductor, Nat. Mater., 2011, vol. 10, p. 682. doi: 10.1038/NMAT3066
- Murugan, R., Weppner, W., Schmid-Beurmann, P., and Thangadurai, V., Structure and lithium ion conductivity of bismuth containing lithium garnets Li5La3Bi2O12 and Li6SrLa2Bi2O12, Mater. Sci. Eng. B., 2007, vol. 143, p. 14. https://doi.org/10.1016/j.mseb.2007.07.009
- Ohta, S., Kobayashi, T., and Asaoka, T., High lithium ionic conductivity in the garnet type oxide Li7–xLa3 (Zr2–x, Nbx)O12, J. Power Sources, 2011, vol. 196, p. 3342. https://doi.org/10.1016/j.jpowsour.2010.11.089
- El Shinawi, H. and Janek, J., Stabilization of cubic lithium-stuffed garnets of the type ‘‘Li7La3Zr2O12’’ by addition of gallium, J. Power Sources, 2013, vol. 225, p. 13. https://doi.org/10.1016/j.jpowsour.2012.09.111
- Allen, J.L., Wolfenstine, J., Rangasamy, E., and Sakamoto, J., Effect of substitution (Ta, Al, Ga) on the conductivity of Li7La3Zr2O12, J. Power Sources, 2012, vol. 206, p. 315. https://doi.org/10.1016/j.jpowsour.2012.01.131
- Shen, Y., Zhang, Y., Han, S., Wang, J., Peng, Z., and Chen L., Unlocking the Energy Capabilities of Lithium Metal Electrode with Solid-State Electrolytes, Joule, 2018, vol. 2, p. 1674. https://doi.org/10.1016/j.joule.2018.06.021
- Dudney, N., Thin film micro-batteries, Interface, 2008, no. 3, p. 44. doi: 10.1149/2.F04083IF
- Neudecker, B.J., Dudney, N.J., and Bates, J.B., “Lithium-Free” Thin-Film Battery with in situ Plated Li Anode, J. Electrochem. Soc., 2000, vol. 147, p. 517. doi: 10.1149/1.1393226
- Baggetto, L., Niessen, R.A.H., and Notten, P.H.L., On the activation and charge transfer kinetics of evaporated silicon electrode/electrolyte interfaces, Electrochim. Acta, 2009, vol. 54, p. 5937. doi: 10.1016/j.electacta.2009.05.070
- Phan, V.P., Pecquenard, B., and Le Cras, F., High-Performance All-Solid-State Cells Fabricated With Silicon Electrodes, Adv. Funct. Mater., 2012, vol. 22, p. 2580. https://doi.org/10.1002/adfm.201200104
- Sakabe, J., Ohta, N., Ohnishi, T., Mitsuishi, K., and Takada, K., Porous amorphous silicon film anodes for high-capacity and stable all-solid-state lithium batteries, Commun. Chem., 2018, vol. 1, article # 24. https://doi.org/10.1038/s42004-018-0026-y
- Miyazaki, R., Ohta, N., Ohnishi, T., Sakaguchi, I., and Takada, K., An amorphous Si film anode for all-solid-state lithium batteries, J. Power Sources, 2014, vol. 272, p. 541. http://dx.doi.org/10.1016/j.jpowsour.2014.08.109
- Miyazaki, R., Ohta, N., Ohnishi, T., and Takada, K., Anode properties of silicon-rich amorphous silicon suboxide films in all-solid-state lithium batteries, J. Power Sources, 2016, vol. 329, p. 41. http://dx.doi.org/10.1016/j.jpowsour.2016.08.070
- Ping, W., Yang, C., Bao, Y., Wang, C., Xie, H., Hitz, E., Cheng, J., Li, T., and Hu, L., A silicon anode for garnet-based all-solid-state batteries: Interfaces and nanomechanics, Energy Storage Mater., 2019, vol. 21, p. 246. https://doi.org/10.1016/j.ensm.2019.06.024
- Cangaz, S., Hippauf, F., Reuter, F.S., Doerfler, S., Abendroth, T., Althues, H., and Kaskel, S., Enabling High-Energy Solid-State Batteries with Stable Anode Interphase by the Use of Columnar Silicon Anodes, Adv. Energy Mater., 2020, vol. 10, article # 2001320. doi: 10.1002/aenm.202001320
- Tan, D.H.S., Chen, Y., Yang, H., Bao, W., Sreenarayanan, B., Doux, J., Li, W., Lu, B., Ham, S., Sayahpour, B., Scharf, J., Wu, E.A., Deysher, G., Han, H.E., Hah, H.J., Jeong, H., Lee, J.B., Chen, Z., and Meng, Y.S., Carbon-free high-loading silicon anodes enabled by sulfide solid electrolytes, Science, 2021, vol. 373, p. 1494. doi: 10.1126/science.abg7217
- Okuno, R., Yamamoto, M., Terauchi, Y., and Takahashi, M., Stable cyclability of porous Si anode applied for sulfide-based all solid-state batteries, ACS Appl. Energy Mater., 2019, vol. 2, p. 7005. doi: 10.1021/acsaem.9b01517
- Kato, A., Yamamoto, M., Sakuda, A., Hayashi, A., and Tatsumisago, M., Mechanical properties of Li2S – P2S5 glasses with lithium halides and application in all-solid-state batteries, ACS Appl. Energy Mater., 2018, vol. 1, p. 1002. doi: 10.1021/acsaem.7b00140
- Cervera, R.B., Suzuki, N., Ohnishi, T., Osada, M., Mitsuishi, K., Kambara, T., and Takada, K., High performance silicon-based anodes in solid-state lithium batteries, Energy Environ. Sci., 2014, vol. 7, p. 662. https://doi.org/10.1039/c3ee43306d
- Рогинская, Ю.Е., Кулова, Т.Л., Скундин, А.М., Брук, М.А., Клочихина, А.В., Козлова, Н.В., Кальнов, В.А., Логинов, Б. А. Структура и свойства нового типа наноструктурных композитных электродов для литий-ионных аккумуляторов. Журн. физ. химии. 2008. Т. 82. С. 1852. [Roginskaya, Yu.E., Kulova, T.L., Skundin, A.M., Bruk, M.A., Klochikhina, A.V., Kozlova, N.V., Kal’nov, V.A., and Loginov, B.A., The Structure and Properties of a New Type of Nanostructured Composite Si/C Electrodes for Lithium Ion Accumulators, Russ. J. Phys. Chem. A, 2008, vol. 82, p. 1655.] doi: 10.1134/S0036024408100063
- Рогинская, Ю.Е., Кулова, Т.Л., Скундин, А.М., Брук, М.А., Жихарев, Е.Н., Кальнов, В.А., Логинов, Б. А. Новый тип наноструктурированных композитных Si/C-электродов. Электрохимия. 2008. Т. 44. С. 1289. [Roginskaya, Yu.E., Kulova, T.L., Skundin, A.M., Bruk, M.A., Zhikharev, E.N., Kal’nov, V.A., and Loginov, B.A., New Type of the Nanostructured Composite Si/C Electrodes, Russ. J. Electrochem., 2008, vol. 44, p. 1197.] doi: 10.1134/S1023193508110025
- Li, W., Yang, R., Wang, X., Wang, T., Zheng, J., and Li, X.J., Intercalated Si/C films as the anode for Li-ion batteries with near theoretical stable capacity prepared by dual plasma deposition, J. Power Sources, 2013, vol. 221, p. 242. https://doi.org/10.1016/j.jpowsour.2012.08.042
- Kim, J.-B., Lim, S.-H., and Lee, S.-M., Structural Change in Si Phase of Fe/Si Multilayer Thin-Film Anodes during Li Insertion/Extraction Reaction, J. Electrochem. Soc., 2006, vol. 153, p. A455. doi: 10.1149/1.2158567
- Hwang, C.-M. and Park, J.-W., Electrochemical characterizations of multi-layer and composite silicon–germanium anodes for Li-ion batteries using magnetron sputtering, J. Power Sources, 2011, vol. 196, p. 6772. https://doi.org/10.1016/j.jpowsour.2010.10.061
- Demirkan, M.T., Trahey, L., and Karabacak, T., Cycling performance of density modulated multilayer silicon thin film anodes in Li-ion batteries, J. Power Sources, 2015, vol. 273, p. 52. https://doi.org/10.1016/j.jpowsour.2014.09.027
- Demirkan, M.T., Yurukcu, M., Dursun, B., Demir-Cakan, R., and Karabacak, T., Evaluation of double-layer density modulated Si thin films as Li-ion battery anodes, Mater. Res. Express, 2017, vol. 4, article # 106405. https://doi.org/10.1088/2053-1591/aa8f88
- Рудый, А.С., Мироненко, А.А., Наумов, В.В., Скундин, А.М., Кулова, Т.Л., Федоров, И.С., Васильев, С. В. Твердотельный литий-ионный аккумулятор: структура, технология и характеристики. Письма в ЖТФ. 2020. Т. 46. № 5. С. 15. doi: 10.21883/PJTF.2020.05.49101.18083 [Rudyi, A.S., Mironenko, A.A., Naumov, V.V., Skundin, A.M., Kulova, T.L., Fedorov, I.S., and Vasil’ev, S.V., A Solid-State Lithium-Ion Battery: Structure, Technology, and Characteristics, Tech. Phys. Lett., 2020, vol. 46, no. 3, p. 217.] doi: 10.1134/S1063785020030141
- Кулова, Т.Л., Мазалецкий, Л.А., Мироненко, А.А., Рудый, А.С., Скундин, А.М., Торцева, Ю.С., Федоров, И. С. Экспериментальное исследование влияния пористости тонкопленочных анодов на основе кремния на их зарядно-разрядные характеристики. Микроэлектроника. 2021. Т. 50. № 1. С. 49. doi: 10.31857/S0544126920060071 [Kulova, T.L., Mazaletsky, L.A., Mironenko, A.A., Rudy, A.S., Skundin, A.M., Tortseva, Yu.S., and Fedorov, I.S., Experimental Study of the Influence of the Porosity of Thin-Film Silicon-Based Anodes on Their Charge-Discharge Characteristics, Russ. Microelectron., 2021, vol. 50, no. 1, p. 45.] doi: 10.1134/S1063739720060074
- Рудый, А.С., Мироненко, А.А., Наумов, В.В., Федоров, И.С., Скундин, А.М., Торцева, Ю. С. Тонкопленочные твердотельные литий-ионные аккумуляторы системы LiCoO2/LiPON/Si@O@Al. Микроэлектроника. 2021. Т. 50. № 5. С. 370. doi: 10.31857/S0544126921050057 [Rudy, A.S., Mironenko, A.A., Naumov, V.V., Fedorov, I.S., Skundin, A.M., and Tortseva, Yu.S., Thin-Film Solid State Lithium-Ion Batteries of the LiCoO2/Lipon/Si@O@Al System, Russ. Microelectron., 2021, vol. 50, no. 5, p. 333.] doi: 10.1134/S106373972105005X
- Kurbatov, S., Mironenko, A., Naumov, V., Skundin, A., and Rudy, A., Effect of the Etching Profile of a Si Substrate on the Capacitive Characteristics of Three-Dimensional Solid-State Lithium-Ion Batteries, Batteries, 2021, vol. 7, Article # 65. https://doi.org/10.3390/batteries7040065
- Rudy, A.S., Kurbatov, S.V., Mironenko, A.A., Naumov, V.V., Skundin, A.M., and Egorova, Yu.S., Effect of Si-Based Anode Lithiation on Charging Characteristics of All-Solid-State Lithium-Ion Battery, Batteries, 2022, vol. 8, Article # 87. https://doi.org/10.3390/batteries8080087
- Rudy, A.S., Skundin, A.M., Mironenko, A.A., and Naumov, V.V., Current Effect on the Performances of All-Solid-State Lithium-Ion Batteries – Peukert’s Law, Batteries, 2023, vol. 9, article # 370. https://doi.org/10.3390/batteries9070370
- Dunlap, N.A, Kim, S., Jeong, J.J., Oh, K.H., and Lee, S., Simple and inexpensive coal-tar-pitch derived Si-C anode composite for all solid-state Li-ion batteries, Solid State Ionics, 2018, vol. 324, p. 207. https://doi.org/10.1016/j.ssi.2018.07.013
- Whiteley, J.M., Kim, J.W., Piper, D.M., and Se-Hee Lee, S., High-Capacity and Highly Reversible Silicon-Tin Hybrid Anode for Solid-State Lithium-Ion Batteries, J. Electrochem. Soc., 2016, vol. 163, p. A251. doi: 10.1149/2.0701602jes
- Son, S.B., Kim, S.C., Kang, C.S., Yersak, T.A., Kim, Y.C., Lee, C.G., Moon, S.H., Cho, J.S., Moon, J.T., Oh, K.H., and Lee, S.H., A Highly Reversible Nano-Si Anode Enabled by Mechanical Confinement in an Electrochemically Activated LixTi4Ni4Si7 Matrix, Adv. Energy Mater., 2012, vol. 2, p. 1226. doi: 10.1002/aenm.201200180
- Yersak, T.A., Son, S.B., Cho, J.S., Suh, S.S., Kim, Y.U., Moon, J.T., Oh, K.H., and Lee, S.H., An All-Solid-State Li-Ion Battery with a Pre-Lithiated Si-Ti-Ni Alloy Anode, J. Electrochem. Soc., 2013, vol. 160, p. A1497. doi: 10.1149/2.086309jes
- Yamamoto, M., Terauchi, Y., Sakuda, A., and Takahashi, M., Slurry mixing for fabricating silicon-composite electrodes in all-solid-state batteries with high areal capacity and cycling stability, J. Power Sources, 2018, vol. 402, p. 506. https://doi.org/10.1016/j.jpowsour.2018.09.070
- Kim, D.H., Lee, H.A., Song, Y.B., Park, J.W., Lee, S., and Jung, Y.S., Sheet-type Li6PS5Cl-infiltrated Si anodes fabricated by solution process for all-solid-state lithium-ion batteries, J. Power Sources, 2019, vol. 426, p. 143. https://doi.org/10.1016/j.jpowsour.2019.04.028
- Kanazawa, S., Baba, T., Yoneda, K., Mizuhata, M., and Kanno, I., Deposition and performance of all solid-state thin-film lithium-ion batteries composed of amorphous Si/LiPON/VO-LiPO multilayers, Thin Solid Films, 2020, vol. 697, article # 137840. https://doi.org/10.1016/j.tsf.2020.137840
- Chai, L., Wang, X., Su, B., Li, X., and Xue, W., Insight into the decay mechanism of non-ultra-thin silicon film anode for lithium-ion batteries, Electrochim. Acta, 2023, vol. 448, article # 142112. https://doi.org/10.1016/j.electacta.2023.142112
- Ohzuku, T., Ueda, A., and Yamamoto, N., Zero-Strain Insertion Material of Li[Li1/3Ti5/3]O4 for Rechargeable Lithium Cells, J. Electrochem. Soc., 1995, vol. 142, p. 1431. doi: 10.1149/1.2048592
- Minami, K., Hayashi, A., Ujiie, S., and Tatsumisago, M., Electrical and electrochemical properties of glass–ceramic electrolytes in the systems Li2S–P2S5–P2S3 and Li2S–P2S5–P2O5, Solid State Ionics, 2011, vol. 192, p. 122. doi: 10.1016/j.ssi.2010.06.018
- Tatsumisago, M. and Hayashi, A., Superionic glasses and glass–ceramics in the Li2S–P2S5 system for all-solid-state lithium secondary batteries, Solid State Ionics, 2012, vol. 225, p. 342. doi: 10.1016/j.ssi.2012.03.013
- Kato, Y., Hori, S., Saito, T., Suzuki, K., Hirayama, M., Mitsui, A., Yonemura, M., Iba, H., and Kanno, R., High-power all-solid-state batteries using sulfide superionic conductors, Nano Energy, 2016, vol. 1, article # 16030. doi: 10.1038/NENERGY.2016.30
- Song, S., Hong, S., Park, H.Y., Lim, Y.C., and Lee, K.C., Cycling-Driven Structural Changes in a Thin-Film Lithium Battery on Flexible Substrate, Electrochem. Solid-State Lett., 2009, vol. 12, p. A159. doi: 10.1149/1.3139530
- Yamamoto, T., Iwasaki, H., Suzuki, Y., Sakakura, M., Fujii, Y., Motoyama, M., and Iriyama, Y., A Li-free inverted-stack all-solid-state thin film battery using crystalline cathode material, Electrochem. Commun., 2019, vol. 105, article # 106494. https://doi.org/10.1016/j.elecom.2019.106494
- Koo, M., Park, K., Lee, S.H., Suh, M., Jeon, D.Y., Choi, J.W., Kang, K., and Lee, K.J., Bendable Inorganic Thin-Film Battery for Fully Flexible Electronic Systems, Nano Lett., 2012, vol. 12, p. 4810. dx.doi.org/10.1021/nl302254v
- Xiao, D., Tong, J., Feng, Y., Zhong, G., Li, W., and Yang, C., Improved performance of all-solid-state lithium batteries using LiPON electrolyte prepared with Li-rich sputtering target, Solid State Ionics, 2018, vol. 324, p. 202. https://doi.org/10.1016/j.ssi.2018.07.011
- Haruyama, J., Sodeyama, K., Han, L., Takada, K., and Tateyama, Y., Space–Charge Layer Effect at Interface between Oxide Cathode and Sulfide Electrolyte in All-Solid-State Lithium-Ion Battery, Chem. Mater., 2014, vol. 26, p. 4248. https://doi.org/10.1021/cm5016959
- Haruyama, J., Sodeyama, K., and Tateyama, Y., Cation Mixing Properties toward Co Diffusion at the LiCoO2 Cathode/Sulfide Electrolyte Interface in a Solid-State Battery, ACS Appl. Mater. Interfaces, 2017, vol. 9, p. 286. doi: 10.1021/acsami.6b08435
- Sakuda, A., Hayashi, A., and Tatsumisago, M., Interfacial Observation between LiCoO2 Electrode and Li2S–P2S5 Solid Electrolytes of All-Solid-State Lithium Secondary Batteries Using Transmission Electron Microscopy, Chem. Mater., 2010, vol. 22, p. 949. doi: 10.1021/cm901819c
- Woo, J.H., Trevey, J.E., Cavanagh, A.S., Choi, Y.S., Kim, S.C., George, S.M., Oh, K.H., and Lee, S., Nanoscale Interface Modification of LiCoO2 by Al2O3 Atomic Layer Deposition for Solid-State Li Batteries, J. Electrochem. Soc., 2012, vol. 159, p. A1120. doi: 10.1149/2.085207jes
- Ohta, N., Takada, K., Sakaguchi, I., Zhang, L., Ma, R., Fukuda, K., Osada, M., and Sasaki, T., LiNbO3-coated LiCoO2 as cathode material for all solid-state lithium secondary batteries, Electrochem. Commun., 2007, vol. 9, p. 1486. doi: 10.1016/j.elecom.2007.02.008
- Ohta, N., Takada, K., Zhang, L., Ma, R., Osada, M., and Sasaki, T., Enhancement of the High-Rate Capability of Solid-State Lithium Batteries by Nanoscale Interfacial Modification, Adv. Mater., 2006, vol. 18, p. 2226. doi: 10.1002/adma.200502604
- Kato, T., Hamanaka, T., Yamamoto, K., Hirayama, T., Sagane, F., Motoyama, M., and Iriyama, Y., In-situ Li7La3Zr2O12/LiCoO2 interface modification for advanced all-solid-state battery, J. Power Sources, 2014, vol. 260, p. 292. http://dx.doi.org/10.1016/j.jpowsour.2014.02.102
- Ohta, S., Kobayashi, T., Seki, J., and Asaoka, T., Electrochemical performance of an all-solid-state lithium ion battery with garnet-type oxide electrolyte, J. Power Sources, 2012, vol. 202, p. 332. doi: 10.1016/j.jpowsour.2011.10.064
- Kotobuki, M., Suzuki, Y., Munakata, H., Kanamura, K., Sato, Y., Yamamoto, K., and Yoshida, T., Fabrication of Three-Dimensional Battery Using Ceramic Electrolyte with Honeycomb Structure by Sol–Gel Process, J. Electrochem. Soc., 2010, vol. 157, p. A493. doi: 10.1149/1.3308459
- Li, C., Zhang, B., and Fu, Z., Physical and electrochemical characterization of amorphous lithium lanthanum titanate solid electrolyte thin-film fabricated by e-beam evaporation, Thin Solid Films, 2006, vol. 515, p. 1886. doi: 10.1016/j.tsf.2006.07.026
- Kotobuki, M., Suzuki, Y., Munakata, H., Kanamura, K., Sato, Y., Yamamoto, K., and Yoshida, T., Compatibility of LiCoO2 and LiMn2O4 cathode materials for Li0.55La0.35TiO3 electrolyte to fabricate all-solid-state lithium battery, J. Power Sources, 2010, vol. 195, p. 5784. doi: 10.1016/j.jpowsour.2010.03.004
- Visbal, H., Aihara, Y., Ito, S., Watanabe, T., Park, Y., and Doo, S., The effect of diamond-like carbon coating on LiNi0.8Co0.15Al0.05O2 particles for all solid-state lithium-ion batteries based on Li2SeP2S5 glass-ceramics, J. Power Sources, 2016, vol. 314, p. 85. http://dx.doi.org/10.1016/j.jpowsour.2016.02.088
- Seino, Y., Ota, T., and Takada, K., High rate capabilities of all-solid-state lithium secondary batteries using Li4Ti5O12-coated LiNi0.8Co0.15Al0.05O2 and a sulfide-based solid electrolyte, J. Power Sources, 2011, vol. 196, p. 6488. doi: 10.1016/j.jpowsour.2011.03.090
- Sakuda, A., Takeuchi, T., and Kobayashi, H., Electrode morphology in all-solid-state lithium secondary batteries consisting of LiNi1/3Co1/3Mn1/3O2 and Li2S–P2S5 solid electrolytes, Solid State Ionics, 2016, vol. 285, p. 112. http://dx.doi.org/10.1016/j.ssi.2015.09.010
- Kitsche, D., Tang, Y., Ma, Y., Goonetilleke, D., Sann, J., Walther, F., Bianchini, M., Janek, J., and Brezesinski, T., High Performance All-Solid-State Batteries with a Ni-Rich NCM Cathode Coated by Atomic Layer Deposition and Lithium Thiophosphate Solid Electrolyte, ACS Appl. Energy Mater., 2021, vol. 4, p. 7338. https://doi.org/10.1021/acsaem.1c01487
- Ding, J., Sun, Q., and Fu, Z., Layered Li(Ni1/4Co1/2Mn1/3) O2 as Cathode Material for All-Solid-State Thin-Film Rechargeable Lithium-Ion Batteries, Electrochem. Solid State Lett., 2010, vol. 13, p. A105. doi: 10.1149/1.3432254
- Neudecker, B.J., Zuhr, R.A., Robertson, J.D., and Bates, J.B., Lithium Manganese Nickel Oxides Lix (MnyNi1–y)2–xO2. II. Electrochemical Studies on Thin-Film Batteries, J. Electrochem. Soc., 1998, vol. 145, p. 4160. doi: 10.1149/1.1838930
- Hoshina, K., Yoshima, K., Kotobuki, M., and Kanamura, K., Fabrication of LiNi0.5Mn1.5O4 thin film cathode by PVP sol–gel process and its application of all-solid-state lithium ion batteries using Li1+xAlxTi2–x (PO4)3 solid electrolyte, Solid State Ionics, 2012, vol. 209–210, p. 30. doi: 10.1016/j.ssi.2011.12.018
- Lethien, C., Zegaoui, M., Roussel, P., Tilmant, P., Rolland, N., and Rolland, P.A., Micro-patterning of LiPON and lithium iron phosphate material deposited onto silicon nanopillars array for lithium ion solid state 3D micro-battery, Microelectron. Eng., 2011, vol. 88, p. 3172. doi: 10.1016/j.mee.2011.06.022
- Dobbelaere, T., Mattelaer, F., Dendooven, J., Vereecken, P., and Detavernier, C., Plasma-Enhanced Atomic Layer Deposition of Iron Phosphate as a Positive Electrode for 3D Lithium-Ion Microbatteries, Chem. Mater., 2016, vol. 28, p. 3435. doi: 10.1021/acs.chemmater.6b00853
- Aboulaich, A., Bouchet, R., Delaizir, G., Seznec, V., Tortet, L., Morcrette, M., Rozier, P., Tarascon, J.-M., Viallet, V., and Dollé, D., A New Approach to Develop Safe All-Inorganic Monolithic Li-Ion Batteries, Adv. Energy Mater., 2011, vol. 1, p. 179. doi: 10.1002/aenm.201000050
- Kobayashi, E., Plashnitsa, L.S., Doi, T., Okada, S., and Yamaki, J., Electrochemical properties of Li symmetric solid-state cell with NASICON-type solid electrolyte and electrodes, Electrochem. Commun., 2010, vol. 12, p. 894. doi: 10.1016/j.elecom.2010.04.014
- Huang, F., Fu, Z.W., Chu, Y.Q., Liu, W.Y., and Qin, Q.Z., Characterization of Composite 0.5Ag: V2O5 Thin-Film Electrodes for Lithium-Ion Rocking Chair and All-Solid-State Batteries, Electrochem. Solid State Lett., 2004, vol. 7, p. A180. doi: 10.1149/1.1736591
- Jeon, E.J., Shin, Y.W., Nam, S.C., Cho, W.I., and Yoon, Y.S., Characterization of All-Solid-State Thin-Film Batteries with V2O5 Thin-Film Cathodes Using Ex Situ and In Situ Processes, J. Electrochem. Soc., 2001, vol. 148, p. A318. doi: 10.1149/1.1354609
- Navone, C., Baddour-Hadjean, R., Pereira-Ramos, J.P., and Salot, R., Sputtered Crystalline V2O5 Thin Films for All-Solid-State Lithium Microbatteries, J. Electrochem. Soc., 2009, vol. 156, p. A763. doi: 10.1149/1.3170922
- Matsumura, T., Nakano, K., Kanno, R., Hirano, A., Imanishi, N., and Takeda, Y., Nickel sulfides as a cathode for all-solid-state ceramic lithium batteries, J. Power Sources, 2007, vol. 174, p. 632. doi: 10.1016/j.jpowsour.2007.06.168
- Aso, K., Sakuda, A., Hayashi, A., and Tatsumisago, M., All-Solid-State Lithium Secondary Batteries Using NiS-Carbon Fiber Composite Electrodes Coated with Li2S–P2S5 Solid Electrolytes by Pulsed Laser Deposition, ACS Appl. Mater. Interfaces, 2013, vol. 5, p. 686. dx.doi.org/10.1021/am302164e
- Jones, S.D. and Akridge, J.R., Development and performance of a rechargeable thin-film state microbattery, J. Power Sources, 1995, vol. 54, p. 63. https://doi.org/10.1016/0378-7753(94)02041-Z
- Chen, M., Yin, X., Reddy, M.V., and Adams, S., All-solid-state MoS2/Li6PS5Br/In–Li batteries as a novel type of Li/S battery, J. Mater. Chem. A, 2015, vol. 3, p. 10698. doi: 10.1039/c5ta02372f
- Mauger, A., Julien, C.M., Paolella, A., Armand, M., and Zaghib, K., Building Better Batteries in the Solid State: A Review, Materials, 2019, vol. 12, article # 3892. doi: 10.3390/ma12233892
- Singer, C., Schnell, J., and Reinhart, G., Scalable Processing Routes for the Production of All-Solid-State Batteries – Modeling Interdependencies of Product and Process, Energy Technol., 2021, vol. 9, article # 2000665. https://doi.org/10.1002/ente.202000665
- Xiao, Y., Wang, Y., Bo, S., Kim, J.C., Miara, L.J., and Ceder, G., Understanding interface stability in solid-state batteries, Nat. Rev. Mater., 2020, vol. 5, p. 105. https://doi.org/10.1038/s41578-019-0157-5
- Fan, L., He, H., and Nan, C., Tailoring inorganic–polymer composites for the mass production of solid-state batteries, Nat. Rev. Mater., 2021, vol. 6, p. 1003. https://doi.org/10.1038/s41578-021-00320-0
- Banerjee, A., Wang, X., Fang, C., Wu, E.A., and Meng, Y.S., Interfaces and Interphases in All-Solid-State Batteries with Inorganic Solid Electrolytes, Chem. Rev., 2020, vol. 120, p. 6878. https://doi.org/10.1021/acs.chemrev.0c00101
Қосымша файлдар

Ескертпе
2 Based on the materials of the lecture at the 17th International Meeting “Fundamental and Applied Problems of Solid State Ionics”, Chernogolovka, June 16–23, 2024.