ALGICIDAL ACTIVITY AND ACTION MODE OFSTREPTOMYCES FLAVOGRISEUSMK17 METABOLITES ON CYANOBACTERIA

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

The study resultsof thealgicidal activity of the MK17 metabolites crude isolated from the soil actinobacteriumStreptomyces flavogriseusMK17 biomass are presented in this paper. The mechanisms of metabolites MK17 stress effect on cyanobacteria were investigated. MK17 metabolites exhibit algicidal activity against cyanobacteria and green algae, with cyanobacteria being more sensitive to their effects than green algae. It was revealed that under the effect of MK17 metabolites crude there is a decrease in the concentrations of microcystins formed by toxigenic cyanobacteriaMicrocystis aeruginosaandPlanktothrix agardhiiin the medium. It is shown that MK17 metabolites cause damage to the functions of the cyanobacterial photosystem. Increased generation of active oxygen species in cells and, as a result, an increase in the content of malonic dialdehyde and activation of antioxidant defense mechanisms indicate the development of oxidative stress in cyanobacterial cells under the MK17 metabolites effect.

Sobre autores

T. Zaytseva

St. Petersburg Federal Research Centre of the Russian Academy of Sciences

Email: zaytseva.62@list.ru
St. Petersburg, Russia

I. Kuzikova

St. Petersburg Federal Research Centre of the Russian Academy of Sciences

Email: zaytseva.62@list.ru
St. Petersburg, Russia

N. Medvedeva

St. Petersburg Federal Research Centre of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: zaytseva.62@list.ru
St. Petersburg, Russia

Bibliografia

  1. Дмитриева О.А., Семенова А.С., Казакова Е.Ю.2024. Структура и динамика планктонных сообществ в прибрежной зоне Куршского залива Балтийского моря в 2017–2021 гг. в период цианобактериальных “цветений” воды // Биология внутр. вод. Т. 17. № 1. С. 22. https://doi.org/10.31857/S0320965224010028
  2. Зайцева Т.Б., Медведева Н.Г.2019. Молекулярные механизмы стрессового ответа цианобактерииPlanktothrixagardhiiна воздействие 4-трет-октилфенола // Микробиология. Т. 88. № 4. С. 417. https://doi.org/10.1134/S0026365619040141
  3. Зайцева Т.Б., Мильман Б.Л., Луговкина Н.В.и др. 2015.Влияние октил- и нонилфенолов на рост, фотосинтетическую активность и токсинообразование цианобактерииPlanktothrixagardhii(gom.)AnagnostidisetKomarek // Гидробиол. журн. Т. 51. № 4. С. 40. http://dx.doi.org/10.1615/Hydrob.J.v51.i6.40
  4. Зайцева Т.Б., Сафронова В.И., Медведева Н.Г.2022.StreptomycesgeldanamycininusZ374 – новый штамм с биоцидной активностью в отношении цианобактерий // Теоретическая и прикладная экология. № 1. С. 159. https://doi.org/10.25750/1995-4301-2022-1-159-166
  5. Зайцева T.Б., Руссу A.Д., Медведева Н.Г.2024. Стрессорное воздействие биоцидных метаболитов актинобактерииStreptomycesgeldanamycininusZ374 на цианобактерииMicrocystisaeruginosa // Теоретическая и прикладная экология. № 1.C. 175. https://doi.org/10.25750/1995-4301-2024-1-175-183
  6. Маторин Д.Н., Тимофеев Н.П., Батаков A.Д. и др. 2024. Токсическое действие ципрофлоксацина на реакции фотосинтеза микроводорослиScenedesmusquadricauda(Turp.)Bréb. // Теоретическая и прикладная экология. № 1. С. 150. https://doi.org/10.25750/1995-4301-2024-1-150-156
  7. Aeby H.1984.Catalasein vitro // Methods Enzymol. V. 105. P. 121.
  8. Almeida A.C., Gomes T., Langford K. et al.2017. Oxidative stress in the algaeChlamydomonas reinhardtiiexposed to biocides //Aquat. Toxicol.V. 189. P. 50. https://doi.org/10.1016/j.aquatox.2017.05.014
  9. Anabtawi H.M., Lee W.H., Al-Anazi A. et al.2024. Advancements in biological strategies for controlling harmful algal blooms (HABs) // Water. V. 16. P. 224. https://doi.org/10.3390/w16020224
  10. Bates L.S., Walderen R.D., Teare I.D.1973. Rapid determination of free proline for water stress studies // Plant Soil. V. 39. P. 205.
  11. Broddrick J.T., Ware M.A., Jallet D. et al.2022.The Integrationofphysiologicallyrelevantphotosyntheticenergy flows into whole genome models of light-driven metabolism // Plant J. V. 112. P. 603. https://doi.org/10.1111/tpj.15965
  12. Cassier-Chauvat C., Marceau F., Farci S.et al.2023. The Glutathione System: a journey from cyanobacteria to higher eukaryotes // Antioxidant. V. 12.P. 1199. https://doi.org/10.3390/antiox12061199
  13. Chen Y.D., Zhu Y., Xin J.P. et al.2021.Succinic acid inhibits photosynthesis ofMicrocystis aeruginosavia damaging PSII oxygen-evolving complex and reaction center // Environ. Sci. Pollut. Res. Int.V. 28. № 41. P. 58470. https://doi.org/10.1007/s11356-021-14811-8
  14. Chua A., Sherwood O.L., Fitzhenry L. et al.2020. Cyanobacteria-derived proline increases stress tolerance inArabidopsis thalianaroot hairs by suppressing programmed cell death // Front. Plant Sci. V. 11. P. 490075. https://doi.org/10.3389/fpls.2020.490075
  15. Costa J.A.V., Lucas B.F., Alvarenga A.G.P.et al.2021. Microalgae Polysaccharides: an overview of production, characterization, and potential applications // Polysaccharides. V. 2. P. 759. https://doi.org/10.3390/polysaccharides2040046
  16. Coyne K.J., Wang Y., Johnson G.2022. Algicidal Bacteria: a review of current knowledge and applications to control harmful algal blooms // Front. Microbiol. V. 13. P. 871177. https://doi.org/10.3389/fmicb.2022.871177
  17. de Figueiredo D.R.2024. Harmful cyanobacterial blooms: going beyond the “green” to monitor and predict HCBs // Hydrobiology. V. 3. P. 11. https://doi.org/10.3390/hydrobiology3010002
  18. Donald L., Pipite A., Subramani R. et al.2022.Streptomyces: still the biggest producer of new natural secondary metabolites, a current perspective // Microbiol. Res. V. 13. P. 418. https://doi.org/10.3390/microbiolres13030031
  19. Filatova D., Jones M.R., Haley J.A. et al.2021. Cyanobacteria and their secondary metabolites in three freshwater reservoirs in the United Kingdom // Environ. Sci. Eur. V. 33. https://doi.org/10.1186/s12302-021-00472-4
  20. Gao Q.T., Tam N.F.Y.2011. Growth, photosynthesis and antioxidant responses of two microalgal species,Chlorella vulgarisandSelenastrum capricornutum, to nonylphenol stress // Chemosphere. V. 82. P. 346. https://doi.org/10.1016/j.chemosphere.2010.10.010
  21. Giannopolitis C.N., Ries S.K.1977. Superoxide dismutase I. Occurrence in higher plants // Plant Physiol. V. 59. P. 309.
  22. Grigoryeva N.Yu., Chistyakova L.V., Liss A.A.2018. Spectroscopic techniques for estimation of physiological state of blue-green algae after weak external action // Oceanology. V. 58. № 6. P. 923. https://doi.org/10.1134/s0001437018060061
  23. Gupta A., Sainis J.K., Bhagwat S.G., Chittela R.K.2021. Modulation of photosynthesis inSynechocystisandSynechococcusgrown with chromium (VI) // J. Biosciences. V. 46. https://doi.org/10.1007/s12038-020-00119-1
  24. Herbert D., Phipps P.J., Stange R.E.1971. Chapter III chemical analysis of microbial cells // Methods in Microbiology. V. 5. Part B. P. 209. https://doi.org/10.1016/S0580-9517(08)70641-X
  25. Hou X., Yan Y., Wang Y. et al.2023. An insight into algicidal characteristics ofBacillus AltitudinisG3 from dysfunctional photosystem and overproduction of reactive oxygen species // Chemosphere. V. 310. P. 136767. https://doi.org/10.1016/j.chemosphere.2022.136767
  26. Hu X., Luo K., Ji K. et al.2022. ABC transporter slr0982 affects response ofSynechocystis sp. PCC 6803 to oxidative stress caused by methyl viologen // Res.Microbiol.V. 173.Р.103888. https://doi.org/10.1016/j.resmic.2021.103888
  27. Huang W., Zhang S.B., Cao K.F.2010. Stimulation of cyclic electron flow during recovery after chilling-induced photoinhibition of PSII // Plant.Cell.Physiol.V. 51. № 11. P. 1922. https://doi.org/oi:10.1093/pcp/pcq144
  28. Igwaran A., Kayode A.J., Moloantoa K.M. et al. 2024. Cyanobacteria harmful algae blooms: causes, impacts, and risk management // Water,Air and Soil Pollut. V. 235.№ 71. https://doi.org/10.1007/s11270-023-06782-y
  29. Jeffrey S.W., Humprhråy G.E.1975. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton // Biochem. Physiol. Pflanz. V. 167. P. 191.
  30. Kong Y., Wang Q., Chen Y. et al.2020. Anticyanobacterial process and action mechanism ofStreptomycessp. HJC-D1 onMicrocystis aeruginosa // Environ.ProgressandSustainable Energy. e13392. https://doi.org/10.1002/ep. 13392
  31. Kong Y., Wang Y., Miao L. et al.2022. Recent advances in the research on the anticyanobacterial effects and biodegradation mechanisms ofMicrocystis aeruginosawith microorganisms // Microorganisms. V. 10. P. 1136. https://doi.org/10.3390/microorganisms10061136
  32. Kuzikova I.L., Medvedeva N.G.2022. Biocontrol and plant growth promotion potential of new antibiotic-producingStreptomyces flavogriseusМК17 // IOP Conference Series: Earth and Environ. Sci. V. 979. P. 012020. https://doi.org/10.1088/1755-1315/979/1/012020
  33. Kuzikova I.L., Sukharevich V.I., Shenin Yu.D., Medvedeva N.G.2010. Biological abilities and identification of the polyene antifungal antibiotic perspective for protection from fungi biodeterioration // Biol. Bull. V. 37. № 2. P. 193. https://doi.org/10.1134/S106235901002015
  34. Latifi A., Ruiz M., Zhang C.C.2009. Oxidative stress in cyanobacteria // FEMS Microbiol Rev. V. 33. P. 258. https://doi.org/10.1111/j.1574-6976.2008.00134.x
  35. Le V., Ko S.K., Kang M. et al.2023. Effective control of harmfulMicrocystis bloomsby paucibactin A, a novel macrocyclic tambjamine, isolated fromPaucibacter aquatile DH15 // J. Cleaner Production. V. 383. P. 135408. https://doi.org/10.1016/j.jclepro.2022.135408
  36. Liu Y., Li F., Huang Q.2013. Allelopathic effects of gallic acid fromAegiceras corniculatumonCyclotella caspia // J. Environ. Sci. V. 25. № 4. P. 776. https://doi.org/10.1016/S1001-0742(12)60112-0
  37. Liu J., Yang C., Chi Y.et al.2019. Algicidal characterization and mechanism ofBacillus licheniformisSp34 againstMicrocystis aeruginosain Dianchi Lake // J. Basic Microbiol.V. 59. P. 1112. https://doi.org/10.1002/jobm.201900112
  38. Luo J., Wang Y., Tang S. et al.2013. Isolation and identification of algicidal compound fromStreptomycesand algicidal mechanism toMicrocystis aeruginosa // PLoS ONE. V. 8(10). e76444. https://doi.org/10.1371/journal.pone.0076444
  39. Madsen M.A., Semerdzhiev S., Twigg J.D. et al.2023. Environmental modulation of exopolysaccharide production in the cyanobacteriumSynechocystis6803 // Appl. Microbiol. and Biotechnol. V. 107. P. 6121. https://doi.org/10.1007/s00253-023-12697-9
  40. Mao F., He Y., Gin K.Y-H.2020. Antioxidant responses in cyanobacteriumMicrocystis aeruginosacaused by two commonly used UV filters, benzophenone-1 and benzophenone-3, at environmentally relevant concentrations //J. Hazardous Mat.V. 396. Р.122587. https://doi.org/10.1016/j.jhazmat.2020.122587
  41. Masojídek J., Ranglová K., Lakatos G.E. et al.2021. Variables governing photosynthesis and growth in microalgae mass cultures // Processes. V. 9. 820. https://doi.org/10.3390/pr9050820
  42. Mignolet-Spruyt L.,Xu E.,Idänheimo N. et al.2016.Spreading the news: subcellular and organellar reactive oxygen species production and signalling //J.Exper.Bot.V. 67. Iss. 13. P. 3831. https://doi.org/10.1093/jxb/erw080
  43. Pal M., Yesankar P.J., Dwivedi A., Qureshi A.2020. Biotic control of harmful algal blooms (HABs): A brief review // J.Environ.Manag. V. 268.Р.110687. https://doi.org/10.1016/j.jenvman.2020.110687
  44. Phankhajon K., Somdee A., Somdee T.2016. Algicidal activity of an actinomycete strain,Streptomyces rameus, againstMicrocystis aeruginosa // Water Sci.and Technol.V. 74. № 6.P. 1398. https://doi.org/10.2166/wst.2016.305
  45. Rezayian M.,Niknam V.,Ebrahimzadeh H. 2019.Oxidativedamageandantioxidativesysteminalgae //Toxicol.Reports.V. 6.P. 1309. https://doi.org/10.1016/j.toxrep. 2019.10.001
  46. Rossi F., De Philippis R.2016. Exocellular polysaccharides in microalgae and cyanobacteria: chemical features, roleand enzymes and genes involved in their biosynthesis // The Physiology of Microalgae. Switzerland: Springer International Publishing. P. 565. https://doi.org/10.1007/978-3-319-24945-2_21
  47. Savadova-Ratkus K., Mazur-Marzec H., Karosienė J. et al.2022.Cyanobacteria and Their Metabolites in Mono- and Polidominant Shallow Eutrophic Temperate Lakes // Int. J. Environ. Res. Public Health. V. 19. P. 15341. https://doi.org/10.3390/ijerph192215341
  48. Sies H.2017.Hydrogenperoxideasacentralredoxsignalingmoleculeinphysiologicaloxidativestress:Oxidativeeustress //RedoxBiol.V. 11.P. 613. https://doi.org/10.1016/j.redox.2016.12.035
  49. Song L., Jia Y., Qin B. et al.2023. Harmful cyanobacterial blooms: biological traits, mechanisms, risks, and control strategies // Annual Rev.Environ.and Res. V. 48. P. 123. https://doi.org/10.1146/annurev-environ-112320-081653
  50. Sperdouli I., Andreadis S., Moustaka J. et al.2021. Changes in light energy utilization in photosystem ii and reactive oxygen species generation in potato leaves by the PinwormTuta absoluta // Molecules. V. 26.Р.2984. https://doi.org/10.3390/molecules26102984
  51. Sun F., Yu P., Xu C. et al.2021. Influence mechanism of cyanobacterial extracellular polymeric substances on the water quality in dynamic water supply system // Sustainability. V. 13.P. 13913. https://doi.org/10.3390/su132413913
  52. Tiika R.J., Duan H., Yang H. et al.2023. Proline metabolism process and antioxidant potential ofLycium ruthenicumMurr. in response to NaCl treatments // Int. J. Mol. Sci. V. 24. P. 13794. https://doi.org/10.3390/ijms241813794
  53. Verma N., Prasad S.M.2021. Regulation of redox homeostasis in cadmium stressed rice field cyanobacteria by exogenous hydrogen peroxide and nitric oxide // Sci Rep. V. 11. P. 2893. https://doi.org/10.1038/s41598-021-82397-9
  54. Wang L.-F.2014. Physiological and molecular responses to variation of light intensity in rubber tree (Hevea brasiliensisMuell. Arg.) // PLoS ONE. V. 9. № 2. e89514. https://doi.org/10.1371/journal.pone.0089514
  55. Wei P., Ma H., Fu H. et al. 2022. Efficient inhibition of cyanobacteriaM. aeruginosagrowth using commercial food-grade fumaric acid // Chemosphere. V. 301. P. 134659. https://doi.org/10.1016/j.chemosphere.2022.134659
  56. Yang K., Chen Q., Zhang D. et al.2017. The algicidal mechanism of prodigiosin fromHahellasp. KA22 againstMicrocystis aeruginosa // Sci. Rep.V. 7. P. 7750. https://doi.org/10.1038/s41598-017-08132-5
  57. Yang C., Hou X., Wu D. et al.2020. The characteristics and algicidal mechanisms of cyanobactericidal bacteria, a review // World J. of Microbiol. and Biotechnol. V. 36. P. 188. https://doi.org/10.1007/s11274-020-02965-5
  58. Yu Y., Zeng Y., Li J. et al.2019. An algicidalStreptomyces amritsarensisstrain againstMicrocystis aeruginosastrongly inhibits microcystin synthesis simultaneously // Sci. of the Total Environ. V. 650. P. 34. https://doi.org/10.1016/j.scitotenv.2018.08.433
  59. Zaytseva T.B., Medvedeva N.G., Mamontova V.N.2015. Peculiarities of the effect of octyl- and nonylphenols on the growth and development of microalgae // Inland Water Biol. V. 8. № 4. P. 406. https://doi.org/10.1134/S1995082915040161
  60. Zeng Y., Wang J., Yang C. et al.2021. A Streptomyces globisporusstrain killsMicrocystis aeruginosavia cell-to-cell contact // Sci. Total Environ. V. 769. P. 144489. https://doi.org/10.1016/j.scitotenv.2020.144489
  61. Zerrifi S.E.A., Redouane E.M., Mugani R. et al.2020. Moroccan actinobacteria with promising activity against toxic cyanobacteriaMicrocystis aeruginosa // Environ. Sci. and Pollut. Res. V. 28.№ 1. P. 235. https://doi.org/10.1007/s11356-020-10439-2
  62. Zhang B.-H., Cheng J., Chen W. et al.2015a.Streptomyces lushanensissp. nov., a novel actinomycete with anti-cyanobacterial activity // J. Antibiotics. V. 68. P. 5. https://doi.org/10.1038/ja.2014.85
  63. Zhang H., Zhang S., Peng Y. et al.2015b. Effects of marine actinomycete on the removal of a toxicity algaPhaeocystis globosein eutrophication waters // Front. Microbiol. V. 6. P. 474. https://doi.org/10.3389/fmicb.2015.00474
  64. Zhang B.-H., Che W., Li H.-Q. et al.2016a. L-valine, an antialgal amino acid fromStreptomyces jiujiangensisJXJ 0074T // Appl. Microbiol. Biotechnol. V. 100. P. 4627. https://doi.org/10.1007/s00253-015-7150-8
  65. Zhang B.-H.,Ding Z.-G.,Li H.-Q. et al.2016b. Algicidal activity ofStreptomyces eurocidicusJXJ-0089 metabolites andtheir effects onMicrocystisphysiology // Appl. Environ. Microbiol. V. 82. P. 132. https://doi.org/10.1128/AEM.01198-16
  66. Zhang H., Xie Y., Zhang R. et al.2023. Discovery of a high-efficient algicidal bacterium againstMicrocystis aeruginosabased on examinations toward culture strains and natural bloom samples // Toxins. V. 15. P. 220. https://doi.org/10.3390/toxins15030220
  67. Zhou Y., Pen H., Jiang L. et al.2024. Control of cyanobacterial bloom and purification of bloom-laden water by sequential electro-oxidation and electro-oxidation-coagulation //J. Hazardous Materials. V. 462.P. 132729. https://doi.org/10.1016/j.jhazmat.2023.132729
  68. Zutshi S., Bano F., Ningthoujam M. et al.2014. Metabolic adaptation to arsenic-induced oxidative stress inHapalosiphon fontinalis-339 // Int. J. Innov. Res. Sci. Eng. Technol. V. 3. P. 9386.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025