ALGICIDAL ACTIVITY AND ACTION MODE OFSTREPTOMYCES FLAVOGRISEUSMK17 METABOLITES ON CYANOBACTERIA
- 作者: Zaytseva T.B1, Kuzikova I.L1, Medvedeva N.G1
-
隶属关系:
- St. Petersburg Federal Research Centre of the Russian Academy of Sciences
- 期: 卷 18, 编号 5 (2025)
- 页面: 836-848
- 栏目: ФИТОПЛАНКТОН, ФИТОБЕНТОС, ФИТОПЕРИФИТОН
- URL: https://snv63.ru/0320-9652/article/view/693405
- DOI: https://doi.org/10.31857/S0320965225050065
- ID: 693405
如何引用文章
详细
The study resultsof thealgicidal activity of the MK17 metabolites crude isolated from the soil actinobacteriumStreptomyces flavogriseusMK17 biomass are presented in this paper. The mechanisms of metabolites MK17 stress effect on cyanobacteria were investigated. MK17 metabolites exhibit algicidal activity against cyanobacteria and green algae, with cyanobacteria being more sensitive to their effects than green algae. It was revealed that under the effect of MK17 metabolites crude there is a decrease in the concentrations of microcystins formed by toxigenic cyanobacteriaMicrocystis aeruginosaandPlanktothrix agardhiiin the medium. It is shown that MK17 metabolites cause damage to the functions of the cyanobacterial photosystem. Increased generation of active oxygen species in cells and, as a result, an increase in the content of malonic dialdehyde and activation of antioxidant defense mechanisms indicate the development of oxidative stress in cyanobacterial cells under the MK17 metabolites effect.
作者简介
T. Zaytseva
St. Petersburg Federal Research Centre of the Russian Academy of Sciences
Email: zaytseva.62@list.ru
St. Petersburg, Russia
I. Kuzikova
St. Petersburg Federal Research Centre of the Russian Academy of Sciences
Email: zaytseva.62@list.ru
St. Petersburg, Russia
N. Medvedeva
St. Petersburg Federal Research Centre of the Russian Academy of Sciences
编辑信件的主要联系方式.
Email: zaytseva.62@list.ru
St. Petersburg, Russia
参考
- Дмитриева О.А., Семенова А.С., Казакова Е.Ю.2024. Структура и динамика планктонных сообществ в прибрежной зоне Куршского залива Балтийского моря в 2017–2021 гг. в период цианобактериальных “цветений” воды // Биология внутр. вод. Т. 17. № 1. С. 22. https://doi.org/10.31857/S0320965224010028
- Зайцева Т.Б., Медведева Н.Г.2019. Молекулярные механизмы стрессового ответа цианобактерииPlanktothrixagardhiiна воздействие 4-трет-октилфенола // Микробиология. Т. 88. № 4. С. 417. https://doi.org/10.1134/S0026365619040141
- Зайцева Т.Б., Мильман Б.Л., Луговкина Н.В.и др. 2015.Влияние октил- и нонилфенолов на рост, фотосинтетическую активность и токсинообразование цианобактерииPlanktothrixagardhii(gom.)AnagnostidisetKomarek // Гидробиол. журн. Т. 51. № 4. С. 40. http://dx.doi.org/10.1615/Hydrob.J.v51.i6.40
- Зайцева Т.Б., Сафронова В.И., Медведева Н.Г.2022.StreptomycesgeldanamycininusZ374 – новый штамм с биоцидной активностью в отношении цианобактерий // Теоретическая и прикладная экология. № 1. С. 159. https://doi.org/10.25750/1995-4301-2022-1-159-166
- Зайцева T.Б., Руссу A.Д., Медведева Н.Г.2024. Стрессорное воздействие биоцидных метаболитов актинобактерииStreptomycesgeldanamycininusZ374 на цианобактерииMicrocystisaeruginosa // Теоретическая и прикладная экология. № 1.C. 175. https://doi.org/10.25750/1995-4301-2024-1-175-183
- Маторин Д.Н., Тимофеев Н.П., Батаков A.Д. и др. 2024. Токсическое действие ципрофлоксацина на реакции фотосинтеза микроводорослиScenedesmusquadricauda(Turp.)Bréb. // Теоретическая и прикладная экология. № 1. С. 150. https://doi.org/10.25750/1995-4301-2024-1-150-156
- Aeby H.1984.Catalasein vitro // Methods Enzymol. V. 105. P. 121.
- Almeida A.C., Gomes T., Langford K. et al.2017. Oxidative stress in the algaeChlamydomonas reinhardtiiexposed to biocides //Aquat. Toxicol.V. 189. P. 50. https://doi.org/10.1016/j.aquatox.2017.05.014
- Anabtawi H.M., Lee W.H., Al-Anazi A. et al.2024. Advancements in biological strategies for controlling harmful algal blooms (HABs) // Water. V. 16. P. 224. https://doi.org/10.3390/w16020224
- Bates L.S., Walderen R.D., Teare I.D.1973. Rapid determination of free proline for water stress studies // Plant Soil. V. 39. P. 205.
- Broddrick J.T., Ware M.A., Jallet D. et al.2022.The Integrationofphysiologicallyrelevantphotosyntheticenergy flows into whole genome models of light-driven metabolism // Plant J. V. 112. P. 603. https://doi.org/10.1111/tpj.15965
- Cassier-Chauvat C., Marceau F., Farci S.et al.2023. The Glutathione System: a journey from cyanobacteria to higher eukaryotes // Antioxidant. V. 12.P. 1199. https://doi.org/10.3390/antiox12061199
- Chen Y.D., Zhu Y., Xin J.P. et al.2021.Succinic acid inhibits photosynthesis ofMicrocystis aeruginosavia damaging PSII oxygen-evolving complex and reaction center // Environ. Sci. Pollut. Res. Int.V. 28. № 41. P. 58470. https://doi.org/10.1007/s11356-021-14811-8
- Chua A., Sherwood O.L., Fitzhenry L. et al.2020. Cyanobacteria-derived proline increases stress tolerance inArabidopsis thalianaroot hairs by suppressing programmed cell death // Front. Plant Sci. V. 11. P. 490075. https://doi.org/10.3389/fpls.2020.490075
- Costa J.A.V., Lucas B.F., Alvarenga A.G.P.et al.2021. Microalgae Polysaccharides: an overview of production, characterization, and potential applications // Polysaccharides. V. 2. P. 759. https://doi.org/10.3390/polysaccharides2040046
- Coyne K.J., Wang Y., Johnson G.2022. Algicidal Bacteria: a review of current knowledge and applications to control harmful algal blooms // Front. Microbiol. V. 13. P. 871177. https://doi.org/10.3389/fmicb.2022.871177
- de Figueiredo D.R.2024. Harmful cyanobacterial blooms: going beyond the “green” to monitor and predict HCBs // Hydrobiology. V. 3. P. 11. https://doi.org/10.3390/hydrobiology3010002
- Donald L., Pipite A., Subramani R. et al.2022.Streptomyces: still the biggest producer of new natural secondary metabolites, a current perspective // Microbiol. Res. V. 13. P. 418. https://doi.org/10.3390/microbiolres13030031
- Filatova D., Jones M.R., Haley J.A. et al.2021. Cyanobacteria and their secondary metabolites in three freshwater reservoirs in the United Kingdom // Environ. Sci. Eur. V. 33. https://doi.org/10.1186/s12302-021-00472-4
- Gao Q.T., Tam N.F.Y.2011. Growth, photosynthesis and antioxidant responses of two microalgal species,Chlorella vulgarisandSelenastrum capricornutum, to nonylphenol stress // Chemosphere. V. 82. P. 346. https://doi.org/10.1016/j.chemosphere.2010.10.010
- Giannopolitis C.N., Ries S.K.1977. Superoxide dismutase I. Occurrence in higher plants // Plant Physiol. V. 59. P. 309.
- Grigoryeva N.Yu., Chistyakova L.V., Liss A.A.2018. Spectroscopic techniques for estimation of physiological state of blue-green algae after weak external action // Oceanology. V. 58. № 6. P. 923. https://doi.org/10.1134/s0001437018060061
- Gupta A., Sainis J.K., Bhagwat S.G., Chittela R.K.2021. Modulation of photosynthesis inSynechocystisandSynechococcusgrown with chromium (VI) // J. Biosciences. V. 46. https://doi.org/10.1007/s12038-020-00119-1
- Herbert D., Phipps P.J., Stange R.E.1971. Chapter III chemical analysis of microbial cells // Methods in Microbiology. V. 5. Part B. P. 209. https://doi.org/10.1016/S0580-9517(08)70641-X
- Hou X., Yan Y., Wang Y. et al.2023. An insight into algicidal characteristics ofBacillus AltitudinisG3 from dysfunctional photosystem and overproduction of reactive oxygen species // Chemosphere. V. 310. P. 136767. https://doi.org/10.1016/j.chemosphere.2022.136767
- Hu X., Luo K., Ji K. et al.2022. ABC transporter slr0982 affects response ofSynechocystis sp. PCC 6803 to oxidative stress caused by methyl viologen // Res.Microbiol.V. 173.Р.103888. https://doi.org/10.1016/j.resmic.2021.103888
- Huang W., Zhang S.B., Cao K.F.2010. Stimulation of cyclic electron flow during recovery after chilling-induced photoinhibition of PSII // Plant.Cell.Physiol.V. 51. № 11. P. 1922. https://doi.org/oi:10.1093/pcp/pcq144
- Igwaran A., Kayode A.J., Moloantoa K.M. et al. 2024. Cyanobacteria harmful algae blooms: causes, impacts, and risk management // Water,Air and Soil Pollut. V. 235.№ 71. https://doi.org/10.1007/s11270-023-06782-y
- Jeffrey S.W., Humprhråy G.E.1975. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton // Biochem. Physiol. Pflanz. V. 167. P. 191.
- Kong Y., Wang Q., Chen Y. et al.2020. Anticyanobacterial process and action mechanism ofStreptomycessp. HJC-D1 onMicrocystis aeruginosa // Environ.ProgressandSustainable Energy. e13392. https://doi.org/10.1002/ep. 13392
- Kong Y., Wang Y., Miao L. et al.2022. Recent advances in the research on the anticyanobacterial effects and biodegradation mechanisms ofMicrocystis aeruginosawith microorganisms // Microorganisms. V. 10. P. 1136. https://doi.org/10.3390/microorganisms10061136
- Kuzikova I.L., Medvedeva N.G.2022. Biocontrol and plant growth promotion potential of new antibiotic-producingStreptomyces flavogriseusМК17 // IOP Conference Series: Earth and Environ. Sci. V. 979. P. 012020. https://doi.org/10.1088/1755-1315/979/1/012020
- Kuzikova I.L., Sukharevich V.I., Shenin Yu.D., Medvedeva N.G.2010. Biological abilities and identification of the polyene antifungal antibiotic perspective for protection from fungi biodeterioration // Biol. Bull. V. 37. № 2. P. 193. https://doi.org/10.1134/S106235901002015
- Latifi A., Ruiz M., Zhang C.C.2009. Oxidative stress in cyanobacteria // FEMS Microbiol Rev. V. 33. P. 258. https://doi.org/10.1111/j.1574-6976.2008.00134.x
- Le V., Ko S.K., Kang M. et al.2023. Effective control of harmfulMicrocystis bloomsby paucibactin A, a novel macrocyclic tambjamine, isolated fromPaucibacter aquatile DH15 // J. Cleaner Production. V. 383. P. 135408. https://doi.org/10.1016/j.jclepro.2022.135408
- Liu Y., Li F., Huang Q.2013. Allelopathic effects of gallic acid fromAegiceras corniculatumonCyclotella caspia // J. Environ. Sci. V. 25. № 4. P. 776. https://doi.org/10.1016/S1001-0742(12)60112-0
- Liu J., Yang C., Chi Y.et al.2019. Algicidal characterization and mechanism ofBacillus licheniformisSp34 againstMicrocystis aeruginosain Dianchi Lake // J. Basic Microbiol.V. 59. P. 1112. https://doi.org/10.1002/jobm.201900112
- Luo J., Wang Y., Tang S. et al.2013. Isolation and identification of algicidal compound fromStreptomycesand algicidal mechanism toMicrocystis aeruginosa // PLoS ONE. V. 8(10). e76444. https://doi.org/10.1371/journal.pone.0076444
- Madsen M.A., Semerdzhiev S., Twigg J.D. et al.2023. Environmental modulation of exopolysaccharide production in the cyanobacteriumSynechocystis6803 // Appl. Microbiol. and Biotechnol. V. 107. P. 6121. https://doi.org/10.1007/s00253-023-12697-9
- Mao F., He Y., Gin K.Y-H.2020. Antioxidant responses in cyanobacteriumMicrocystis aeruginosacaused by two commonly used UV filters, benzophenone-1 and benzophenone-3, at environmentally relevant concentrations //J. Hazardous Mat.V. 396. Р.122587. https://doi.org/10.1016/j.jhazmat.2020.122587
- Masojídek J., Ranglová K., Lakatos G.E. et al.2021. Variables governing photosynthesis and growth in microalgae mass cultures // Processes. V. 9. 820. https://doi.org/10.3390/pr9050820
- Mignolet-Spruyt L.,Xu E.,Idänheimo N. et al.2016.Spreading the news: subcellular and organellar reactive oxygen species production and signalling //J.Exper.Bot.V. 67. Iss. 13. P. 3831. https://doi.org/10.1093/jxb/erw080
- Pal M., Yesankar P.J., Dwivedi A., Qureshi A.2020. Biotic control of harmful algal blooms (HABs): A brief review // J.Environ.Manag. V. 268.Р.110687. https://doi.org/10.1016/j.jenvman.2020.110687
- Phankhajon K., Somdee A., Somdee T.2016. Algicidal activity of an actinomycete strain,Streptomyces rameus, againstMicrocystis aeruginosa // Water Sci.and Technol.V. 74. № 6.P. 1398. https://doi.org/10.2166/wst.2016.305
- Rezayian M.,Niknam V.,Ebrahimzadeh H. 2019.Oxidativedamageandantioxidativesysteminalgae //Toxicol.Reports.V. 6.P. 1309. https://doi.org/10.1016/j.toxrep. 2019.10.001
- Rossi F., De Philippis R.2016. Exocellular polysaccharides in microalgae and cyanobacteria: chemical features, roleand enzymes and genes involved in their biosynthesis // The Physiology of Microalgae. Switzerland: Springer International Publishing. P. 565. https://doi.org/10.1007/978-3-319-24945-2_21
- Savadova-Ratkus K., Mazur-Marzec H., Karosienė J. et al.2022.Cyanobacteria and Their Metabolites in Mono- and Polidominant Shallow Eutrophic Temperate Lakes // Int. J. Environ. Res. Public Health. V. 19. P. 15341. https://doi.org/10.3390/ijerph192215341
- Sies H.2017.Hydrogenperoxideasacentralredoxsignalingmoleculeinphysiologicaloxidativestress:Oxidativeeustress //RedoxBiol.V. 11.P. 613. https://doi.org/10.1016/j.redox.2016.12.035
- Song L., Jia Y., Qin B. et al.2023. Harmful cyanobacterial blooms: biological traits, mechanisms, risks, and control strategies // Annual Rev.Environ.and Res. V. 48. P. 123. https://doi.org/10.1146/annurev-environ-112320-081653
- Sperdouli I., Andreadis S., Moustaka J. et al.2021. Changes in light energy utilization in photosystem ii and reactive oxygen species generation in potato leaves by the PinwormTuta absoluta // Molecules. V. 26.Р.2984. https://doi.org/10.3390/molecules26102984
- Sun F., Yu P., Xu C. et al.2021. Influence mechanism of cyanobacterial extracellular polymeric substances on the water quality in dynamic water supply system // Sustainability. V. 13.P. 13913. https://doi.org/10.3390/su132413913
- Tiika R.J., Duan H., Yang H. et al.2023. Proline metabolism process and antioxidant potential ofLycium ruthenicumMurr. in response to NaCl treatments // Int. J. Mol. Sci. V. 24. P. 13794. https://doi.org/10.3390/ijms241813794
- Verma N., Prasad S.M.2021. Regulation of redox homeostasis in cadmium stressed rice field cyanobacteria by exogenous hydrogen peroxide and nitric oxide // Sci Rep. V. 11. P. 2893. https://doi.org/10.1038/s41598-021-82397-9
- Wang L.-F.2014. Physiological and molecular responses to variation of light intensity in rubber tree (Hevea brasiliensisMuell. Arg.) // PLoS ONE. V. 9. № 2. e89514. https://doi.org/10.1371/journal.pone.0089514
- Wei P., Ma H., Fu H. et al. 2022. Efficient inhibition of cyanobacteriaM. aeruginosagrowth using commercial food-grade fumaric acid // Chemosphere. V. 301. P. 134659. https://doi.org/10.1016/j.chemosphere.2022.134659
- Yang K., Chen Q., Zhang D. et al.2017. The algicidal mechanism of prodigiosin fromHahellasp. KA22 againstMicrocystis aeruginosa // Sci. Rep.V. 7. P. 7750. https://doi.org/10.1038/s41598-017-08132-5
- Yang C., Hou X., Wu D. et al.2020. The characteristics and algicidal mechanisms of cyanobactericidal bacteria, a review // World J. of Microbiol. and Biotechnol. V. 36. P. 188. https://doi.org/10.1007/s11274-020-02965-5
- Yu Y., Zeng Y., Li J. et al.2019. An algicidalStreptomyces amritsarensisstrain againstMicrocystis aeruginosastrongly inhibits microcystin synthesis simultaneously // Sci. of the Total Environ. V. 650. P. 34. https://doi.org/10.1016/j.scitotenv.2018.08.433
- Zaytseva T.B., Medvedeva N.G., Mamontova V.N.2015. Peculiarities of the effect of octyl- and nonylphenols on the growth and development of microalgae // Inland Water Biol. V. 8. № 4. P. 406. https://doi.org/10.1134/S1995082915040161
- Zeng Y., Wang J., Yang C. et al.2021. A Streptomyces globisporusstrain killsMicrocystis aeruginosavia cell-to-cell contact // Sci. Total Environ. V. 769. P. 144489. https://doi.org/10.1016/j.scitotenv.2020.144489
- Zerrifi S.E.A., Redouane E.M., Mugani R. et al.2020. Moroccan actinobacteria with promising activity against toxic cyanobacteriaMicrocystis aeruginosa // Environ. Sci. and Pollut. Res. V. 28.№ 1. P. 235. https://doi.org/10.1007/s11356-020-10439-2
- Zhang B.-H., Cheng J., Chen W. et al.2015a.Streptomyces lushanensissp. nov., a novel actinomycete with anti-cyanobacterial activity // J. Antibiotics. V. 68. P. 5. https://doi.org/10.1038/ja.2014.85
- Zhang H., Zhang S., Peng Y. et al.2015b. Effects of marine actinomycete on the removal of a toxicity algaPhaeocystis globosein eutrophication waters // Front. Microbiol. V. 6. P. 474. https://doi.org/10.3389/fmicb.2015.00474
- Zhang B.-H., Che W., Li H.-Q. et al.2016a. L-valine, an antialgal amino acid fromStreptomyces jiujiangensisJXJ 0074T // Appl. Microbiol. Biotechnol. V. 100. P. 4627. https://doi.org/10.1007/s00253-015-7150-8
- Zhang B.-H.,Ding Z.-G.,Li H.-Q. et al.2016b. Algicidal activity ofStreptomyces eurocidicusJXJ-0089 metabolites andtheir effects onMicrocystisphysiology // Appl. Environ. Microbiol. V. 82. P. 132. https://doi.org/10.1128/AEM.01198-16
- Zhang H., Xie Y., Zhang R. et al.2023. Discovery of a high-efficient algicidal bacterium againstMicrocystis aeruginosabased on examinations toward culture strains and natural bloom samples // Toxins. V. 15. P. 220. https://doi.org/10.3390/toxins15030220
- Zhou Y., Pen H., Jiang L. et al.2024. Control of cyanobacterial bloom and purification of bloom-laden water by sequential electro-oxidation and electro-oxidation-coagulation //J. Hazardous Materials. V. 462.P. 132729. https://doi.org/10.1016/j.jhazmat.2023.132729
- Zutshi S., Bano F., Ningthoujam M. et al.2014. Metabolic adaptation to arsenic-induced oxidative stress inHapalosiphon fontinalis-339 // Int. J. Innov. Res. Sci. Eng. Technol. V. 3. P. 9386.
补充文件
