Determination of polystyrene nanoparticles in aqueous solutions by the method of two-beam thermolens spectrometry

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Polymer micro- and nanoparticles (microplastics) are an environmental pollutant. The low content of microplastics in such objects can affect ecosystems and human health, therefore, there is a growing need to determine microplastic particles at a low content level and simultaneously assess the physico-chemical parameters of the systems under study. Thermolensing spectrometry (TLS) was used to determine polystyrene particles with sizes of 65 and 80 nm in the concentration range of 0.0005–0.15 mg/l in their aqueous dispersions. The comprehensive registration of the TL data also made it possible to evaluate the thermal conductivity of these solutions. It has been established that an increase in the content of polystyrene nanoparticles in water leads to a nonlinear change in thermal conductivity.

Толық мәтін

Рұқсат жабық

Авторлар туралы

V. Khabibullin

Lomonosov Moscow State University

Хат алмасуға жауапты Автор.
Email: Vladhab1995@gmail.com
Ресей, Moscow, 119234

N. Shevchenko

High Molecular Compounds Institute of the Russian Academy of Sciences

Email: Vladhab1995@gmail.com
Ресей, Saint Petersburg

М. Proskurnin

Lomonosov Moscow State University

Email: Vladhab1995@gmail.com
Ресей, Moscow, 119234

Әдебиет тізімі

  1. Catarino A.I., Kramm J., Völker C., Henry T.B., Everaert G. Risk posed by microplastics: Scientific evidence and public perception // Curr. Opin. Green Sustain. Chem. 2021. V. 29. Article 100467.
  2. Gasperi J., Wright S.L., Dris R., Collard F., Mandin C., Guerrouache M., et al. Microplastics in air: Are we breathing it in? // Curr. Opin. Environ. Sci. Health. 2018. V. 1. P. 1.
  3. Prata J.C., da Costa J.P., Lopes I., Duarte A.C., Rocha-Santos T. Environmental exposure to microplastics: An overview on possible human health effects // Sci. Total Environ. 2020. V. 702. Article 134455.
  4. Shim W.J., Hong S.H., Eo S.E. Identification methods in microplastic analysis: A review // Anal. Methods. 2017. V. 9. № 9. P. 1384.
  5. Mö ller J.N., Löder M.G.J., Laforsch C. Finding microplastics in soils: A review of analytical methods // Environ. Sci. Technol. 2020. V. 54. № 4. P. 2078.
  6. Primpke S., Christiansen S.H., Cowger W., De Frond H., Deshpande A., Fischer M.,et al. Critical assessment of analytical methods for the harmonized and cost-efficient analysis of microplastics // Appl. Spectrosc. 2020. V. 74. № 9. P. 1012.
  7. Photothermal Spectroscopy Methods. 2nd Ed. / Eds. Bialkowski S., Astrath N., Proskurnin M. Hoboken. NJ, United States: John Wiley & Sons, Inc, 2019.
  8. Franko M., Tran C.D. Thermal lens spectroscopy / Encyclopedia of Analytical Chemistry, 2010.
  9. Proskurnin M.A., Khabibullin V.R., Usoltseva L.O., Vyrko E.A., Mikheev I.V., Volkov D.S. Photothermal and optoacoustic spectroscopy: State of the art and prospects // PHYS -USP+. 2022. V. 65. № 3. P. 270.
  10. Usoltseva L.O., Volkov D.S., Avramenko N.V., Korobov M.V., Proskurnin M.A. Nanodiamond aqueous dispersions as potential nanofluids: The determination of properties by thermal lensing and other techniques // Nanosyst: Phys. Chem. Math. 2018. V. 9. № 1. Р.17.
  11. Swapna M.S., Raj V., Sankararaman S. Allotropic transformation instigated thermal diffusivity of soot nanofluid: Thermal lens study // Phys. Fluids. 2019. V. 31. № 11. Article 7106.
  12. Khabibullin V.R., Usoltseva L.O., Mikheev I.V., Proskurnin M.A. Thermal diffusivity of aqueous dispersions of silicon oxide nanoparticles by dual-beam thermal lens spectrometry // Nanomater. 2023. V.13. № 6. Article 1006.
  13. Lenart V.M., Astrath N.G.C., Turchiello R.F., Goya G.F., Gómez S.L. Thermal diffusivity of ferrofluids as a function of particle size determined using the mode-mismatched dual-beam thermal lens technique // J. Appl. Phys. 2018. V. 123. № 8. Article 5107.
  14. Proskurnin M.A., Volkov D.S., Ryndina E.S., Nedosekin D.A., Zharov V.P. Signal enhancement in disperse solutions for the analysis of biomedical samples by photothermal spectroscopy // ALT Proceedings. 2012. V. 1. P. 82.
  15. Jiménez-Pérez J.L., Guti é rrez Fuentes R., Sá nchez-Sosa R., Zapata Torres M.G., Correa-Pacheco Z.N., Sá nchez Ramírez J.F. Thermal diffusivity study of nanoparticles and nanorods of titanium dioxide (TiO 2) and titanium dioxide coated with cadmium sulfide (TiO 2 CdS) // Mat. Sci. Semicond. Proces. 2015. V. 37. P. 62.
  16. Проскурнин М. А., Волков Д. С., Горькова Т. А., Бендрышева С. Н., Смирнова А. П., Недосекин Д. А. Успехи термолинзовой спектрометрии // Журн. аналит. химии. 2017. Т. 70. № 3. С. 227. (Proskurnin M.A., Volkov D.S., Gor’kova T.A., Bendrysheva S.N., Smirnova A.P., Nedosekin D.A. Advances in thermal lens spectrometry // J. Anal. Chem. 2015. V. 70. № 3. P. 249.)
  17. Proskurnin M.A., Usoltseva L.O., Volkov D.S., Nedosekin D.A., Korobov M.V., Zharov V.P. Photothermal and heat-transfer properties of aqueous detonation nanodiamonds by Photothermal microscopy and transient spectroscopy // J. Phys. Chem. C. 2021. V. 125. № 14. Article 7808.
  18. Khabibullin V.R., Ratova D.-M.V., Stolbov D.N., Mikheev I.V., Proskurnin M.A. The thermophysical and physicochemical properties of the aqueous dispersion of graphene oxide dual-beam thermal lens spectrometry // Nanomaterials. 2023. V.13. №.14. Article 2126.
  19. Deus W.B., Ventura M., Silva J.R., Andrade L.H.C., Catunda T., Lima S.M. Monitoring of the ester production by near-near infrared thermal lens spectroscopy // Fuel. 2019. V. 253. P. 1090.
  20. Ventura M., Deus W.B., Silva J.R., Andrade L.H.C., Catunda T., Lima S.M. Determination of the biodiesel content in diesel / biodiesel blends by using the near-near-infrared thermal lens spectroscopy // Fuel. 2018. V. 212. P. 309.
  21. Proskurnin M.A., Chernysh V.V., Pakhomova S.V., Kononets M.Y., Sheshenev A.A. Investigation of the reaction of copper (I) with 2,9- dimethyl -1,10- phenanthroline at trace level by thermal lensing // Talanta. 2002. V. 57. № 5. P. 831.
  22. Astrath N.G.C., Astrath F.B.G., Shen J., Zhou J., Michaelian K.H., Fairbridge C., et al. Thermal-lens study of photochemical reaction kinetics // Opt. Lett. 2009. V. 34. № 22. P. 3460.
  23. Franko M. Thermal lens spectrometric detection in flow injection analysis and separation techniques // Appl. Spectrosc. Rev. 2008. V. 43. P. 358.
  24. Šikovec M., Novi č M., Franko M. Application of thermal lens spectrometric detection to the determination of heavy metals by ion chromatography // J. Chromatogr. A. 1996. V. 739. № 1. P. 111.
  25. Dzyabchenko A.A., Proskurnin M.A., Abroskin A.G., Chashchikhin D.V. Conjunction of thermal lens spectrometry and high-performance liquid chromatography: Approach to data treatment // J. Chromatogr. A. 1998. V. 827. № 1. P. 13.
  26. Tran C.D., Huang G., Grishko V.I. Direct and indirect detection of liquid chromatography by infrared thermal lens spectrometry // Anal. Chim. Acta. 1995. V. 299. № 3. P. 361.
  27. Martelanc M., Ziberna L., Passamonti S., Franko M. Application of high-performance liquid chromatography combined with ultra-sensitive thermal lens spectrometric detection for simultaneous biliverdin and bilirubin assessment at trace levels in human serum // Talanta. 2016. V. 154. P. 92.
  28. Cassano C.L., Mawatari K., Kitamori T., Fan Z.H. Thermal lens microscopy as a detector in microdevices // Electrophoresis. 2014. V. 35. № 16. P. 2279.
  29. Seta N., Mawatari K., Kitamori T. Individual nanoparticle detection in liquids by thermal lens microscopy and improvement of detection efficiency using a 1-μm microfluidic channel // Anal. Sci. 2009. V. 25. № 2. P. 275.
  30. Mawatari K., Kitamori T., Sawada T. Individual detection of single-nanometer-sized particles in liquid by Photothermal microscope // Anal. Chem. 1998. V. 70. № 23. P. 5037.
  31. Shimizu H., Mawatari K., Kitamori T. Development of a differential interference contrast thermal lens microscope for sensitive individual nanoparticle detection in liquid // Anal. Chem. 2009. V. 81. № 23. P. 9802.
  32. Yamaoka S., Kataoka Y., Kazama Y., Fujii Y., Hibara A. Efficient thermal lens nanoparticle detection in a flow-focusing microfluidic device // Sens. Actuators B. 2016. V. 228. P. 581.
  33. Khabibullin V.R., Franko M., Proskurnin M.A. Accuracy of measurements of thermophysical parameters by dual-beam thermal-lens spectrometry // Nanomaterials. 2023. V. 13. № 3. Article 3390.
  34. Luna-Sánchez J.L., Jiménez-Pérez J.L., Carbajal-Valdez R., Lopez -Gamboa G., Pérez-González M., Correa-Pacheco Z.N. Green synthesis of silver nanoparticles using Jalapeño Chili extract and thermal lens study of acrylic resin nanocomposites // Thermochim. Acta. 2019. V. 678. Article 178314.
  35. Shevchenko N., Tomšík E., Laishevkina S., Iakobson O., Pankova G. Cross-linked polyelectrolyte microspheres: Preparation and new insights into electro-surface properties // Soft. Matter. 2021. V. 17. № 8. P. 2290.
  36. Shakirova J.R., Shevchenko N.N., Baigildin V.A., Chelushkin P.S., Khlebnikov A.F., Tomashenko O.A., et al. Eu- based phosphorescence lifetime polymer nanothermometer: A nanoemulsion polymerization approach to eliminate quenching of eu emission in aqueous media // ACS Appl. Polym. Mater. 2020. V. 2. № 2. P. 537.
  37. Khabibullin V.R., Usoltseva L.O., Galkina P.A., Galimova V.R., Volkov D.S., Mikheev I.V., Proskurnin M.A. Measurement precision and thermal and absorption properties of nanostructures in aqueous solutions by transient and steady-state thermal-lens spectrometry // Physchem. 2023. V. 3. № 1. P. 156.
  38. Mikheev I.V., Usoltseva L.O., Ivshukov D.A., Volkov D.S., Korobov M.V., Proskurnin M.A. Approach to the assessment of size-dependent thermal properties of disperse solutions: Time-resolved photothermal lensing of aqueous pristine fullerenes C60 and C70 // J. Phys. Chem C. 2016. V. 120. № 49. P. 28270.
  39. Belioka M.-P., Achilias D.S. Microplastic pollution and monitoring in seawater and harbor environments: A meta-analysis and review // Sustainability. 2023. V.15. № 11. Article 9079.
  40. López-Muñoz G.A., Pescador-Rojas J.A., Ortega-Lopez J., Salazar J.S., Balderas-López J.A. Thermal diffusivity measurement of spherical gold nanofluids of different sizes / concentrations // Nanoscale Res. Lett. 2012. V. 7. № 1. P. 423.
  41. Nideep T.K., Ramya M., Nampoori V.P.N., Kailasnath M. The size dependent thermal diffusivity of water soluble CdTe quantum dots using dual beam thermal lens spectroscopy // Phys. E: Low- Dimens. 2020. P. 116. Article 113724.
  42. Lopes C.S., Lenart V.M., Turchiello R.F., Gómez S.L. determination of the thermal diffusivity of plasmonic nanofluids containing PVP- coated Ag nanoparticles using mode-mismatched dual-beam thermal lens technique // Adv. Condens. Matter. Phys. 2018. V. 2018. P. 1.
  43. Mathew R.M., Zachariah E.S., Jose J., Thomas T., John J., Titus T., et al. Synthesis, characterization and evaluation of tunable thermal diffusivity of phosphorus-doped carbon nanodot // Appl. Phys. A. 2020. V. 126. № 11. P. 828.
  44. Yang Y. Thermal lens spectrometry based on single-laser / dual-beam configuration // Anal. Chem. 1984. V. 56. № 13. P. 2336.
  45. Jiménez-Pérez J.L., López- Gamboa G., Sá nchez -Ramírez J.F., Correa-Pacheco Z.N., Netzahual-Lopantzi A., Cruz-Orea A. Thermal diffusivity dependence with highly concentrated graphene oxide / water nanofluids by mode-mismatched dual-beam thermal lens technique // Int. J. Thermophys. 2021. V. 42. № 7. P. 107.
  46. Thomas L., John J., Kumar B.R., George N.A., Kurian A. Thermal diffusivity of gold nanoparticle reduced by polyvinyl alcohol using dual beam thermal lens technique // Mater. Today Proc. 2015. V. 2. № 3. P. 1017.
  47. Dobek K. Thermal lensing: Outside of the lasing medium // Appl. Phys B. 2022. V. 128. № 2. P. 18.
  48. Rivière D., Selva B., Chraibi H., Delabre U., Delville J.-P. Convection flows driven by laser heating of a liquid layer // Phys. Rev E. 2016. V. 93. № 2. Article 3112.
  49. Ramya M., Nideep T.K., Nampoori V.P.N., Kailasnath M. Particle size and concentration effect on thermal diffusivity of water-based ZnO nanofluid using the dual-beam thermal lens technique // Appl. Phys. B. 2019. V. 125. № 9. P. 181.
  50. Khabibullin V.R., Chetyrkina M.R., Obydennyy S.I., Maksimov S.V., Stepanov G.V., Shtykov S.N. Study on doxorubicin loading on differently functionalized iron oxide nanoparticles: Implications for controlled drug-delivery application // Int. J. Mol. Sci. 2023. V. 24. № 5. Article 2480.
  51. Kumar Goyal R., Eswaramoorthy M. Thermo-physical properties of heat storage material required for effective heat storage and heat transfer enhancement techniques for the solar cooking applications // Sustain. Energy Techn. 2023. V. 56. Article 103078.
  52. Angayarkanni S.A., Philip J. Review on thermal properties of nanofluids: Recent developments // Adv. Colloid Interface Sci. 2015. V. 225. P. 146.
  53. Gonçalves I., Souza R., Coutinho G., Miranda J., Moita A., Pereira J.E., Moreira A., Lima R. Thermal conductivity of nanofluids: A review on prediction models, controversies and challenges // Appl. Sci. 2021. V. 11. № 6. Article 2525.
  54. Zamiri R., Azmi B.Z., Shahril Husin M., Zamiri G., Ahangar H.A., Rizwan Z. Thermal diffusivity measurement of copper nanofluid using pulsed laser thermal lens technique // J. Eur. Opt. Soc – Rapid Publ. 2012. V. 7. Article 12022.
  55. Rajesh Kumar B., Shemeena Basheer N., Jacob S., Kurian A., George S.D. Thermal-lens probing of the enhanced thermal diffusivity of gold nanofluid-ethylene glycol mixture // J. Therm. Anal. Calor. 2015. V. 119. № 1. P. 453.
  56. Herrera-Aquino R., Jiménez-Pérez J.L., Altamirano -Juárez D.C., López- Gamboa G., Correa-Pacheco Z.N., Carbajal-Vald éz R. Green synthesis of silver nanoparticles contained in centrifuged citrus oil and their thermal diffusivity study by using thermal lens technique // Int. J. Thermophys. 2018. V. 40. № 1. P. 3.
  57. Netzahual-Lopantzi Á., Sá nchez -Ramírez J.F., Jiménez-Pérez J.L., Cornejo-Monroy D., López- Gamboa G., Correa-Pacheco Z.N. Study of the thermal diffusivity of nanofluids containing SiO 2 decorated with Au nanoparticles by thermal lens spectroscopy // Appl. Phys. A. 2019. V. 125. № 9. P. 588.
  58. de Freitas Cabral A.J., Furtado C.A., Fantini C., Alcantara Jr P. Thermal diffusivity of multi-walled carbon nanotubes dispersed in oleic acid // J. Nano. Res. 2012. V. 21. P. 125.
  59. Vijesh K.R., Sony U., Ramya M., Mathew S., Nampoori V.P.N., Thomas S. Concentration dependent variation of thermal diffusivity in highly fluorescent carbon dots using dual beam thermal lens technique // Int. J. Therm. Sci. 2018. V. 126. P. 137.
  60. Mathew S., Francis F., Joseph S. A., Enhanced thermal diffusivity of water based ZnO nanoflower /rGO nanofluid using the dual-beam thermal lens technique // Nano-Struct. Nano-Objects. 2021. V. 28. Article 100784.
  61. Francis F., Anila E.I., Joseph S.A. Dependence of thermal diffusivity on nanoparticle shape deduced through thermal lens technique taking ZnO nanoparticles and nanorods as inclusions in homogeneous dye solution // Optik. 2020. V. 219. Article 165210.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Schematic diagram of the double-beam thermolens spectrometer.

Жүктеу (128KB)
3. Fig. 2. Optical absorption spectra of polystyrene dispersions (without treatment) where: (a) sample MD-11, (b) MD-11-R, (c) MD-10, (d) MD-10-R.

Жүктеу (435KB)
4. Fig. 3. Light scattering intensity for two types of microplastics at different mass concentrations measured with the additional detector of the thermolens spectrometer. Wavelength 633 nm, emission power 20 mW, measurement angle 90°.

Жүктеу (65KB)
5. Fig. 4. Thermolens signal for dispersions of undyed polystyrene nanoparticles for mass (a) and absolute (b) concentrations. Wavelength 532 nm, emission power 300 mW, NP - nanoparticles.

Жүктеу (115KB)
6. Fig. 5. Thermolens signal normalised to the degree of light-scattering radiation for undyed polystyrene nanoparticles. Wavelength 532 nm, emission power 300 mW.

Жүктеу (51KB)
7. Fig. 6. Thermolens signal for dispersions of coloured polystyrene nanoparticles for mass (a) and absolute (b) concentrations. Wavelength 532 nm, emission power 300 mW, NP - nanoparticles.

Жүктеу (129KB)
8. Fig. 7. Time-resolved curves for aqueous microplastic dispersions, where (a) are MD-10 series dispersions with 80 nm particle size and (b) are MD-11 series dispersions with 65 nm particle size, with different nanophase content. The wavelength is 532 nm and the emission power is 300 mW.

Жүктеу (191KB)
9. Fig. 8. Time-resolved curves for polystyrene nanoparticle dispersions measured for 1 h and averaged from 2000 time-resolved curves. Wavelength 532 nm, irradiation power 300 mW.

Жүктеу (95KB)
10. Fig. 9. Time-resolved curves for different types of polystyrene nanoparticles at different concentrations, where (a) MD-10-R, (b) MD-11-R. The wavelength is 532 nm and the emission power is 300 mW.

Жүктеу (179KB)
11. Fig. 10. Temperature conductivity of polystyrene nanoparticle dispersions at different mass concentrations.

Жүктеу (70KB)

© Russian Academy of Sciences, 2024