Identification of Gelatinases in Prostate Cancer Cells

封面

如何引用文章

全文:

详细

Prostate cancer remains one of the most common oncological diseases among men. Gelatinases, such as MMP-13 and MMP-7, play a key role in tumor invasion and metastasis. Prostate-specific antigen (PSA) and metalloproteinases are considered as potential biomarkers and targets for prostate cancer diagnosis and therapy. The study used gelatin zymography to assess gelatinase activity in the PC-3 prostate cancer cell line. The results showed the presence of protein bands corresponding to gelatinase activity in the size range of 20, 28 and 37 kDa, which coincides with the activity of MMP-13, MMP-7 and PSA in PC-3 cells. The results showed the presence of protein bands corresponding to the proteolytic activity of gelatinases in the size range of 20, 28 and 37 kDa, which coincides with the activity of MMP-13, MMP-7 and PSA. Thus, gelatinases MMP-13, MMP-7 and PSA were identified in prostate cancer cells, which can be used as markers of aggressiveness and progression of prostate cancer.

作者简介

N. Akentieva

Federal Research Center for Problems of Chemical Physics and Medical Chemistry, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: na_aken@icp.ac.ru
俄罗斯联邦, Chernogolovka, Moscow Region

A. Gizatullin

Federal Research Center for Problems of Chemical Physics and Medical Chemistry, Russian Academy of Sciences

Email: na_aken@icp.ac.ru
俄罗斯联邦, Chernogolovka, Moscow Region

S. Shushanov

Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation

Email: na_aken@icp.ac.ru
俄罗斯联邦, Moscow

参考

  1. Воронкина И.В., Харисов A.M., Блинова М.И. и др. Модель “воздушного пузыря” у мышей и изучение протеолитической активности раневого экссудата // Цитология. 2002. Т. 44 (3). С. 270–276.
  2. Печерина Т.Б., Барбараш О.Л. Матриксные металлопротеиназы. Клиническая и прогностическая значимость у больных инфарктом миокарда // Фундам. и клин. медицина. 2019. Т. 4 (2). С. 84–94. https://doi.org/10.23946/2500-0764-2019-4-2-84-94
  3. Attard G., Parker C., Eeles R.A. et al. Prostate cancer // Lancet. 2016. V. 387 (10013). P. 70–82. https://doi.org/10.1016/S0140-6736(14)61947-4
  4. Bassiouni W., Ali M.A.M., Schulz R. Multifunctional intracellular matrix metalloproteinases: implications in disease // FEBS J. 2021. V. 288 (24). P. 7162–7182. https://doi.org/10.1111/febs.15701
  5. Balduyck M., Zerimech F., Gouyer V. et al. Specific expression of matrix metalloproteinases 1, 3, 9 and 13 associated with invasiveness of breast cancer cells in vitro // Clin. Exp. Metastasis. 2000. V. 18 (2). P. 171–178. https://doi.org/10.1023/a:1006762425323
  6. Bonaldi C.M., Azzalis L.A., Junqueira V.B. et al. Plasma levels of E-cadherin and MMP-13 in prostate cancer patients: correlation with PSA, testosterone and pathological parameters // Tumori. 2015. V. 101 (2). P. 185–188. https://doi.org/10.5301/tj.5000237
  7. Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding // Anal. Biochem. 1976. V. 72. P. 248–254. https://doi.org/10.1006/abio.1976.9999
  8. Christensson A., Björk T., Nilsson O. et al. Serum prostate specific antigen complexed to alpha 1-antichymotrypsin as an indicator of prostate cancer // J. Urol. 1993. V. 150 (1). P. 100–105. https://doi.org/10.1016/s0022-5347(17)35408-3
  9. Darson M.F., Pacelli A., Roche P. et al. Human glandular kallikrein 2 (hK2) expression in prostatic intraepithelial neoplasia and adenocarcinoma: a novel prostate cancer marker // Urology. 1997. V. 49 (6). P. 857–862. https://doi.org/10.1016/S0090-4295(97)00108-8
  10. Darson M.F., Pacelli A., Roche P. et al. Human kallikrein 2 expression in prostate adenocarcinoma and lymph node metastases // Urology. 1999. V. 53 (5). P. 939–944. https://doi.org/ 10.1016/s0090-4295(98)00637-2
  11. Decock J., Thirkettle S., Wagstaff L., Edwards D.R. Matrix metalloproteinases: protective roles in cancer // J. Cell. Mol. Med. 2011. V. 15 (6). P. 1254–1265. https://doi.org/10.1111/j.1582-4934.2011.01302.x
  12. Duffy M.J. Serum tumor markers in breast cancer: are they of clinical value? // Clin. Chem. 2006. V. 52 (3). P. 345–351. https://doi.org/10.1373/clinchem.2005.059832
  13. Ho H.Y., Chen M.K., Lin C.C. et al. Epiberberine suppresses the metastasis of head and neck squamous cell carcinoma cells by regulating the MMP-13 and JNK pathway // J. Cell. Mol. Med. 2023. V. 27 (23). P. 3796–3804. https://doi.org/10.1111/jcmm.17954
  14. Kalantari E., Abolhasani M., Roudi R. et al. Co-expression of TLR-9 and MMP-13 is associated with the degree of tumour differentiation in prostate cancer // Int. J. Exp. Pathol. 2019. V. 100 (2). P. 123–132. https://doi.org/10.1111/iep.12314
  15. Kalluri R., Zeisberg M. Fibroblasts in cancer // Nat. Rev. Cancer. 2006. V. 6 (5). P. 392–401. https://doi.org/10.1038/nrc1877
  16. Knox J.D., Wolf C., McDaniel K. et al. Matrilysin expression in human prostate carcinoma // Mol. Carcinogen. 1996. V. 15 (1). P. 57–63. https://doi.org/10.1002/(SICI)1098-2744(199601) 15:1<57::AID-MC8>3.0.CO;2-P
  17. Kudo Y., Iizuka S., Yoshida M. et al. Matrix metalloproteinase-13 (MMP-13) directly and indirectly promotes tumor angiogenesis // J. Biol. Chem. 2012. V. 287 (46). P. 38716–38728. https://doi.org/10.1074/jbc.M112.373159
  18. Lindsey M.L., Escobar G.P., Mukherjee R. et al. Matrix metalloproteinase-7 affects connexin-43 levels, electrical conduction, and survival after myocardial infarction // Circulation. 2006. V. 113 (25). P. 2919–2928. https://doi.org/10.1161/CIRCULATIONAHA.106.612960
  19. Lilja H., Oldbring J., Rannevik G., Laurell C.B. Seminal vesicle-secreted proteins and their reactions during gelation and liquefaction of human semen // J. Clin. Invest. 1987. V. 80 (2). P. 281–285. https://doi.org/10.1172/JCI113070
  20. Luukkaa M., Vihinen P., Kronqvist P. et al. Association between high collagenase-3 expression levels and poor prognosis in patients with head and neck cancer // Head Neck. 2006. V. 28 (3). P. 225–234. https://doi.org/10.1002/hed.20322
  21. Lynch C.C., Hikosaka A., Acuff H.B. et al. MMP-7 promotes prostate cancer-induced osteolysis via the solubilization of RANKL // Cancer Cell. 2005. V. 7 (5). P. 485–496. https://doi.org/10.1016/j.ccr.2005.04.013
  22. Morgia G., Falsaperla M., Malaponte G. et al. Matrix metalloproteinases as diagnostic (MMP-13) and prognostic (MMP-2, MMP-9) markers of prostate cancer // Urol. Res. 2005. V. 33 (1). P. 44–50. https://doi.org/10.1007/s00240-004-0440-8
  23. Mott J.D., Werb Z. Regulation of matrix biology by matrix metalloproteinases // Curr. Opin. Cell Biol. 2004. V. 16 (5). P. 558–564. https://doi.org/10.1016/j.ceb.2004.07.010
  24. Nelson P.S., Clegg N., Arnold H. et al. The program of androgen-responsive genes in neoplastic prostate epithelium // PNAS USA. 2002. V. 99 (18). P. 11890–11895. https://doi.org/10.1073/pnas.182376299
  25. Oliver G.W., Stettler-Stevenson W.G., Kleiner D.E. Zymography, casein zymography, and reverse zymography; activity proteases and their inhibitors // Prot. Enzym. Tools Targets. 1999. P. 63–76.
  26. Piskór B.M., Przylipiak A., Dąbrowska E. et al. Matrilysins and stromelysins in pathogenesis and diagnostics of cancers // Cancer Manag. Res. 2020. V. 12. P. 10949–10964. https://doi.org/10.2147/CMAR.S235776
  27. Piura B., Rabinovich A., Huleihel M. Matrix metalloproteinases and their tissue inhibitors in malignancies of the female genital tract // Harefuah. 2003. V. 142 (11). P. 786–791, 804.
  28. Salaün M., Peng J., Hensley H.H. et al. MMP-13 in-vivo molecular imaging reveals early expression in lung adenocarcinoma // PLoS One. 2015. V. 10 (7). P. e0132960. https://doi.org/10.1371/journal.pone.0132960
  29. Sharifi-Zahabi E., Hajizadeh-Sharafabad F., Abdollahzad H. et al. The effect of green tea on prostate specific antigen (PSA): A systematic review and meta-analysis of randomized controlled trials // Complement. Ther. Med. 2021. V. 57. P. 102659. https://doi.org/10.1016/j.ctim.2020.102659
  30. Siegel R.L., Miller K.D., Jemal A. Cancer statistics, 2020 // CA: Cancer J. Clin. 2020. V. 70 (1). P. 7–30. https://doi.org/10.3322/caac.21590
  31. Stephan C., Rittenhouse H.G., Hu X.Y. et al. Prostate-specific antigen (PSA) screening and new biomarkers for prostate cancer (PCa) // EJIFCC. 2014. V. 25 (1). P. 55–78.
  32. Stetler-Stevenson W.G. The role of matrix metalloproteinases in tumor invasion, metastasis, and angiogenesis // Surg. Oncol. Clin. North Am. 2001. V. 10 (2). P. 383–392.
  33. Surasi D.S.S., Chapin B., Tang C. et al. Imaging and management of prostate cancer // Semin. Ultrasound. CT MR. 2020. V. 41 (2). P. 207–221. https://doi.org/10.1053/j.sult.2020.02.001
  34. Szarvas T., Becker M., Vom Dorp F. et al. Elevated serum matrix metalloproteinase 7 levels predict poor prognosis after radical prostatectomy // Int. J. Cancer. 2011. V. 128 (6). P. 1486–1492. https://doi.org/10.1002/ijc.25454
  35. Szklarczyk A., Oyler G., McKay R. et al. Cleavage of neuronal synaptosomal-associated protein of 25 kDa by exogenous matrix metalloproteinase-7 // J. Neurochem. 2007. V. 102 (4). P. 1256–1263. https://doi.org/10.1111/j.1471-4159.2007.04625.x
  36. Thompson I.M., Pauler D.K., Goodman P.J. et al. Prevalence of prostate cancer among men with a prostate-specific antigen level ≤ 4.0 ng per milliliter // N. Engl. J. Med. 2004. V. 350 (22). P. 2239–2246. https://doi.org/10.1056/NEJMoa031918
  37. Toth M., Sohail A., Fridman R. Assessment of gelatinases (MMP-2 and MMP-9) by gelatin zymography // Meth. Mol. Biol. 2012. V. 878. Р. 121–135. https://doi.org/10.1007/978-1-61779-854-2_8
  38. Turpeenniemi-Hujanen T. Gelatinases (MMP-2 and-9) and their natural inhibitors as prognostic indicators in solid cancers // Biochimie. 2005. V. 87 (3–4). P. 287–297. https://doi.org/10.1016/j.biochi.2005.01.014
  39. Vihinen P., Kähäri V.M. Matrix metalloproteinases in cancer: prognostic markers and therapeutic targets // Int. J. Cancer. 2002. V. 99 (2). P. 157–166. https://doi.org/10.1002/ijc.10329
  40. Wang S.W., Tai H.C., Tang C.H. et al. Melatonin impedes prostate cancer metastasis by suppressing MMP-13 expression // J. Cell Physiol. 2021. V. 236 (5). P. 3979–3990. https://doi.org/10.1002/jcp.30150
  41. Watt K.W., Lee P.J., M’Timkulu T. et al. Human prostate-specific antigen: Structural and functional similarity with serine proteases // PNAS USA. 1986. V. 83 (10). P. 3166–3170. https://doi.org/10.1073/pnas.83.10.3166

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025