Preparation and study of titanium alloy Ti–38Zr–9Nb (at. %) for medical purposes

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Titanium and its alloys have a number of unique properties, such as high specific strength, corrosion resistance, non-toxicity and biocompatibility with human tissues. Due to these properties, they are widely used to create prosthetic joints for the human body. However, the material used for implants, VT6 (Ti–6Al–4V), can cause a stress shielding effect due to a higher elastic modulus (110 GPa) compared to human bone (<30 GPa). In addition, Al and V ions released from the VT6 alloy can cause health problems such as Alzheimer's disease, osteomalacia and neuropathy. Therefore, the development of titanium-based materials that are non-toxic and have mechanical properties corresponding to natural bone is an urgent task. In this paper, we study Ti–38Zr–9Nb (at. %) alloy ingots and plates obtained from them. Particular attention is paid to the homogeneity of the chemical composition, microstructure, phase composition and mechanical properties. The ingots obtained as a result of the work are suitable for further pressure processing. Homogenizing annealing at a temperature of 1000°C for two hours destroys the dendritic structure of the alloy. After homogenizing annealing, the α'-phase completely dissolves in the β-phase, which is the main one for using the alloy in implants. The microstructure of the plates is uniform and consists of polyhedral β-grains. The grain size after rolling is approximately 100 μm. X-ray phase analysis showed that the alloy consists of metastable β-Ti stabilized by Nb and Zr. The Ti-38Zr-9Nb alloy has good mechanical properties, which make it a suitable material for medical purposes.

全文:

受限制的访问

作者简介

M. Kaplan

Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: mishakaplan@yandex.ru
俄罗斯联邦, 119334 Moscow

S. Konushkin

Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences

Email: mishakaplan@yandex.ru
俄罗斯联邦, 119334 Moscow

K. Sergienko

Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences

Email: mishakaplan@yandex.ru
俄罗斯联邦, 119334 Moscow

A. Gorbenko

Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences

Email: mishakaplan@yandex.ru
俄罗斯联邦, 119334 Moscow

V. Zhidkov

Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences

Email: mishakaplan@yandex.ru
俄罗斯联邦, 119334 Moscow

M. Volchikhina

Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences

Email: mishakaplan@yandex.ru
俄罗斯联邦, 119334 Moscow

T. Sevostyanova

Pirogov Russian National Research Medical University

Email: mishakaplan@yandex.ru
俄罗斯联邦, 117513 Moscow

Ya. Morozova

Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences

Email: mishakaplan@yandex.ru
俄罗斯联邦, 119334 Moscow

A. Ivannikov

Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences

Email: mishakaplan@yandex.ru
俄罗斯联邦, 119334 Moscow

M. Frolova

Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences

Email: mishakaplan@yandex.ru
俄罗斯联邦, 119334 Moscow

A. Kolmakov

Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences

Email: mishakaplan@yandex.ru

Corresponding Member of the RAS

俄罗斯联邦, 119334 Moscow

M. Sevostyanov

Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences

Email: mishakaplan@yandex.ru
俄罗斯联邦, 119334 Moscow

参考

  1. Kim H.Y., Ikehara Y., Kim J.I., Hosoda H., Miyazaki S. // Acta mater. 2006. Т. 54. № 9. P. 2419–2429. https://doi.org/10.1016/j.actamat.2006.01.019
  2. Zhang J., Li Y., Li W. // J. Mater. Sci. 2021. Т. 56. P. 11456–11468. https://doi.org/10.1007/s10853-021-05814-4
  3. Patel N., Gohil P. // Int. J. Emerg. Technol. Adv. Eng. 2012. T. 2. № 4. P. 91–101.
  4. Bai L., Gong C., Chen X., Sun Y., Zhang J., Cai L., Zhu S., Xie S.Q. // Metals. 2019. T. 9. № 9. P. 1004. https://doi.org/10.3390/met9091004
  5. Chao Q., Hodgson P.D., Beladi H. // Metall. Mater. Trans. A. 2014. V. 45. P. 2659–2671. https://doi.org/10.1007/s11661-014-2205-5
  6. Park Y.J., Song Y.H., An J.H., Song H.J., Anusavice K.J. // J. Dent. 2013. V. 41. № 12. P. 1251–1258. https://doi.org/10.1016/j.jdent.2013.09.003
  7. Li Y., Wong C., Xiong J., Hodgson P., Wen C. // J. Dent. Res. 2010. V. 89. № 5. P. 493–497. https://doi.org/10.1177/0022034510363675
  8. Schneider S.G., Nunes C.A., Rogero S.O., Higa O.Z., Bressiani J.C. // Biomecánica. 2000. V. 8. № 1. P. 84–87. https://doi.org/10.5821/sibb.v8i1.1653
  9. Mishra A.K., Davidson J.A., Poggie R.A., Kovacs P., Ted J. Mechanical and tribological properties and biocompatibility of diffusion hardened Ti-13Nb-13Zr – A new titanium alloy for surgical implants. In: Medical applications of titanium and its alloys. Brown S.A., Lemons J.E. (eds). ASTM STP 1272, ASTM International, West Conshohocken, PA, 1996. pp. 96–116.
  10. Black J. Biological performance of materials. Fundamentals of biocompability. 4th ed. Taylor & Francis Group, LCC: Abingdon, UK, 2005. 520 p. https://doi.org/10.1201/9781420057843
  11. Конушкин С.В., Кирсанкин А.А., Михайлова А.В., Румянцев Б.А., Лукьянов А.С., Каплан М.А., Горбенко А.Д., Сергиенко К.В., Насакина Е.О., Колмаков А.Г., Севостьянов М.А. // Электрометаллургия. 2023. № 10. C. 2–8. https://doi.org/10.31044/1684-5781-2023-0-10-2-8
  12. Насакина Е.О., Сударчикова М.А., Баикин А.С., Мельникова А.А., Демин К.Ю., Дормидонтов Н.А., Прокофьев П.А., Конушкин С.В., Сергиенко К.В., Каплан М.А., Севостьянов М.А., Колмаков А.Г. // Деформация и разрушение материалов. 2023. № 12. С. 25–29. https://doi.org/10.31044/1814-4632-2023-12-25-29
  13. Сергиенко К.В., Михайлова А.В., Конушкин С.В., Каплан М.А., Насакина Е.О., Севостьянов М.А., Баикин А.С., Колмаков А.Г. // Металлы. 2022. № 4. C. 33–39. https://doi.org/10.30791/1028-978X-2023-12-32-42
  14. Mohammed M.T., Khan Z.A., Siddiquee A.N. // Int. J. Chem. Nucl. Metall. Mater. Eng. 2014. V. 8. № 8. P. 822–827. https://doi.org/10.5281/zenodo.1094481
  15. Chen Q., Thouas G.A. // Mater. Sci. Eng. R Rep. 2015. V. 87. P. 1–57. https://doi.org/10.1016/j.mser.2014.10.001
  16. Liu Q., Meng Q., Guo S., Zhao X. // Prog. Nat. Sci. Mater. Int. 2013. V. 23. № 6. P. 562–565. https://doi.org/10.1016/j.pnsc.2013.11.005
  17. Raffa M.L., Nguyen V.-H., Hernigou P., Flouzat-Lachaniette C.H., Haiat G. // J. Orthop. Res. 2021. V. 39. № 6. 1174–1183. https://doi.org/10.1002/jor.24840
  18. Shahzamanian M.M., Banerjee R., Dahotre N.B., Srinivasa A.R., Reddy J.N. // Compos. Struct. 2023. V. 39. 117262. https://doi.org/10.1016/j.compstruct.2023.117262
  19. Konushkin S.V., Kaplan M.A., Sergienko K.V., Gorbenko A.D., Morozova Y.A., Ivannikov A.Yu., Sudarchikova M.A., Sevostyanova T.M., Nasakina E.O., Mikhlik S.A., Kolmakov A.G., Sevostyanov M.A. // Inorg. Mater. Appl. Res. 2024. V. 15. № 2. P. 395–401. https://doi.org/10.1134/S2075113324020266
  20. Hanawa T. // Sci. Technol. Adv. Mater. 2022. V. 23. № 1. P. 457–472. https://doi.org/10.1080/14686996.2022.2106156
  21. Popescu S.M., Manolea H., Diaconu O.A., Mercuţ V., Scrieciu M., Dascǎlu I.T., Ţuculina M.J., Obadan F., Popescu F.D. // Defect and Diffusion Forum, 2017. V. 376. P. 12–28. https://doi.org/10.4028/WWW.SCIENTIFIC.NET/DDF.376.12
  22. O’Brien B. Niobium biomaterials. In: Advances in metallic biomaterials. Niinomi M., Narushima T., Nakai M. (eds). Springer Series in Biomaterials Science and Engineering, vol. 3. Springer, Berlin, Heidelberg, 2015. 245–272. https://doi.org/10.1007/978-3-662-46836-4_11
  23. Sergienko K.V., Konushkin S.V., Kaplan M.A., Gorbenko A.D., Guo Y., Nasakina E.O., Sudarchikova M.A., Sevostyanova T.M., Morozova Ya.A., Shatova L.A., Mikhlik S.A., Sevostyanov M.A., Kolmakov A.G. // Metals. 2024. V. 14. №11. 1311. https://doi.org/10.3390/met14111311
  24. Wang B.L., Li L., Zheng Y.F. // Biomed. Mater. 2010. V. 5. № 4. 044102. https://doi.org/10.1088/1748-6041/5/4/044102

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Microstructure of the alloy: (a) after melting – the center of the ingot, (b) after melting – dendrites on the upper part of the ingot, (c) after melting and homogenizing annealing, (d) after melting, homogenizing annealing and quenching.

下载 (913KB)
3. Fig. 2. Distribution of elements across the cross-section of the Ti–38Zr–9Nb ingot.

下载 (977KB)
4. Fig. 3. X-ray diffraction patterns of Ti–38Zr–9Nb alloy: after melting (1), after melting and homogenizing annealing (2), after melting, homogenizing annealing and quenching (3), after rolling (4).

下载 (222KB)
5. Fig. 4. Microstructure of Ti–38Zr–9Nb plate after rolling: top view (a), side view (b).

下载 (905KB)
6. Fig. 5. Fractography of Ti–38Zr–9Nb alloy after studying mechanical properties.

下载 (480KB)

版权所有 © Russian Academy of Sciences, 2025