Study of the mechanism of copper-activated NHC–R and NHC=O coupling under the conditions of the Chan–Evans–Lam reaction system

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

In this work, the phenomena of copper-induced formation of NHC-R and NHC=O particles in the Chan–Evans–Lam arylation reaction system of aniline are discussed for the first time. The considered combinations between NHC and arylboronic acid residues have been demonstrated using 5 different arylboronic acids and three Cu/NHC complexes. It is also shown that the formation of the azolone NHC=O is due to copper-mediated oxygen transfer from the atmosphere to the carbene center of the NHC. Using a set of experimental physicochemical methods of analysis, as well as with the help and methods of quantum chemistry, it is shown for the first time that the degradation pathway of Cu/NHC complexes through the formation of NHC–R is controlled kinetically, and through the formation of NHC=O - thermodynamically, which makes a significant contribution to the understanding of the observed phenomena.

Texto integral

Acesso é fechado

Sobre autores

A. Galushko

Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences

Autor responsável pela correspondência
Email: galushkoas@ioc.ac.ru
Rússia, 119991 Moscow

V. Skuratovich

Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences

Email: galushkoas@ioc.ac.ru
Rússia, 119991 Moscow

M. Grudova

Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences

Email: galushkoas@ioc.ac.ru
Rússia, 119991 Moscow

V. Ilyushenkova

Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences

Email: galushkoas@ioc.ac.ru
Rússia, 119991 Moscow

R. Shaydullin

Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences

Email: galushkoas@ioc.ac.ru
Rússia, 119991 Moscow

D. Prima

Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences

Email: galushkoas@ioc.ac.ru
Rússia, 119991 Moscow

Bibliografia

  1. Öfele K. // J. Organomet. Chem. 1968. V. 12. № 3. P. P42–P43. https://doi.org/10.1016/S0022-328X(00)88691-X
  2. Wanzlick H.W., Schönherr H.J. // Angew. Chem. Int. Ed. 1968. V. 7. № 2. P. 141–142. https://doi.org/10.1002/anie.196801412
  3. Mudge M.N., Bhadbhade M., Ball G.E., Colbran S.B. // Inorg. Chem. 2023. V. 62. № 46. P. 18901–18914. https://doi.org/10.1021/acs.inorgchem.3c02348
  4. Jacobsen H., Corre, A., Poater A., Costabile C., Cavallo L. // Coord. Chem. Rev. 2009. V. 253. № 5–6. P. 687–703. https://doi.org/10.1016/j.ccr.2008.06.006
  5. Phipps C.A., Hofsommer D.T., Zirilli C.D., Duff B.G., Mashuta M.S., Buchanan R.M., Grapperhaus C.A. // Inorg. Chem. 2023. V. 62. № 6. P. 2751–2759. https://doi.org/10.1021/acs.inorgchem.2c03868
  6. Groos J., Koy M., Musso J., Neuwirt M., Pham T., Hauser P.M., Frey W., Buchmeiser M.R. // Organometallics. 2022. V. 41. № 10. P. 1167–1183. https://doi.org/10.1021/acs.organomet.2c00080
  7. Nylund P.V.S., Ségaud N.C., Albrecht M. // Organometallics. 2021. V. 40. № 10. P. 1538–1550. https://doi.org/10.1021/acs.organomet.1c00200
  8. Zlotin S.G., Egorova K.S., Ananikov V.P., Akulov A.A., Varaksin M.V., Chupakhin O.N., Charushin V.N., Bryliakov K.P., Averin A.D., Beletskaya I.P., Dolengovski E.L., Budnikova Yu.H., Sinyashin O.G., Gafurov Z.N., Kantyukov A.O., Yakhvarov D.G., Aksenov A.V., Elinson M.N., Nenajdenko V.G., Chibiryaev A.M., Nesterov N.S., Kozlova E.A., Martyanov O.N., Balova I.A., Sorokoumov V.N., Guk D.A., Beloglazkina E.K., Lemenovskii D.A., Chukicheva I.Yu., Frolova L.L., Izmest'ev E.S., Dvornikova I.A., Popov A.V., Kutchin A.V., Borisova D.M., Kalinina A.A., Muzafarov A.M., Kuchurov I.V., Maximov A.L., Zolotukhina A.V. // Russ. Chem. Rev. 2023. V. 92. № 12. RCR5104. https://doi.org/10.59761/RCR5104
  9. Li W.H., Li C.Y., Xiong H.Y., Liu Y., Huang W.Y., Ji G.J., Jiang Z., Tang H.T., Pan Y.M., Ding Y.J. // Angew. Chem. Int. Ed. 2019. V. 58. № 8. P. 2448–2453. https://doi.org/10.1002/anie.201814493
  10. Kashihara M., Zhong R.L., Semba K., Sakaki S., Nakao Y. // Chem. Commun. 2019. V. 55. № 63. P. 9291–9294. https://doi.org/10.1039/C9CC05055H
  11. Wang C.-A., Rahman M.M., Bisz E., Dziuk B., Szostak R., Szostak M. // ACS Catal. 2022. V. 12. № 4. P. 2426–2433. https://doi.org/10.1021/acscatal.1c05738
  12. Zheng D.Z., Xiong H.G., Song A.X., Yao H.G., Xu C. // Org. Biomol. Chem. 2022. V. 20. № 10. P. 2096–2101. https://doi.org/10.1039/D1OB02051J
  13. Li D.H., Lan X.B., Song A.X., Rahman M.M., Xu C., Huang F.D., Szostak R., Szostak M., Liu F.S. // Chem. – Eur. J. 2022. V. 28. № 4. P. e202103341. https://doi.org/10.1002/chem.202103341
  14. Riethmann M., Föhrenbacher S.A., Keiling H., Ignat'ev N.V., Finze M., Radius U. // Inorg. Chem. 2024. V. 63. № 18. P. 8351–8365. https://doi.org/10.1021/acs.inorgchem.4c00750
  15. Jaimes–Romano E., Valdés H., Hernández–Ortega S., Mollfulleda R., Swart M., Morales–Morales D. // J. Catal. 2023. V. 426. P. 247–256. https://doi.org/10.1016/j.jcat.2023.07.001
  16. Rodríguez-Cruz M.A., Hernández-Ortega S., Valdés H., Rufino-Felipe E., Morales-Morales D. // J. Catal. 2020. V. 383 P. 193–198. https://doi.org/10.1016/j.jcat.2020.01.016
  17. Neshat A., Khezri R., Yousefshahi M.R., Gholinejad M., Varmaghani F. // Eur. J. Inorg. Chem. 2023. V. 26. № 36. P. e202300437. https://doi.org/10.1002/ejic.202300437
  18. Denisova E.A., Kostyukovich A.Y., Fakhrutdinov A.N., Korabelnikova V.A., Galushko A.S., Ananikov V.P. // ACS Catal. 2022. V. 12. № 12. P. 6980–6996. https://doi.org/10.1021/acscatal.2c01749
  19. Pandey M.K., Choudhury J. // ACS Omega. 2020. V. 5. № 48. P. 30775–30786. https://doi.org/10.1021/acsomega.0c04819
  20. Maji B., Bhandari A., Bhattacharya D., Choudhury J. // Organometallics. 2022. V. 41. № 13. P. 1609–1620. https://doi.org/10.1021/acs.organomet.2c00107
  21. Chernyshev V.M., Denisova E.A., Eremin D.B., Ananikov V. P. // Chem. Sci. 2020. V. 11. P. 6957–6977. https://doi.org/10.1039/D0SC02629H
  22. Ananikov V.P., Beletskaya I.P. // Organometallics. 2012. V. 31. № 5. P. 1595–1604. https://doi.org/10.1021/om201120n
  23. Zalesskiy S.S., Ananikov V.P. // Organometallics. 2012. V. 31. № 6. P. 2302–2309. https://doi.org/10.1021/om201217r
  24. Eremin D.B., Ananikov V.P. // Coord. Chem. Rev. 2017. V. 346. P. 2–19. https://doi.org/10.1016/j.ccr.2016.12.021
  25. Chernyshev V.M., Khazipov O.V., Shevchenko M.A., Chernenko A.Y., Astakhov A.V., Eremin D.B., Pasyukov D.V., Kashin A.S., Ananikov V.P. // Chem. Sci. 2018. V. 9. № 25. P. 5564–5577. https://doi.org/10.1039/C8SC01353E
  26. Eremin D.B., Boiko D.A., Kostyukovich A.Y., Burykina J.V., Denisova E.A., Anania M., Martens J., Berden G., Oomens J., Roithova J., Ananikov V.P. // Chem. Eur. J. 2020. V. 26. № 67. P. 15672–15681. https://doi.org/10.1002/chem.202003533
  27. Gordeev E.G., Eremin D.B., Chernyshev V.M., Ananikov V.P. // Organometallics. 2017. V. 37. № 5. P. 787–796. https://doi.org/10.1021/acs.organomet.7b00669
  28. Chan D.M.T., Monaco K.L., Wang R.-P., Winters M.P. // Tetrahedron Lett. 1998. V. 39. № 19. P. 2933–2936. https://doi.org/10.1016/S0040-4039(98)00503-6
  29. Evans D.A., Katz J.L., West T.R. // Tetrahedron Lett. 1998. V. 39. № 19. P. 2937–2940. https://doi.org/10.1016/S0040-4039(98)00502-4
  30. Lam P.Y.S., Clark C.G., Saubern S., Adams J., Winters M.P., Chan D.M.T., Combs A. // Tetrahedron Lett. 1998. V. 39. № 19. P. 2941–2944. https://doi.org/10.1016/S0040-4039(98)00504-8
  31. Lam P.Y.S., Vincent G., Bonne D., Clark C.G. // Tetrahedron Lett. 2003. V. 44. № 26. P. 4927–4931. https://doi.org/10.1016/S0040-4039(03)01037-2
  32. King A.E., Brunold T.C., Stahl S.S. // J. Am. Chem. Soc. 2009. V. 131. № 14. P. 5044–5045. https://doi.org/10.1021/ja9006657
  33. Gajare S., Jagadale M., Naikwade A., Bansode P., Rashinkar G. // Appl. Organomet. Chem. 2019. V. 33 № 6. P. e4915. https://doi.org/10.1002/aoc.4915
  34. Guo M., Chen B., Chen K., Guo S., Liu F.-S., Xu C., Yao H.-G. // Tetrahedron Lett. 2022. V. № 107. P. 154074. https://doi.org/10.1016/j.tetlet.2022.154074
  35. Cope J.D., Sheridan P.E., Galloway C.J., Awoyemi R.F., Stokes S.L., Emerson J.P. // Organometallics. 2020. V. 39. № 24. P. 4457–4464. https://doi.org/10.1021/acs.organomet.0c00552
  36. Galushko A.S., Skuratovich V.A., Grudova M.V., Ilyushenkova V.V., Ivanova N.M. // Russ. Chem. Bull. 2024. V. 73. P. 1182–1188. https://doi.org/10.1007/s11172-024-4233-7
  37. Neese F. // WIRES Comput. Molec. Sci. 2022. V. 12. № 5. e1606. https://doi.org/10.1002/wcms.1606
  38. Henkelman G., Uberuaga B. P., Jónsson H. // J. Chem. Phys. 2000. V. 113. P. 9901–9904. https://doi.org/10.1063/1.1329672
  39. Weigend F., Ahlrichs R. // Phys. Chem. Chem. Phys. 2005. V. 7. P. 3297–3305. https://doi.org/10.1039/B508541A
  40. Grimme S., Antony J., Ehrlich S., Krieg H. // J. Chem. Phys. 2010. V. 132. № 15. P. 154104. https://doi.org/10.1063/1.3382344
  41. Grimme S., Ehrlich S., Goerigk L. // J. Comput. Chem. 2011. V. 32. № 7. P. 1456–1465. https://doi.org/10.1002/jcc.21759
  42. Marenich A.V., Cramer C.J., Truhlar D.G. // J. Phys. Chem. B. 2009. V. 113. № 18. P. 6378–6396. https://doi.org/10.1021/jp810292n
  43. Santoro O., Collado A., Slawin A.M.Z., Nolan S.P., Cazin C.S.J. // Chem. Commun. 2013. V. 49. № 89. P. 10483–10485. https://doi.org/10.1039/C3CC45488F
  44. Raubenheimer H.G., Cronje S., Olivier P.J. // J. Chem. Soc., Dalton Trans. 1995. № P. 313−316. https://doi.org/10.1039/DT9950000313
  45. Ohishi T., Nishiura M., Hou Z. // Angew. Chem. Int. Ed. 2008 V. 47. № 31. P. 5792–5795. https://doi.org/10.1002/anie.200801857
  46. Partyka D.V., Esswein A.J., Zeller M., Hunter A.D., Gray T.G. // Organometallics. 2007. V. 26. № 14. P. 3279–3282. https://doi.org/10.1021/om700346v
  47. Kuehn L., Eichhorn A.F., Schmidt D., Marder T.B., Radius U. // J. Organomet. Chem. 2020. V. 919. P. 121249. https://doi.org/10.1016/j.jorganchem.2020.121249
  48. Li D., Ollevier T. // J. Organomet. Chem. 2020. V. 906. P. 121025. https://doi.org/10.1016/j.jorganchem.2019.121025
  49. Pentsak E.O., Ananikov V.P. // Eur. J. Org. Chem. 2019. V. 26. P. 4239–4247. https://doi.org/10.1002/ejoc.201900410
  50. Henkelman G., Uberuaga B.P., Jónsson H. // J. Chem. Phys. 2000. V. 113. P. 9901–9904. https://doi.org/10.1063/1.1329672
  51. Vantourout J.C., Miras H.N., Isidro-Llobet A., Sproules S., Watson A.J.B. // J. Am. Chem. Soc. 2017. V. 139. № 13. P. 4769−4779. https://doi.org/10.1021/jacs.6b12800

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Known pathways for the formation of NHC–R and NHC=O particles in catalytic systems based on nickel and palladium NHC complexes (a) [22, 26]; in this work, we investigated the mechanism of formation of NHC–R and NHC=O particles in the Chan–Evans–Lam reaction from Cu/NHC complexes (b).

Baixar (180KB)
3. Scheme 1. Scheme of the reaction for the arylation of aniline, five arylboronic acids 1–5 and four M/NHC complexes used in the study.

Baixar (260KB)
4. Fig. 2. Proposed mechanism of formation of NHC–Ar and NHC=O particles in Cu/NHC systems with arylboronic acids under Chan–Evans–Lam reaction conditions. TS – transition state, NP – nanoparticles (a); potential energy surfaces for the formation of BIMe–Ph and BIMe=O products from a single precursor (b).

Baixar (487KB)
5. Fig. 3. STEM images of nanoparticles formed in the reaction system with arylboronic acid 5 (the sample was taken 5 h after the start of the reaction) (a)–(d); ESI-HRMS spectra confirming the presence of the NHC–R coupling product in the presence of atmospheric oxygen (d) and its absence in an oxygen-free environment (e).

Baixar (583KB)
6. Appendix
Baixar (2MB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025