Oxygen exchange and mechanism of oxygen intake by complex oxides with a swedenborgite structure

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The kinetics of oxygen sorption from air by Y0.8Ca0.2BaCo4-xFexO7+δ (x = 0, 1) is studied by nonisothermal thermogravimetric measurements. The activation energy is calculated by model-free methods of Friedman, Starink and Vyazovkin. The master plot and Coates–Redfern methods are applied to determine the mechanism of oxygen intake. The results show the activation energies and frequency factors are 189 and 197 kJ mol–1 and 4.7 × 1013 and 2.3 × 1014 min–1 in Y0.8Ca0.2BaCo4O7+δ and Y0.8Ca0.2BaCo3FeO7+δ, respectively. The arguments are given in proof of oxygen sorption determined by the volume random nucleation and growth of the oxygen-rich nuclei.

Негізгі сөздер

Толық мәтін

Рұқсат жабық

Авторлар туралы

D. Turkin

Institute of Solid State Chemistry of the Ural Branch of the Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: turkin@ihim.uran.ru
Ресей, 620077 Ekaterinburg

O. Reznitskikh

Institute of Solid State Chemistry of the Ural Branch of the Russian Academy of Sciences

Email: turkin@ihim.uran.ru
Ресей, 620077 Ekaterinburg

V. Kozhevnikov

Institute of Solid State Chemistry of the Ural Branch of the Russian Academy of Sciences

Email: turkin@ihim.uran.ru

Academician of the RAS

Ресей, 620077 Ekaterinburg

Әдебиет тізімі

  1. Vieten J., Bulfin B., Call F., Lange M., Schmücker M., Francke A., Roeb M., Sattler C. // J. Mater. Chem. A. 2016. V. 4. P. 13652–13659. https://doi.org/10.1039/C6TA04867F
  2. Tescari S., Agrafiotis C., Breuer S., de Oliveira L., Neisesvon Puttkamer M., Roeb M., Sattler C. // Energy Procedia. 2014. V. 49. P. 1034–1043. https://doi.org/10.1016/j.egypro.2014.03.111
  3. Kodama T., Gokon N. // Chem. Rev. 2007. V. 107. P. 4048–4077. https://doi.org/10.1021/cr050188a
  4. Karppinen M., Yamauchi H., Otani S., Fujita T., Motohashi T., Huang Y.-H., Valkeappa M., Fjellvag H. // Chem. Mater. 2006. V. 18. P. 490–494. https://doi.org/10.1021/cm0523081
  5. Hao H., Cui J., Chen C., Pan L., Hu J., Hu X. // Solid State Ion. 2006. V. 177. P. 631–637. https://doi.org/10.1016/j.ssi.2006.01.030
  6. Chen T., Hasegawa T., Asakura Y., Kakihana M, Motohashi T., Yin S. // ACS Appl. Mater. Interfaces. 2021. V. 13. P. 51008–51017. https://doi.org/10.1021/acsami.1c15419
  7. Nagai Y., Yamamoto T., Tanaka T., Youhida S., Nonaka T., Okamoto T., Suda A., Suqiura M. // Catal. Today. 2002. V. 74. P. 225–234. https://doi.org/10.1016/S0920-5861(02)00025-1
  8. Kaspar J., Fornasiero P. // J. Solid State Chem. 2003. V. 171. P. 19–29. https://doi.org/10.1016/S0022-4596(02)00141-X
  9. Rasanen S., Yamauchi H., Karppinen M. // Chem. Lett. 2008. V. 37. P. 638–639. https://doi.org/10.1246/cl.2008.638
  10. Parkkima O., Yamauchi H., Karppinen M. // Chem. Mater. 2013. V. 25. P. 599–604. https://doi.org/10.1021/cm3038729
  11. Parkkima O., Karppinen M. // Eur. J. Inorg. Chem. 2014. V. 2014. № 25. P. 4056–4067. https://doi.org/10.1002/ejic.201402135
  12. Motohashi T., Kadota S., Fjellvag H., Karppinen M., Yamauchi H. // Mater. Sci. Eng. B. 2008. V. 148. P. 196–198. https://doi.org/10.1016/j.mseb.2007.09.052
  13. Turkin D.I., Yurchenko M.V., Tolstov K.S., Shalamova A.M., Suntsov A.Yu., Kozhevnikov V.L. // J. Solid State Chem. 2023. V. 326. P. 124194. https://doi.org/10.1016/j.jssc.2023.124194
  14. Turkin D.I., Tolstov K.S., Yurchenko M.V., Suntsov A.Yu., Kozhevnikov V.L. // Inorg. Mater. 2023. V. 59. P. 1104–1110. https://doi.org/10.1134/S0020168523100126
  15. Rodríguez-Carvajal J. // Physica B. 1993. V. 192. P. 55–59. https://doi.org/10.1016/0921-4526(93)90108-I
  16. Vyazovkin S., Burnham A.K., Criado J.M., Pérez-Maqueda L.A., Popescu C., Sbirrazzuoli N. // Thermochim. Acta. 2011. V. 520. P. 1–19. https://doi.org/10.1016/j.tca.2011.03.034
  17. Alekseev A.V., Kameneva M.Y., Kozeeva L.P., Lavrov A.N., Podberezskaya N.V., Smolentsev A.I., Shmakov A.N. // Bull. Russ. Acad. Sci.: Phys. 2013. Т. 77. № 2. С. 151–154. https://doi.org/10.3103/S1062873813020044
  18. Cuartero V., Blasco J., Subías G., García J., Rodríguez-Velamazán J.A., Ritter C. // Inorg. Chem. 2018. V. 57. P. 3360–3370. https://doi.org/10.1021/acs.inorgchem.8b00112
  19. Brown M.E., Dollimore D., Galwey A.K. Reactions in the Solid State. Amsterdam: Elsevier, 1980. 339 c.
  20. Senum G., Yang R. // J. Thermal Anal. 1977. V. 11. P. 445–447. https://doi.org/10.1007/BF01903696
  21. Pérez-Maqueda L.A., Criado J.M. // J. Therm. Anal. Calorim. 2020. V. 60. P. 909–915. https://doi.org/10.1023/A:1010115926340
  22. Friedman H.L. // J. Polym. Sci., Part C: Polym. Lett. 1964. V. 6. P.183–195. https://doi.org/10.1002/polc.5070060121
  23. Starink M.J. // Thermochim. Acta. 2003. V. 404. P. 163–176. https://doi.org/10.1016/S0040-6031(03)00144-8
  24. Vyazovkin S., Dollimore D. // J. Chem. Inf. Comp. Sci. 1996. V. 36. P. 42–45. https://doi.org/10.1021/ci950062m
  25. Hou L., Yu Q., Wang T., Wang K., Qin Q., Qi Z. // Korean J. Chem. Eng. 2018. V. 35. P. 626–636. https://doi.org/10.1007/s11814-017-0332-6
  26. Vyazovkin S. // Molecules. 2021. V. 26. P. 3077. https://doi.org/10.3390/molecules26113077
  27. Coats A.W., Redfern J.P. // Nature. 1964. V. 201. P. 68–69. https://doi.org/10.1038/201068a0
  28. Gotor F.J., Criado J.M., Malek J., Koga N. // J. Phys. Chem. A. 2000. V. 104. P. 10777–10782. https://doi.org/10.1021/jp0022205
  29. De Bruijn T.J.W., De Jong W.A., Van Den Berg P.J. // Thermochim. Acta. 1981. V. 45. P. 315–325. https://doi.org/10.1016/0040-6031(81)85091-5

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. X-ray diffraction spectra of Y0.8Ca0.2BaCo4O7+δ and Y0.8Ca0.2BaCo3FeO7+δ samples for oxygen-depleted (a, b) and oxygen-enriched (c, d) phases along with the results of full-profile analysis (space group P63mc); the insets show enlarged fragments of diffraction patterns in the region of the main peaks of the hexagonal structure without visible traces of structural distortions.

Жүктеу (960KB)
3. Fig. 2. Dependences of the refined structural parameters at room temperature of the YBaCo4O7+δ (YBC), Y0.8Ca0.2BaCo4O7+δ (YCBC) and Y0.8Ca0.2BaCo3FeO7+δ (YCBCF) samples after heat treatment in Ar at 650°C and subsequent cooling in air (a)–(d); sketch of the crystal structure of swedenborgite (d): tetrahedra of the crystallographic kagome and trigonal layers are shown in blue and green, respectively.

Жүктеу (702KB)
4. Fig. 3. Thermograms of oxygen absorption by oxides Y0.8Ca0.2BaCo4O7+δ (a) and Y0.8Ca0.2BaCo3FeO7+δ (b) upon cooling in air.

Жүктеу (353KB)
5. Fig. 4. Application of the Friedman (a), Starinka (b) and Vyazovkin (c) methods to determine the activation energy and the obtained dependences E(α) (d).

Жүктеу (855KB)
6. Fig. 5. Kinetic compensation effect for Y0.8Ca0.2BaCo4O7+d and Y0.8Ca0.2BaCo3FeO7+d samples.

Жүктеу (149KB)
7. Fig. 6. Theoretical (solid lines) and experimental (dots) dependences of the ratio g(α)/g(0.5) of the degree of transformation α for the samples Y0.8Ca0.2BaCo4O7+d and Y0.8Ca0.2BaCo3FeO7+d. The line designations on the graphs correspond to the reaction models from Table 1.

Жүктеу (317KB)

© Russian Academy of Sciences, 2025