METHYLATION AND AMINATION OF 4H-[1,2,3]TRIAZOLO[4,5-c][1,2,5]OXADIAZOLE SALTS

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The methylation and the amination of 4H-[1,2,3]triazolo[4,5-c][1,2,5]oxadiazole salts (K+, Ag+, Et3NH+, DBUH+) were studied for the first time. It is shown that two methylated products are formed in the reaction. In the case of K- and Et3N-salts, 4- and 5-methylated isomers are formed in equal proportions, and in the case of Ag- and DBU-salts, the main product is the 4-isomer. It was found that the main product of amination of both 4H-[1,2,3]triazolo[4,5-c][1,2,5]oxadiazole K- and DBU-salts with O-(p-tolylsulfonyl)hydroxylamine is 4-azido-3-amino-1,2,5-oxadiazole. The mechanism of its formation as a result of rearrangement of 5-amino-[1,2,3]triazolo[4,5-c][1,2,5]oxadiazole is proposed.

About the authors

S. P. Balabanova

N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences

Email: voronin@ioc.ac.ru
Russian Federation, 119991, Moscow

A. A. Voronin

N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences

Author for correspondence.
Email: voronin@ioc.ac.ru
Russian Federation, 119991, Moscow

A. M. Churakov

N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences

Email: voronin@ioc.ac.ru
Russian Federation, 119991, Moscow

M. S. Klenov

N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences

Email: voronin@ioc.ac.ru
Russian Federation, 119991, Moscow

V. A. Tartakovsky

N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences

Email: voronin@ioc.ac.ru
Russian Federation, 119991, Moscow

References

  1. Gao H., Zhang Q., Shreeve J.M. // J. Mat. Chem. A. 2020. V. 8. № 8. P. 4193–4216. https://doi.org/10.1039/C9TA12704F
  2. Zelenov V.P., Lobanova A.A., Lyukshenko N.I., Sysolyatin S.V., Kalashnikov A.I. // Russ. Chem. Bull. 2008. V. 57. № 7. P. 1384–1389. https://doi.org/10.1007/s11172-008-0180-y
  3. Li X., Wang B., Li Y., Li H., Zhou C., Zhang Y., Lian P. // Chin J. Energy Mater. 2013. V. 21. P. 717–720. https://doi.org/10.3969/j.issn.1006-9941.2013.06.005
  4. Voronin A.A., Fedyanin I.V., Churakov, A.M., Pivkina A.N., Muravyev N.V., Strelenko Y.A., Klenov M.S., Lempert D.B., Tartakovsky V.A. // ACS Appl. Energ. Mat. 2020. V. 3. № 9. P. 9401–9407. https://doi.org/10.1021/acsaem.0c01769
  5. Voronin A.A., Balabanova S.P., Fedyanin I.V., Chura-kov A.M., Pivkina A.N., Strelenko Yu.A., Klenov M.S., Tartakovsky V.A. // Molecules. 2022. V. 27. № 19. P. 6287. https://doi.org/10.3390/molecules27196287
  6. Kaihoh T., Itoh T., Yamaguchi K., Ohsawa A. // J. Chem. Soc., Perkin Trans. 1. 1991. V. 8. P. 2045–2048. https://doi.org/10.1039/P19910002045
  7. Campbell C.D., Rees C.W. // J. Chem. Soc. C. 1969. V. 5. P. 742–747. https://doi.org/10.1039/J39690000742
  8. Knight D.W., Little P.B. // J. Chem. Soc., Perkin Trans. 1. 2000. V. 15. P. 2343–2355. https://doi.org/10.1039/B001834L
  9. Larina L.I., Milata V. // Magn. Reson. Chem. 2009. V. 47. P. 142–148. https://doi.org/10.1002/mrc.2366
  10. Klapötke T.M., Piercey D.G., Stierstorfer J. // Dalton Trans. 2012. V. 41. P. 9451–9459. https://doi.org/10.1039/C2DT30684K
  11. Rakitin O.A., Zalesova O.A., Kulikov A.S., Makhova N.N., Godovikova T.I., Khmel’nitskii L.I. // Russ. Chem. Bull. 1993. V. 42. № 11. P. 1865–1870. https://doi.org/10.1007/BF00699005

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (18KB)
3.

Download (32KB)
4.

Download (17KB)
5.

Download (2KB)
6.

Download (21KB)
7.

Download (18KB)
8.

Download (31KB)

Copyright (c) 2023 С.П. Балабанова, А.А. Воронин, А.М. Чураков, М.С. Кленов, В.А. Тартаковский