Evaluation of toxicity of ionic liquids as solvents in C–C cross-coupling reaction

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In this work, by means of bio-Strips and cytotoxic potentials of chemical reactions, the decisive impact of the solvent choice on the “overall cytotoxicity” of the process is shown by example of 36 routes of 1,1′-biphenyl synthesis.

Full Text

Restricted Access

About the authors

A. E. Kolesnikov

Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences

Email: egorova-ks@ioc.ac.ru
Russian Federation, 119991 Moscow

K. S. Egorova

Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences

Author for correspondence.
Email: egorova-ks@ioc.ac.ru
Russian Federation, 119991 Moscow

References

  1. Welton T. // Chem. Rev. 1999. V. 99. № 8. P. 2071–2084. https://doi .org/10.1021/cr980032t
  2. Pârvulescu V.I., Hardacre C. // Chem. Rev. 2007. V. 107. № 6. P. 2615–2665. https://doi .org/10.1021/cr050948h
  3. Hallett J.P., Welton T. // Chem. Rev. 2011. V. 111. № 5. P. 3508–3576. https://doi .org/10.1021/cr1003248
  4. Fedorov M.V., Kornyshev A.A. // Chem. Rev. 2014. V. 114. № 5. P. 2978–3036. https://doi .org/10.1021/cr400374x
  5. MacFarlane D.R., Forsyth M., Howlett P.C., Kar M., Passerini S., Pringle J.M., Ohno H., Watanabe M., Yan F., Zheng W., Zhang S., Zhang J. // Nat. Rev. Mater. 2016. V. 1. № 2. P. 15005. https://doi .org/10.1038/natrevmats.2015.5
  6. Azov V A., Egorova K.S., Seitkalieva M.M., Kashin A.S., Ananikov V.P. // Chem. Soc. Rev. 2018. V. 47. № 4. P. 1250–1284. https://doi .org/10.1039/c7cs00547d
  7. Itoh T. // Chem. Rev. 2017. V. 117. № 15. P. 10567–10607. https://doi .org/10.1021/acs.chemrev.7b00158
  8. Ventura S.P.M., e Silva F.A., Quental M.V., Mondal D., Freire M.G., Coutinho J.A.P. // Chem. Rev. 2017. V. 117. № 10. P. 6984–7052. https://doi .org/10.1021/acs.chemrev.6b00550
  9. Egorova K.S., Gordeev E.G., Ananikov V.P. // Chem. Rev. 2017. V. 117. № 10. P. 7132–7189. https://doi .org/10.1021/acs.chemrev.6b00562
  10. Egorova K.S., Posvyatenko A.V., Larin S.S., Ananikov V.P. // Nucleic Acids Res. 2021. V. 49. № 3. P. 1201–1234. https://doi .org/10.1093/nar/gkaa1280
  11. Hayes R., Warr G.G., Atkin R. // Chem. Rev. 2015. V. 115. № 13. P. 6357–6426. https://doi .org/10.1021/cr500411q
  12. Dupont J., Consorti C.S., Spencer J. // J. Braz. Chem. Soc. 2000. V. 11. № 4. P. 337–344. https://doi .org/10.1590/s0103-50532000000400002
  13. Wasserscheid P., Keim W. // Angew. Chem., Int. Ed. 2000. V. 39. № 21. P. 3772–3789. https://doi .org/10.1002/1521-3773(20001103) 39:21<3772::aid-anie3772>3.0.co;2-5
  14. Egorova K.S., Ananikov V.P. // ChemSusChem 2014. V. 7. № 2. P. 336–360. https://doi .org/10.1002/cssc.201300459
  15. Heckenbach M.E., Romero F.N., Green M.D., Halden R.U. // Chemosphere. 2016. V. 150. P. 266–274. https://doi .org/10.1016/j.chemosphere.2016.02.029
  16. Egorova K.S., Galushko A.S., Ananikov V.P. // Angew. Chem., Int. Ed. 2020. V. 59. № 50. P. 22296–22305. https://doi.org/10.1002/anie.202003082
  17. Egorova K.S., Galushko A.S., Dzhemileva L.U., D’yakonov V.A., Ananikov V.P. // Green Chem. 2021. V. 23. № 17. P. 6373–6391. https://doi .org/10.1039/d1gc00207d
  18. Egorova K.S., Posvyatenko A.V., Galushko A.S., Ananikov V.P. // Chemosphere. 2023. V. 313. № P. 137378. https://doi .org/10.1016/j.chemosphere.2022.137378
  19. Egorova K.S., Galushko A.S., Dzhemileva L.U., D’yakonov V.A., Ananikov V.P. // Dokl. Chem. 2022. V. 504. № 2. P. 106–117. https://doi .org/10.1134/s0012500822600080
  20. Dzhemileva L.U., D’Yakonov V.A., Seitkalieva M.M., Kulikovskaya N.S., Egorova K.S., Ananikov V.P. // Green Chem. 2021. V. 23. № 17. P. 6414–6430. https://doi.org/10.1039/d1gc01520f

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Biostrips for the reaction of synthesis of 1,1'-biphenyl from phenyl halide and phenylboronic acid with a variation of phenyl halide (iodobenzene (A), brombenzene (B)), catalyst (PdCl2 (A), PdBr2 (B), PdI2 (C)) and solvents ( ethanol (A), NMP (B), C2MIm NTf2 (C), C4MIm BF4 (D), C4MIm NTf2 (E), Chol NTf2 (F)). The reaction is shown at the top, the relative cytotoxicity scale and the explanation of abbreviations are at the bottom. For clarity, only three synthesis methods are shown. Cytotoxicity data obtained on HEK293 cells were used.

Download (831KB)
3. Fig. 2. Biostrips of 36 methods for the synthesis of 1,1'-biphenyl (based on cytotoxicity data on HEK293 cells). The first, second and third letters in the names of reactions indicate the type of starting substance 2 (SM2: iodobenzene (A), bromine- benzene (B)), catalyst (CT: PdCl2 (A), PdBr2 (B), PdI2 (C)) and solvent (S: ethanol (A), NMP (B), C2MIm NTf2 (C), C4MIm BF4 (D), C4MIm NTf2 (E), Chol NTf2 (F)), respectively.

Download (745KB)
4. Fig. 3. Biostrips of 36 methods for the synthesis of 1,1'-biphenyl (based on cytotoxicity data on A549 cells). The first, second and third letters in the names of the reactions indicate the type of starting substance 2 (SM2: iodobenzene (A), brombenzene (B)), catalyst (CT: PdCl2 (A), PdBr2 (B), PdI2 (C)) and solvent (S: ethanol (A), NMP (B), C2MIm NTf2 (C), C4MIm BF4 (D), C4MIm NTf2 (E), Chol NTf2 (F)) respectively.

Download (681KB)
5. Fig. 4. Cytotoxic potentials for 36 methods of obtaining 1,1'-biphenyl. The exact values are given in Table 1. CPi is the initial cytotoxic potential; CPf is the final cytotoxic potential; CPf_rel is the relative secondary cytotoxic potential.

Download (557KB)
6. Fig. 5. Comparison of the values of the 24-hour CC50 components of the studied reactions for the HEK293 and A549 cell lines. The color of the cells of the heat map corresponds to the values of CC50 for this cell line (see the legend at the bottom of the figure; the colors correspond to the distribution of CC50 values by percentiles).

Download (559KB)

Copyright (c) 2024 Russian Academy of Sciences