Thickness and thermal state of the lithospheric mantle beneath the yubileynaya pipe (Alakit-Markha kimberlite field, Siberian craton)

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The paper presents the results of a study on the chemical composition of chromdiopside xenocrystals from the concentrate of the heavy fraction of kimberlites from the Yubileinaya pipe. a reconstruction of the mantle paleogeotherm was achieved through the application of monomineral clinopyroxene geothermobarometry and the FITPLOT programme. The palaeogeotherm was found to correspond to a surface heat flux of 34.8 mW/m². The estimated thickness of the lithosphere beneath the Yubileinaya pipe is 230 km, with a diamond window interval of approximately 105 km (from 125 to 230 km). In order to facilitate a comparison of the palaeogeotherm, lithosphere and diamond window thicknesses beneath the Yubileinaya and Udachnaya pipes, the mantle palaeogeotherm beneath the Udachnaya pipe was reconstructed. The resulting values for the heat flux, lithosphere thickness, and diamond window under the Udachnaya pipe are 34.7 mW/m², 233 km, and 108 km, respectively. However, the diamondiferous content of the Yubileinaya pipe is approximately two times lower than that of the Udachnaya pipe kimberlites. Consequently, the observed difference in diamondiferousness may be related not only to the thickness of the sampled lithosphere and the diamond window, but also to other petrological parameters, such as the degree of manifestation of diamond-generating and diamond-destructive metasomatism.

全文:

受限制的访问

作者简介

M. Milaushkin

Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences; PJSC “ALROSA”

编辑信件的主要联系方式.
Email: milaushkinmv@igm.nsc.ru
俄罗斯联邦, Novosibirsk; Novosibirsk

V. Malkovets

Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences; PJSC “ALROSA”

Email: milaushkinmv@igm.nsc.ru
俄罗斯联邦, Novosibirsk; Novosibirsk

A. Gibsher

Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences; PJSC “ALROSA”

Email: milaushkinmv@igm.nsc.ru
俄罗斯联邦, Novosibirsk; Novosibirsk

A. Dymshits

Institute of the Earth’s crust, Siberian Branch of the Russian Academy of Sciences; Kola Science Centre of the Russian Academy of Sciences, Geological Institute

Email: milaushkinmv@igm.nsc.ru
俄罗斯联邦, Irkutsk; Apatity

I. Yakovlev

PJSC “ALROSA”

Email: milaushkinmv@igm.nsc.ru
俄罗斯联邦, Novosibirsk

N. Pokhilenko

Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences

Email: milaushkinmv@igm.nsc.ru

Academician of the RAS

俄罗斯联邦, Novosibirsk

参考

  1. Розен О. М., Манаков А. В., Суворов В. Д. Коллизионная система северо-востока Сибирского кратона и проблема алмазоносного литосферного киля //Геотектоника. 2005. № 6. С. 42–67.
  2. Костровицкий С. И. и др. Атлас коренных месторождений алмазов Якутской кимберлитовой провинции. 2015.
  3. Lepekhina E. et al. SHRIMP U-Pb zircon ages of Yakutian kimberlite pipes / International Kimberlite Conference: Extended Abstracts. 2008. V. 9.
  4. Харькив А. Д., Зинчук Н. Н., Крючков А. И. Коренные месторождения алмазов мира. 1998.
  5. https://www.rudmet.ru/media/docs/3_20_diamond.pdf
  6. Nimis P., Taylor W. Single Clinopyroxene Thermobarometry for Garnet Peridotites. Part I. Calibration and Testing of a Cr-in-Cpx Barometer and an Enstatite-in-Cpx Thermometer // Contributions to Mineralogy and Petrology. 2000. V. 139. P. 541–554.
  7. Ziberna L. et al. Error sources in single-clinopyroxene thermobarometry and a mantle geotherm for the Novinka kimberlite, Yakutia // American Mineralogist. 2016. V. 101. № 10. P. 2222–2232.
  8. Griffin W. L. et al. The Siberian lithosphere traverse: mantle terranes and the assembly of the Siberian Craton // Tectonophysics. 1999. V. 310. № 1–4. С. 1–35.
  9. Ryan C. G., Griffin W. L., Pearson N. J. Garnet geotherms: Pressure‐temperature data from Cr‐pyrope garnet xenocrysts in volcanic rocks // Journal of Geophysical Research: Solid Earth. 1996. V. 101. № B3. P. 5611–5625.
  10. Mather K. A. et al. Constraints on the depth and thermal history of cratonic lithosphere from peridotite xenoliths, xenocrysts and seismology // Lithos. 2011. V. 125. №. 1–2. P. 729–742.
  11. Манаков А. В. Особенности строения литосферы Якутской кимберлитовой провинции. 1999.
  12. Розен О. М., Соловьев А. В., Журавлев Д. З. Термическая эволюция северо-востока Сибирской платформы в свете датирования керна глубинного бурения по трекам деления апатита // Известия. Физика твердой Земли. 2009. Т. 45. С. 914–931.
  13. Ramsay R. R., Tompkins L. A. The geology, heavy mineral concentrate mineralogy, and diamond propectivity of the Boa Esperanca and Cana Verde pipes, Corrego D'anta, Minas Gerais, Brasil / The geology, heavy mineral concentrate mineralogy, and diamond propectivity of the Boa Esperanca and Cana Verde pipes, Corrego D'anta, Minas Gerais, Brasil: Companhia de Pesquisa de Recursos Minerais (Special Publication), 1994. P. 329–345.
  14. Тычков Н. С. и др. Мезозойская литосферная оболочка северо-востока Сибирского кратона (по включениям в кимберлитах) // Геология и геофизика. 2018. Т. 59. № 10. С. 1254–1270.
  15. Liu Z. et al. Thermal and compositional anomalies in a detailed xenolith-based lithospheric mantle profile of the Siberian craton and the origin of seismic midlithosphere discontinuities // Geology. 2022. V. 50. № 8. P. 891–896.
  16. Ionov D. A., Doucet L. S., Ashchepkov I. V. Composition of the lithospheric mantle in the Siberian craton: new constraints from fresh peridotites in the Udachnaya-East kimberlite // Journal of petrology. 2010. V. 51. № 11. P. 2177–2210.
  17. Doucet L. S., Ionov D. A., Golovin A. V. The origin of coarse garnet peridotites in cratonic lithosphere: new data on xenoliths from the Udachnaya kimberlite, central Siberia // Contributions to Mineralogy and Petrology. 2013. V. 165. P. 1225–1242.
  18. Malkovets V. G. et al. Diamond, subcalcic garnet, and mantle metasomatism: Kimberlite sampling patterns define the link // Geology. 2007. V. 35. № 4. P. 339–342.
  19. Hasterok D., Chapman D. S. Heat production and geotherms for the continental lithosphere // Earth and Planetary Science Letters. 2011. V. 307. № 1–2. P. 59–70.
  20. Kennedy C. S., Kennedy G. C. The equilibrium boundary between graphite and diamond // Journal of Geophysical Research. 1976. V. 81. № 14. P. 2467–2470.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. A – Schematic map of the Siberian Craton [1] with modifications; 1 – craton boundaries, 2 – boundaries of tectonic provinces, 3 – location of the Alakit-Markhinsky kimberlite field (AMKF) within the craton. B – Schematic diagram of the location of kimberlite bodies in the AMKF [2]; 1 – primary diamond deposits, 2 – rivers, 3 – AMKF contour

下载 (498KB)
3. Fig. 2. Discrimination diagram of Cr2O3–Al2O3 [14] and the composition of the studied clinopyroxenes from the Yubileynaya pipe. 1 – chrome diopsides that did not pass the selection by filters [7, 8] (111 grains), as well as chrome diopsides from the field of eclogites, megacrysts and related clinopyroxenes (13 grains) and chrome diopsides from the field of spinel peridotites and extracratonic garnet peridotites (12 grains). 2 – high-temperature chrome diopsides with T values ​​> 1200 °C (32 grains) (see Fig. 3 A), 3 – chrome diopsides with T values ​​from 700 to 1200 °C (23 grains), 4 – low-temperature chrome diopsides with P values ​​< 30 kbar (8 grains)

下载 (181KB)
4. Fig. 3. Reconstructed paleogeotherm beneath the Yubileinaya pipe. A – paleogeotherm reconstructed based on 63 chrome diopsides, heat flow 35.5 mW/m2, lithosphere thickness 218 km, “diamond window” thickness 93 km; B – paleogeotherm reconstructed based on 23 chrome diopsides, heat flow 34/8 mW/m2, lithosphere thickness 230 km, “diamond window” thickness 105 km. The “diamond window” thickness along the “Y-edge” [9] is 65 km (A) and 75 km (B). Dotted lines – geotherm reconstruction error. 1 – low-temperature chrome diopsides with P values ​​< 30 kbar (8 grains), 2 – chrome diopsides with T values ​​from 700 to 1200 °C (23 grains), 3 – high-temperature chrome diopsides with T values ​​> 1200 °C (32 grains). The red dotted line is the distribution of chrome diopsides by depth.

下载 (381KB)
5. Fig. 4. Reconstructed paleogeotherm beneath the Udachnaya pipe (Daldynskoye field). PT estimates from [16]. Red circles are transitional and cataclased peridotites, green circles are coarse-grained peridotites. Red solid line is a paleogeotherm reconstructed based on chrome diopsides from transitional, cataclased and coarse-grained peridotites. Heat flow is 35.1 mW/m2, lithosphere thickness is 224 km, “diamond window” thickness is 99 km. Green solid line is a paleogeotherm reconstructed based on chrome diopsides only from coarse-grained peridotites. Heat flow is 34.7 mW/m2, lithosphere thickness is 233 km, “diamond window” thickness is 108 km, “diamond window” thickness determined by “Y-edge” in garnets, according to [9], is 70 km. Red and green dotted lines are the asthenosphere-lithosphere boundary. Black dotted line is the distribution of clinopyroxenes by depth. Model conductive geotherms from [20]

下载 (220KB)
6. Supplementary
下载 (136KB)

版权所有 © Russian Academy of Sciences, 2025