Finding of neoarchean (2.71 ga) conglomerates in the Kostomuksha iron ore province: on the youngest archean stratotectonic association in the Karelian craton

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A lens of earlier unknown polymict conglomerates was found in the axis of the Kostomuksha greenstone belt (KGB), Karelian Craton. Their clastic portion consists of poorly graded, largely angular pebbles. They are comparable in composition to rocks from the surrounding greenstone complex, such as: 1) amphibolites similar to KGB’s Mesoarchean gabbroic rocks and basalts; 2) magnetite-amphibole quartzites similar to Mesoarchean magnetite-biotite-amphibole quartzites associated with banded iron formation; 3) Neoarchean (2.75 Ga) quartz metagraywacke. The conglomerates are highly deformed (γ> 10) by simple shear. The conglomerates were deposited about 2.71 Ga ago, as indicated by analysis of zircons from the matrix. Thus, a new Neoarchean stratotectonic association, the youngest in the greenstone complex, was found in KGB. It seems to have been formed in a pull-apart basin at the final stage of KGB formation, in which shearing played an important part. Volcanogenic and sedimentary associations of similar age are known in the Khedozero-Bolshozero, Kuhmo and Takanen greenstone belts of the Karelian Craton.

全文:

受限制的访问

作者简介

А. Slabunov

Karelian Research Centre of the Russian Academy of Sciences

编辑信件的主要联系方式.
Email: slabunov@krc.karelia.ru
俄罗斯联邦, Karelia, Petrozavodsk

N. Nesterova

Karelian Research Centre of the Russian Academy of Sciences

Email: slabunov@krc.karelia.ru
俄罗斯联邦, Karelia, Petrozavodsk

S. Mudruk

Karelian Research Centre of the Russian Academy of Sciences; Kola Science Centre of the Russian Academy of Sciences

Email: slabunov@krc.karelia.ru

Geological Institute

俄罗斯联邦, Karelia, Petrozavodsk; Apatity

О. Maksimov

Karelian Research Centre of the Russian Academy of Sciences

Email: slabunov@krc.karelia.ru
俄罗斯联邦, Karelia, Petrozavodsk

A. Kervinen

Karelian Research Centre of the Russian Academy of Sciences

Email: slabunov@krc.karelia.ru
俄罗斯联邦, Karelia, Petrozavodsk

参考

  1. Ramsay J. G. Folding and fracturing of rocks. McGraw-Hill, New York, 1967. 580 p.
  2. Brandl G., Cloete M., Anhaeusser C. R. Archaean Greenstone Belt. In: The Geology of South Africa. M.R. Johnson, C.R. Anhaeusser, R.J. Thomas (Eds.). The Geologly of South Africa. Geologica Sociely of South Africa, Johannesburg/Council for Geoscience, Pretoria. 2006. P. 9–56.
  3. Jackson S. L., Fyon J. A. The Western Abitibi Subprovince in Ontarion. In: Geology of Ontario. P.C. Thurston, H.S. Williams, R.H. Sutcliffe, G.M. Stott (Eds.). Special Vol. 4, Part 1. Ontario Ministry of Northern Development and Mines, 1991. P. 405–484.
  4. Чернов В. М. Стратиграфия и условия осадконакопления вулканогенных (лептитовых) железисто-кремнистых формаций Карелии. М.–Л.: Наука, 1964. 104 с.
  5. Светов С. А., Светова А. И. и др. Неоархейские пулл-апарт бассейны Центрально-Карельского террейна: породные последовательности и литогеохимическая характеристика // Геология и полезные ископаемые Карелии. Вып. 8. Петрозаводск: КарНЦ РАН, 2005. С. 5–17.
  6. Piirainen T. The geology of the Archaean greenstone-granitoid terrain in Kuhmo, eastern Finland // Archaean geology of the Fennoscandian Shield. Geol. Surv. Finland Spec. Pap. 1988. № 4. P. 39–51.
  7. Sorjonen-Ward P. An overview of structural evolution and lithic units within and intruding the late Archean Hattu schist belt, Ilomantsi, eastern Finland. In: P. A. Nurmi & P. Sorjonen-Ward (Eds.) / Geological development, gold mineralization and exploration methods in the late Archean Hattu schist Belt, Ilomantsi, Eastern Finland. Geol. Surv. of Finland. Spec. Paper. 17. 1993. P. 9–102.
  8. Горьковец В. Я., Раевская М. Б., Володичев О. И. и др. Геология и метаморфизм железисто-кремнистых формаций Карелии. Л.: Наука, 1991. 176 с
  9. Куликов В. С., Светов С. А., Слабунов А. И. и др. Геологическая карта Юго-восточной Фенноскандии масштаба 1:750 000: новые подходы к составлению // Труды Карельского НЦ РАН. Серия “Геология докембрия” 2017. № 2. С. 3–41. https://doi.org/10.17076/geo444
  10. Костомукшский рудный район (геология, глубинное строение и минерагения) / Ред. В.Я. Горьковец, Н.В. Шаров. Петрозаводск: КарНЦ РАН, 2015. 322 с.
  11. Slabunov A. I., Kervinen A. V., Nesterova N. S. Zircon from banded iron formation as a sensitive indicator of its polychronous background: a case study on the Kostomuksha greenstone belt, Karelian Craton. Fennoscandian Shield // International Geology Review. 2024. V. 66. № 6. P. 1321–1333. https://doi.org/10.1080/00206814.2023.2248501
  12. Мыскова Т. А., Милькевич Р. И., Львов П. А. и др. Неоархейские вулканиты Хедозеро-Большозерской зеленокаменной структуры Центральной Карелии: состав, возраст и тектоническая обстановка // Стратиграфия. Геологическая корреляция. 2020. Т. 28. № 2. С. 3–32. https://doi.org/10.31857/S0869592X20020040
  13. Слабунов А. И., Нестерова Н. С., Егоров А. В. и др. Геохимия, геохронология цирконов и возраст архейской железорудной толщи Костомукшского зеленокаменного пояса Карельского кратона Фенноскандинавского щита // Геохимия. 2021. Т. 66. № 4. С. 291–307. https://doi.org/10.31857/S0016752521040063
  14. Милькевич Р. И., Мыскова Т. А. Позднеархейские метатерригенные породы Западной Карелии (литология, геохимия, источники сноса) // Литология и полезные ископаемые. 1998. № 2. С. 177–194.
  15. Слабунов А. И., Нестерова Н. С., Максимов О. А. Геохимия и условия формирования мезоархейских полосчатых железистых кварцитов (BIF-1) Костомукшского зеленокаменного пояса Карельского кратона // Геохимия. 2024. Т. 69. № 3. С. 28–50. https://doi.org/10.1134/S0016702924030054
  16. Кожевников В. Н. Архейские зеленокаменные пояса Карельского кратона как аккреционные орогены. Петрозаводск, 2000. 223 с.
  17. Мудрук С. В., Нестерова Н. С., Максимов О. А. и др. Структурный анализ архейских конгломератов Костомукшского зеленокаменного пояса (Фенноскандинавский щит): первые результаты // Труды Ферсмановской научной сессии ГИ КНЦ РАН. 2024. 21. C. 181–189. https://doi.org/10.31241/FNS.2024.21.022
  18. Ludwig K. R. Isoplot v.4.15: A geochronological Toolkit for Microsoft Excel. Special Publication No. 4. Berkeley Geochronology Center, 2008.
  19. Järvinen V., Karampelas N., Rämö O. T. Secular change of tectonic setting in the Archean Takanen greenstone belt, northeastern Karelia Province, Fennoscandian Shield // Bulletin of the Geological Society of Finland. 2023. V. 95. № 2. P. 107–134. https://doi.org/10.17741/bgsf/95.2.002
  20. Lehtonen E., Heilimo E., Halkoaho T., Kapyaho A. Holtta P. U–Pb geochronology of Archaean volcanic-sedimentary sequences in the Kuhmo greenstone belt, Karelia Province – Multiphase volcanism from Meso- to Neoarchaean and a Neoarchaean depositional basin? // Precambrian Research. 2016. V. 275. P. 48–69. https://doi.org/10.1016/j.precamres.2015.12.002

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Scheme of the geological structure of (a) the Kostomuksha greenstone belt ([11, 15], with the author's additions) and (b) a detailed area with a lens of Neoarchean (2.71 Ga) conglomerates. (a): 1 - Neoproterozoic (1.2 Ga) lamproites and kimberlites (see Table 1), 2 - Paleoproterozoic (2.40 and 2.14 Ga) dolerites (see Table 1); 3-9 - Neoarchean (see Table 1): 3 - 2.68 Ga granites; 4 - 2.71 Ga polymictic conglomerates; 5 - 2.71 Ga sanukitoids; 6 - 2.72 Ga granites; 7 - 2.78 Ga granitoids of the TTG association; 8–10 – rocks of the Gimolskaya Series (see Table 1): 8 – 2.76–2.74 Ga metagraywackes with BIF-3 interlayers; 9 – 2.76–2.74 Ga sills and dikes of metarhyolites (helleflints); 10 – metasediments of the Surlampinskaya Formation with BIF interlayers: a – weakly and b – strongly migmatized; 11–14 – Mesoarchean (2.87–2.78 Ga) (see Table 1): 11 – tuffs, tuffites of rhyolites (Shurlovar Formation); 12 – BIF-2 interlayers; 13 – komatiite-basalt with dacites complex (Ruvinvaara Formation); 14 – BIF-1 interlayers; 15 – basalts and komatiites (Niemijärvi Formation); 16 – faults; 17 – thrust; 18–19 – bedding elements: 18 – banding and gneissosity, 19 – mineral lineation. (b): 1 – 2.71 Ga polymictic conglomerates; 2–4 – Mesoarchean (2.80–2.78 Ga) rocks of the Šurlovar STA: 2 – felsic volcanics, 3 – BIF-2 interlayers; 4 – shale interlayers; 5–7 – Mesoarchean (2.87–2.81 Ga): 5 – komatiite-basalt with dacites complex (Ruvinvaara Formation), 6 – BIF-1 interlayers, 7 – barren quartzite and shale interlayers; 8 – faults; 9–10 – bedding elements: 9 – mineral linearity, 10 – banding and gneissicity

下载 (857KB)
3. Fig. 2. Neoarchean (2.71 Ga) conglomerates of the Kostomuksha greenstone belt in outcrop: (a) general view of the outcrop (scale – yellow tape measure 1 m), dotted line – structural lines, arrow – average orientation of the lineation plunge (NE 55 at an angle of 23); (b) conglomerates with ellipsoid fragments of metabasites, banded quartzites – quartz graywacke, banding is visible in the rocks, the plane of the photo is suborthogonal to the shear surface (scale – compass 10 cm); (c) conglomerates with angular and ellipsoid fragments of amphibolites (metabasalts), metabasalts with plagioclase porphyry, quartz metagraywacke (scale – compass 10 cm); (d) large fragment of deformed quartz metagrauwaaki (scale – compass 10 cm); (d) conglomerates in a plane orthogonal to the shear surface and parallel to the lineation, arrow – orientation of the lineation dip (NE 55° at an angle of 23°)

下载 (1MB)
4. Fig. 3. Figurative points of the compositions of amphibolites (blue stars) (a, b), quartzites (pink symbols) – quartz graywacke (red symbols) (c, d) from conglomerate fragments on the SiO2–Na2+K2O (a), SiO2–Y (c) diagrams and graphs of chondrite-normalized REE contents (b, d), green fields – composition of Mesoarchean basalts of the KZP, yellow fields – compositions of Mesoarchean quartzites associated with BIF [15]

下载 (261KB)
5. Fig. 4. Grain structure (a, c) and isotopic age (determined by LA-ICP-MS, n is the number of analytical points, D* is the discordance in %) of zircon from the conglomerate cement (b) and a fragment of quartz graywacke (d): (a, c) cathodic luminescence image of zircons from the cement (a) and a fragment (c) of the conglomerate, circles are the location of analytical dating points and the TPb–Pb values ​​in them in Ma (1σ), with the Th/U ratio in brackets; (b, d) histograms of 207Pb–206Pb ages (TPb–Pb) of zircon from the cement, TMDAPb–Pb is the 207Pb–206Pb age of the three youngest grains (MDA – maximum depositional age). * D=100×(T(206Pb/238U) / T(207Pb/206Pb)–1)

下载 (1MB)

版权所有 © Russian Academy of Sciences, 2025