Physico-chemical factors favoring greisen tin deposits formation: a new look at the old problems

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Physico-chemical factors favoring formation of greisen tin deposits are evaluated based on the original data on composition of melt and fluid inclusions in magmatic and ore-forming minerals from Tigrinoe tin-tungsten deposit, Russian Far-East, and on the literature. We show that for the granitoid-related deposits the factors include: relatively low-temperature and low-pressure (720–770 °C/0.7–2 kbar, 3–6 km) granites formed under reducing oxygen fugacity (fO2 below fayalite-magnetite-quartz, QFM buffer), that is indicated by absence of magnetite/presence of ilmenite, and by reduced positive Ce-anomaly in magmatic zircon (1); low-salinity fluid inclusions in magmatic quartz (2); fluid inclusions with the СН4/СО2 ratio of 0.1–0.3 in the ore-vein minerals (3). A number of problems related to the origin of tin-tungsten deposit need further studies. In the first place, it concerns the role of fluorine in magmatic accumulation and hydrothermal transport of Sn. Partitioning of Sn and W between granite melt and fluids under reducing fO2 below QFM buffer also has to be experimentally evaluated.

全文:

受限制的访问

作者简介

L. Aranovich

Institute of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: lyaranov@igem.ru

Academician of the RAS

俄罗斯联邦, Moscow

N. Bortnikov

Institute of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry, Russian Academy of Sciences

Email: lyaranov@igem.ru

Academician of the RAS

俄罗斯联邦, Moscow

N. Akinfiev

Institute of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry, Russian Academy of Sciences

Email: lyaranov@igem.ru
俄罗斯联邦, Moscow

参考

  1. Аранович Л. Я. Флюидно-минеральные равновесия и термодинамические свойства смешения флюидных систем // Петрология. 2013. Т. 21. С. 588–599.
  2. Барсуков В. Л. Геохимия олова // Геохимия. 1957. Т. 1. С. 41–52.
  3. Бортников Н. С. Геохимия и происхождение рудообразующих флюидов в гидротермально-магматических системах в тектонически активных зонах // Геология рудных месторождений. 2006. Т. 48. № 1. С. 3–28.
  4. Крылова Т. Л., Pandian M. S., Бортников Н. С. и др. Вольфрамовые и оловянно-вольфрамовые месторождения Дегана (Раджастан, Индия) и Тигриное (Приморье, Россия): состав минералообразующих флюидов и условия отложения вольфрамита // Геология рудных месторождений. 2012. Т. 54. № 4. С. 329–349.
  5. Наумов В. Б., Дорофеева В. А., Миронова В. Ф. Физико-химические условия образования гидротермальных месторождений по данным изучения флюидных включений. 1. Месторождения олова и вольфрама // Геохимия. 2011. Т. 49. № 10. С. 1063–1082.
  6. Смирнов С. З., Бортников Н. С., Гоневчук В. Г., Гореликова Н. В. Составы расплавов и флюидный режим кристаллизации редкометальных гранитов и пегматитов Тигриного Sn-W месторождения (Приморье) // ДАН. 2014. Т. 456. № 1. С. 95–100.
  7. Audetat A. The Metal Content of Magmatic-Hydrothermal Fluids and Its Relationship to Mineralization Potential // Economic Geology. 2019. V. 114. P. 1033–1056. http://doi.org/10.5382/econgeo.4673
  8. Bortnikov N. S., Aranovich L. Y., Kryazhev S. G. et al. Badzhal tin magmatic-fluid system, Far East, Russia: Transition from granite crystallization to hydrothermal ore deposition // Geology Ore Deposits. 2019. V. 61. P. 199–224.
  9. Burnham A. D., Berry A. J. An experimental study of trace element partitioning between zircon and melt as a function of oxygen fugacity // Geochim. Cosmochim. Acta. 2012. V. 95. P. 196–212. http://doi.org/10.1016/j.gca.2012.07.034
  10. Churakov S. V., Gottschalk M. Perturbation theory based equation of state for polar molecular fluids: I. Pure fluids // Geochimica Cosmochimica Acta. 2003. V. 67. P. 2397–2414.
  11. De Capitani C., Petrakakis K. The computation of equilibrium assemblage diagrams with Theriak/Domino software // American Mineralogist. 2010. V. 95. P. 1006–1016. http://doi.org/10.2138/am.2010.3354.
  12. Duc-Tin Q., Audetat A., Keppler H. Solubility of tin in (Cl, F)-bearing aqueous fluids at 700оC, 140 MPa: A LA-ICP-MS study on synthetic fluid inclusions // Geochimica Cosmochimica Acta. 2007. V. 71. P. 3323–3335. http://doi.org/10.1016/j.gca.2007.04.022
  13. Gaschnig R. M., Rudnik R. L., McDonough W. F. et al. Compositional evolution of the upper continental crust through time, as constrained by ancient glacial diamictites // Geochimica Cosmochimica. Acta. 2016. V. 186. P. 316–343. http://doi.org/10.1016/j.gca.2016.03.020
  14. Holland T. J. B., Powell R. An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids // Journal Metamorphic Geology. 2011. V. 29. P. 333–383. http://doi.org/10.1111/j.1525-1314.2010.00923.x
  15. Hu X., Bi X., Hu R., Shang L., Fan W. Experimental study on tin partition between granitic silicate melt and coexisting aqueous fluid // Geochemical Journal. 2008. V. 42. P. 141–150. http://doi.org/10.2343/geochemj.42.141
  16. Lehmann B. Formation of tin ore deposits: A reassessment // Lithos. 2021. V. 402–403. 105756. http://doi.org/10.1016/j.lithos.2020.105756
  17. Palme H., O’Neill H. St. S. Cosmochemical estimates of mantle composition / In: Treaties on Geochemistry. 2 nd Ed. 2014. P. 1–39.
  18. Romer R. L., Kroner U. Sediment and weathering control on the distribution of Paleozoic magmatic tin–tungsten mineralization // Mineralium. Deposita. 2015. V. 50. P. 327–338. http://doi.org/10.1007/s00126-014-0540-5
  19. Romer R. L., Kroner U. Phanerozoic tin and tungsten mineralization – tectonic controls on the distribution of enriched protoliths and heat sources for crustal melting // Gondvana Research. 2016. V. 31. P. 61–92.
  20. Schmidt С., Gottschalk M., Zhang R., et al. Oxygen fugacity during tin ore deposition from primary fluid inclusions in cassiterite // Ore Geology Reviews. 2021. V. 139. 104451. http://doi.org/10.1016/j.oregeorev.2021.104451
  21. Zhao L., Shao Y., Zhang Yu., et al. Differentiated enrichment of magnetite in the Jurassic W–Sn and Cu skarn deposits in the Nanling Range (South China) and their ore-forming processes: An example from the Huangshaping deposit // Ore Geology Reviews. 2022. V. 148. 105046. http://doi.org/10.1016/j.oregeorev.2022.105046

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Calculated phase diagram for the bulk composition corresponding to the upper continental crust (UCC) + 5 wt. % H2O. Fields with phase contents less than 1% are not shown. The red and blue curves limit the stability fields of muscovite and biotite. The region of existence of granite melt is highlighted in gray. The right figure shows a fragment with lines of constant degree of melting (wt. % melt). The field where the melt coexists with subliquidus solid phases is highlighted in gray in Fig. 1. Its low-temperature boundary practically coincides with the decomposition line of muscovite (Ms, orange curve in Fig. 1). And the blue curve corresponds to the decomposition line of biotite (Bt). Since these two minerals are the main concentrators of Sn in low- and medium-temperature rocks, their complete decomposition should favor the accumulation of Sn in the melt.

下载 (228KB)
3. Fig. 2. Dependence of the partition coefficient Sn between fluid and granite melt (Kd) on the HCl content in the fluid at oxygen fugacity (fO2) corresponding to the Ni-NiO buffer (according to experimental data [15]). The red segments show the range of Kd values ​​consistent with estimates based on fluid inclusions.

下载 (66KB)
4. Fig. 3. Examples of melt (left) and fluid (right) inclusions in quartz from the Tigrinoe deposit [6, 8]. Note that the fluid inclusions contain CO2 and CH4.

下载 (265KB)
5. Fig. 4. The CH4/CO2 ratio in fluid inclusions in cassiterite according to [20]. The asterisk is the average composition of inclusions (n ​​= 89) according to Raman spectroscopy data (CH4/CO2 = 1/8, [5]). The dotted lines are the CH4/CO2 ratio = 1 (black) and 0.1 (blue).

下载 (118KB)
6. Fig. 5. Conditions of fluid inclusion capture in ore minerals of cassiterite-wolframite deposits (according to [5]). The red dotted line highlights the region of the most frequently determined TP parameters.

下载 (96KB)
7. Fig. 6. Dependence of the composition of the fluid of the C-O-H system on temperature (P = 1000 bar). The blue ordinate scale is the content of H2O, the red one is CO2 and CH4. The gray area highlights the composition range at oxygen fugacity values ​​of 10–25–26, in which the CH4/CO2 ratio is close to the average for tin-tungsten deposits.

下载 (99KB)
8. Fig. 7. Calculated curves of the dependence of SnO2 solubility (in g/t fluid) on temperature in fluids in the presence of Kfs–Ms–Qtz buffer and a concentration of KCl = 0.3 mol × kg–1 at a constant pressure of 1 kbar. The numbers at the curves correspond to the decimal logarithm of oxygen fugacity (logfO2). The rectangle highlights the region corresponding to the estimates of cassiterite precipitation based on fluid inclusion data.

下载 (84KB)

版权所有 © Russian Academy of Sciences, 2024