The early cretaceous absolute geomagnetic paleointensity based on results for traps of the franz josef land archipelago

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Data on the absolute value of the geomagnetic field intensity at the beginning of the Cretaceous Normal Superchron (C34n) was obtained from basalts of Hooker Island of the Franz Josef Land archipelago (FJL). These basalts are considered as one of the manifestations of the High Arctic Large Igneous Province. The record of the ancient geomagnetic field in the studied Early Cretaceous basalts was preserved well due to the presence of pseudo-single domain grains of primary magmatic titanomagnetite. The paleointensity, obtained by the Thellier–Coe method, satisfies the generally accepted reliability criteria, taking into consideration other necessary evidence. This information indicates that 125 Ma, during the formation of the FJL traps, the intensity of the geomagnetic field was four times lower than today. Our estimates show that the mean value of the virtual dipole moment was 1.7 × 10²² Am². These results support the views about the low paleointensity at the Barremian–Aptian boundary and indicate a correlation between the intensity of the geomagnetic field, the frequency of reversals, and the formation of mantle plumes.

Full Text

Restricted Access

About the authors

V. V. Abashev

Trofimuk Institute of Petroleum Geology and Geophysics, Siberian Branch of the Russian Academy of Science; Novosibirsk State University

Author for correspondence.
Email: abashevvv@ipgg.sbras.ru

Corresponding Member of the RAS

Russian Federation, Novosibirsk; Novosibirsk

D. V. Metelkin

Trofimuk Institute of Petroleum Geology and Geophysics, Siberian Branch of the Russian Academy of Science; Novosibirsk State University

Email: abashevvv@ipgg.sbras.ru
Russian Federation, Novosibirsk; Novosibirsk

A. A. Eliseev

Novosibirsk State University; Trofimuk Institute of Petroleum Geology and Geophysics, Siberian Branch of the Russian Academy of Science, Novosibirsk

Email: abashevvv@ipgg.sbras.ru

Academician of the RAS

Russian Federation, Novosibirsk; Novosibirsk

V. A. Vernikovsky

Trofimuk Institute of Petroleum Geology and Geophysics, Siberian Branch of the Russian Academy of Science; Novosibirsk State University

Email: abashevvv@ipgg.sbras.ru
Russian Federation, Novosibirsk; Novosibirsk

N. E. Mikhaltsov

Trofimuk Institute of Petroleum Geology and Geophysics, Siberian Branch of the Russian Academy of Science; Novosibirsk State University

Email: abashevvv@ipgg.sbras.ru
Russian Federation, Novosibirsk; Novosibirsk

E. V. Vinogradov

Trofimuk Institute of Petroleum Geology and Geophysics, Siberian Branch of the Russian Academy of Science; Novosibirsk State University

Email: abashevvv@ipgg.sbras.ru
Russian Federation, Novosibirsk; Novosibirsk

References

  1. Larson R.L., Olson P. Mantle plumes control magnetic reversal frequency // Earth Planet. Sci. Lett. 1991. V. 107. P. 437–447. https://doi.org/10.1016/0012-821x(91)90091-u
  2. Courtillot V., Olson P. Mantle plumes link magnetic superchrons to Phanerozoic mass depletion events // Earth Planet. Sci. Lett. 2007. V. 260. P. 495‒504. http://doi.org/10.1016/j.epsl.2007.06.003
  3. Biggin A.J., Steinberger B., Aubert J., et al. Possible links between long‐term geomagnetic variations and whole‐mantle convection processes // Nature Geosciences. 2012. V. 5(8). P. 526‒533. https://doi.org/10.1038/NGEO1521
  4. Добрецов Н.Л. Глобальная геодинамическая эволюция Земли и глобальные геодинамические модели // Геология и геофизика. 2010. Т. 51 (6). С. 761‒784.
  5. Kulakov E.V., Sprain C.J., Doubrovine P.V., et al. Analysis of an Updated Paleointensity Database (QPI‐PINT) for 65–200 Ma: Implications for the Long‐Term History of Dipole Moment Through the Mesozoic // JGR Solid Earth. 2019. V. 124. P. 9999‒10022. https://doi.org/10.1029/2018JB017287
  6. Di Chiara, A., Tauxe, L., Staudigel, H., et al. Earth’s magnetic field strength and the Cretaceous Normal Superchron: New data from Costa Rica // Geochemistry, Geophysics, Geosystems. 2021. V. 22(4). e2020GC009605. https://doi.org/10.1029/2020GC009605
  7. Bobrovnikova E.M., Lhuillier F., Shcherbakov V.P., et al. High-Latitude Paleointensities During the Cretaceous Normal Superchron from the Okhotsk–Chukotka Volcanic Belt // JGR Solid Earth. 2022. V. 127. e2021JB023551. https://doi.org/10.1029/2021JB023551
  8. Абашев В.В., Метелкин Д.В., Михальцов Н.Э. и др. Палеомагнетизм траппов архипелага Земля Франца-Иосифа // Геология и геофизика. 2018. Т. 59. №9. С. 1445‒1468. https://doi.org./10.15372/GiG20180910
  9. Метелкин Д.В.., Абашев В.В., Верниковский В.А. и др. Палеомагнетизм архипелага Земля Франца-Иосифа: приложение к мезозойской тектонике Баренцевоморской континентальной окраине // Геология и геофизика. 2022. Т. 63. № 4. С. 410–439.https://doi.org./10.15372/GiG2021175
  10. Prévot M., Mankinen E.A., Coe R.S., Grommé C.S. The Steens Mountain (Oregon) geomagnetic polarity transition: 2. Field intensity variations and discussion of reversal models // J. Geophys. Res. B: Solid Earth. 1985. V. 90 (B12). P. 10417‒10448. https://doi.org/10.1029/JB090iB12p10417
  11. Shcherbakova V.V., Bakhmutov V.G., Thallner D., et al. Ultra-low palaeointensities from East European Craton, Ukraine support a globally anomalous palaeomagnetic field in the Ediacaran // Geophysical Journal International. 2020. V. 220. Iss. 3. P. 1928–1946. https://doi.org/10.1093/gji/ggz566
  12. Merrill R.T, McElhinny M.W., McFadden P.L. The Magnetic Field of the Earth: Paleomagnetism, the Core, and the Deep Mantle. Academic Press. San Diego, Calif. 1996. 531 p. https://doi.org/10.1063/1.881919
  13. Walker J.D., Geissman J.W., Bowring S.A., et al. The Geological Society of America Geologic Time Scale // GSA Bulletin. 2013. V. 125. №3/4. P. 259‒272. https://doi.org/10.1130/B30712.1
  14. Jiang Q, Jourdan F., Olierook H.K.H., Merle R.E. An appraisal of the ages of Phanerozoic large igneous provinces // Earth-Science Reviews. 2023. V. 237. P. 104314. https://doi.org./10.1016/j.earscirev.2023.104314
  15. Ernst R.E. Large Igneous Provinces. Cambridge: Cambridge Univ. Press, 2014. 653 p.
  16. Диденко А.Н., Ханчук А.И. Смена геодинамических обстановок в зоне перехода Тихий океан – Евразия в конце раннего мела // ДАН. 2019. Т. 487. № 4. С. 405‒408. https://doi.org/10.31857/S0869-56524874405-408
  17. Добрецов Н.Л., Метелкин Д.В., Василевский А.Н. Характерные свойства магнитного и гравитационного полей Земли, взаимосвязанные с глобальной и региональной тектоникой // Геология и геофизика. 2021. Т. 62. № 1. С. 10–30. https://doi.org/10.15372GiG2020181
  18. Абашев В.В., Метелкин Д.В., Верниковский В.А., и др. Раннемеловой возраст базальтов архипелага Земля Франца-Иосифа: соответствие новых 40Ar/39Ar и палеомагнитных данных // ДАН. 2020. Т. 493. №1. С. 16‒20. https://doi.org./10.31857/S2686739720070038
  19. Corfu F., Polteau S., Planke S., et al. U-Pb geochronology of Cretaceous magmatism on Svalbard and Franz Josef Land, Barents Sea Large Igneous Province // Geol. Mag. 2013. V. 150 (6). P. 1127‒1135. https://doi.org./10.1017/S0016756813000162
  20. Диденко А.Н. О возможной причине квазипериодических колебаний частоты геомагнитных инверсий и величины 87Sr/86Sr в морских карбонатных породах в фанерозое // Геология и геофизика. 2011. Т. 52. № 12. С. 1945‒1956.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences