Thermal convection modeling of the evolution of the earth core

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We present a purely thermal convection 2D model of the Earth’s liquid core, occurring on the background of the secular cooling of the planet. The model includes equations of thermal convection in the Boussinesq approximation and the Coriolis force. Metallic iron with 0.9 wt. % Н is chosen for the core composition. The results of modeling show that large vortexes, the 2-D analogues of Taylor columns, are formed in the liquid core prior to crystallization, which might be responsible for the early Earth magnetic field. The early stages of the solid core crystallization are characterized by a chaotic and shapeless growth. Continuing growth of the solid core results in rearrangement of the convection structure decreasing its average velocity but increasing heat flow at the core-mantle boundary due to increased amount of heat of crystallization. The solid core reaches its present size in 0.5 Gy. Averaged temperature profile of the modern liquid core differs significantly from the adiabatic.

Full Text

Restricted Access

About the authors

L. Ya. Aranovich

Institute of Geology of ore deposits, petrography, mineralogy and geochemistry Russian Academy of Sciences

Author for correspondence.
Email: lyaranov@igem.ru

Academician of the RAS

Russian Federation, Moscow

V. D. Kotelkin

Lomonosov Moscow State University

Email: vyacheslav.kotelkin@math.msu.ru
Russian Federation, Moscow

References

  1. Aubert J. State and evolution of the geodynamo from numerical models reaching the physical conditions of Earth’s core // Geophysical Journal International. 2023. V. 235. P. 468–487. https://doi.org/10.1093/gji/ggad229
  2. Biggin A., Piispa E., Pesonen L. et al. Palaeomagnetic field intensity variations suggest Mesoproterozoic inner-core nucleation // Nature. 2015. V. 526. P. 245–248. https://doi.org/10.1038/nature15523
  3. Bono R. K., Tarduno J. A., Nimmo F., Cottrell R. D. Young inner core inferred from Ediacaran ultra-low geomagnetic field intensity // Nature Geoscience. 2019. V. 12. P. 143–147. https://doi.org/10.1038/s41561-018-0288-0
  4. Bouffard M., Choblet G., Labrosse S., Wicht J. Chemical Convection and Stratification in the Earth’s Outer Core // Frontiers in Earth Science. 2019. V. 7: 99. https://doi.org/10.3389/feart.2019.00099
  5. Braginsky S. Structure of the F layer and reasons for convection in the Earth’s core // Soviet Physics Doklady. 1963. V. 149. P. 8–10.
  6. Davies C. J., Greenwood S. Dynamics in Earth's Core Arising from Thermo-Chemical Interactions with the Mantle. In: Core‐Mantle Co‐Evolution: An Interdisciplinary Approach. T. Nakagawa, T. Tsuchiya, M. Satish-Kumar, G. Helffrich (Eds.). 2023. https://doi.org/10.1002/9781119526919.ch12
  7. Deschamps F., Cobden L. Estimating core-mantle boundary temperature from seismic shear velocity and attenuation // Frontiers in Earth Science. 2022. V. 10: 1031507. https://doi.org/10.3389/feart.2022.1031507
  8. Dziewonski A. M., Anderson D. L. Preliminary reference Earth model // Physics of the Earth and Planetary Interior. 1981. V. 25. P. 297–356. https://doi.org/10.17611/DP/9991844
  9. Жарков В. Н. Физика земных недр. М.: Наука и образование, 2012. 383 с.
  10. Hirose K., Tagawa S., Kuwayama Y. et al. Hydrogen limits carbon in liquid iron // Geophysical Research Letters. 2019. V. 46. P. 5190–5197. https://doi.org/10.1029/2019GL082591
  11. Konôpková Z., McWilliams R. S., Gómez-Pérez N., Goncharov A. F. Direct measurement of thermal conductivity in solid iron at planetary core conditions // Nature. 2016. V. 534. P. 99–101. https://doi.org/10.1038/nature18009
  12. Sakamaki K., Takahashi E., Nakajima Y. et al. Melting phase relation of FeHx up to 20 GPa: Implication for the temperature of the Earth’s core // Physics of the Earth and Planetary Interior. 2009. V. 174. P. 192–201. https://doi.org/10.1016/j.pepi.2008.05.017
  13. Zhang D., Jackson J. M., Zhao J. et al. Temperature of Earth's core constrained from melting of Fe and Fe0.9Ni0.1 at high pressures // Earth and Planetary Science Letters. 2016. V. 447. P. 72‒83. https://doi.org/10.1016/j.epsl.2016.04.026
  14. Решетняк М. Ю. Параметрическая тепловая модель эволюции Земли // Письма в астрономический журнал. 2021. Т. 47. С. 525–534. https://doi.org/10.31857/S032001082107007X
  15. Кирдяшкин А. Г., Добрецов Н. Л., Кирдяшкин А. А. Турбулентная конвекция и магнитное поле внешнего ядра Земли // Геология и геофизика. 2000. Т. 41. С. 601‒612.
  16. Котелкин В. Д., Лобковский Л. И. Общая теория Мясникова эволюции планет и современная термохимическая модель эволюции Земли // Физика Земли. 2007. С. 26‒44.
  17. Гореликов А. В., Ряховский А. В., Фокин А. С. Численное исследование некоторых нестационарных режимов естественной конвекции во вращающемся сферическом слое // Вычислительная механика сплошных сред. 2012. Т. 5. С. 184‒192. https://doi.org/10.7242/1999-6691/2012.5.2.22
  18. Jacobs J. A. The Earth's inner core // Nature. 1953. V. 172. P. 297‒298. https://doi.org/10.1038/172297a0
  19. Aranovich L. Y., Persikov E. S., Bukhtiyarov P. G., Bondarenko G. S. Interaction of Fe3C with Hydrogen: On the Compatibility of Carbon with Hydrogen in Metallic Iron // Petrology. 2021. V. 29. Р. 695–701. https://doi.org/10.1134/S0869591121060072
  20. Гершуни Г. З., Жуховицкий Е. М. Конвективная устойчивость несжимаемой жидкости. М.: Наука, 1972. 392 с.
  21. Pang G., Koper K. D., Wu S.-M. et al. Enhanced inner core fine-scale heterogeneity towards Earth’s centre // Nature. 2023. V. 620. P. 570‒575. https://doi.org/10.1038/s41586-023-06213-2
  22. Zotov L., Bizouard Ch., Sidorenkov N. et al. Multidecadal and 6-year variations of LOD // Journal of Physics: Conference Series (JPCS). 2020. 1705. 012002. IOP Proceedings of FAPM 2019 conference.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Temperature (T) and vorticity (Ω) in the core before crystallization begins.

Download (90KB)
3. Fig. 2. Successive stages of core crystallization from early (panel a) to late (panel m). The modern size of the solid core corresponds to panel i

Download (206KB)
4. Fig. 3. Temperature (T) and vorticity (Ω) in the liquid core of the modern configuration

Download (124KB)
5. Fig. 4. (left) – growth of the inner core ( , green), heat flow from the core to the mantle ( , blue) and average convection velocity ( , brown); (right) – average temperature profile in the core (solid red curve) compared to the adiabatic one according to [9] (dashed line)

Download (333KB)

Copyright (c) 2025 Russian Academy of Sciences