Characteristics of shear stratifies flows in the conditions of the sea of Japan shelf based on in-situ measurements in 2022

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The article presents some analysis results of in situ data of shear stratified flow measurements on the shelf of the Sea of Japan. The study of critical zones and layers is performed in terms of dimensionless Froude and Richardson parameters. It is shown that during the passage of high-intensity internal bores, sufficiently long (up to several hours) time intervals exist, which are characterized by a supercritical Froude regime, when active generation of short-period internal waves of large amplitude is predicted and occurs. The statistics of the Richardson number shows that with the lower probability estimate in the near-bottom layers during the observation period, the occurrence of shear instability is possible in 15% of cases, and its preservation is possible in 44% of cases.

Full Text

Restricted Access

About the authors

O. Е. Kurkina

R.E. Alekseev Nizhny Novgorod State Technical University

Email: aakurkin@nntu.ru
Russian Federation, Nizhny Novgorod

I. O. Yaroshchuk

V.I. Il’ichev Pacific Oceanological Institute, Far Eastern Branch, Russian Academy of Sciences

Email: aakurkin@nntu.ru
Russian Federation, Vladivostok

A. V. Kosheleva

V.I. Il’ichev Pacific Oceanological Institute, Far Eastern Branch, Russian Academy of Sciences

Email: aakurkin@nntu.ru
Russian Federation, Vladivostok

G. I. Dolgikh

V.I. Il’ichev Pacific Oceanological Institute, Far Eastern Branch, Russian Academy of Sciences

Email: aakurkin@nntu.ru

Academician of the RAS

Russian Federation, Vladivostok

E. N. Pelinovsky

V.I. Il’ichev Pacific Oceanological Institute, Far Eastern Branch, Russian Academy of Sciences; A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences

Email: aakurkin@nntu.ru
Russian Federation, Vladivostok; Nizhny Novgorod

A. A. Kurkin

R.E. Alekseev Nizhny Novgorod State Technical University; V.I. Il’ichev Pacific Oceanological Institute, Far Eastern Branch, Russian Academy of Sciences

Author for correspondence.
Email: aakurkin@nntu.ru
Russian Federation, Nizhny Novgorod; Vladivostok

References

  1. Кошелева А. В., Ярощук И. О., Швырев А. Н., Самченко А. Н., Пивоваров А. А., Коротченко Р. А. Экспериментальные исследования фоновых внутренних волн в прибрежной части залива Петра Великого // Физика геосфер. 2019. С. 110–113.
  2. Yaroshchuk I., Kosheleva A., Lazaryuk A., Dolgikh G., Pivovarov A., Samchenko A., Shvyrev A., Gulin O., Korotchenko R. Estimation of Seawater Hydrophysical Characteristics from Thermistor Strings and CTD Data in the Sea of Japan Shelf Zone // Journal of Marine Science and Engineering. 2023. V. 11(6). P. 1204. 1–24.
  3. Yaroshchuk I., Liapidevskii V., Kosheleva A., Dolgikh G., Pivovarov A., Samchenko A., Shvyrev A., Gulin O., Korotchenko R., Khrapchenkov F. Observation and Modeling of Nonlinear Internal Waves on the Sea of Japan Shelf // Journal of Marine Science and Engineering. 2024. V. 12(8). P 1301. 1–20.
  4. Степанянц Ю. А., Фабрикант А. Л. Распространение волн в сдвиговых гидродинамических течениях // Успехи физических наук. 1989. Т. 159. № 9. С. 83–123.
  5. Polzin K. Statistics of the Richardson number: Mixing models and finestructure // Journal of Physical Oceanography. 1996. V. 26(8). P. 1409–1425.
  6. Chang M. H. Marginal instability within internal solitary waves // Geophysical Research Letters. 2021. V. 48(9). P. e2021GL092616.
  7. Mayer F. T., Fringer O. B. An unambiguous definition of the Froude number for lee waves in the deep ocean // J. Fluid Mech. 2017. V. 831. P. R3. 1–9.
  8. Holloway P., Pelinovsky E., Talipova T., Barnes B. A nonlinear model of internal tide transformation on the Australian North West Shelf // J. Phys. Oceanogr. 1997. V. 27(6). P. 871–896.
  9. Kurkina O. E., Talipova T. G., Soomere T., Kurkin A. A., Rybin A. V. The impact of seasonal changes in stratification on the dynamics of internal waves in the sea of Okhotsk // Estonian Journal of Earth Sciences. 2017. V. 66(4). P. 238–255.
  10. Vlasenko V., Stashchuk N., Hutter K. Baroclinic tides: theoretical modeling and observational evidence. Cambridge University Press, 2005. 350 p.
  11. Kurkina O. E., Talipova T. G. Huge internal waves in the vicinity of the Spitsbergen Island (Barents Sea) // Nat. Hazards Earth Syst. Sci. 2011. V. 11. P. 981–986.
  12. Munk W., Anderson E. Notes on a theory of the thermocline // J. Mar. Res. 1948. V. 3. P. 267–295.
  13. Pacanowski R. C., Philander S. G. H. Parameterization of vertical mixing in numerical models of tropical oceans // J. Phys. Оcean. 1981. V. 11. P. 1443–1451.
  14. Redekopp L. G. Elements of instability theory for environmental flows //Environmental stratified flows. Boston, MA: Springer US. 2001. P. 223–281.
  15. Galperin B., Sukoriansky S., Anderson P. S. On the critical Richardson number in stably stratified turbulence // Atmospheric Science Letters. 2007. V. 8. P. 65–69.
  16. Морозов А. Н. Статистика чисел Ричардсона по данным наблюдений с океанографической платформы // Экологическая безопасность прибрежной и шельфовой зон моря. 2018. № 2. С. 39–46.
  17. Miles J. W. On the stability of heterogeneous shear flows // J. Fluid Mech. 1961. V. 10 (4). P. 496–508.
  18. Baines P. G. Topographic effects in stratified flows. Cambridge University Press, 1998. 498 p.
  19. Abarbanel H. D. I., Holm D. D., Marsden J. E., Ratiu T. Richardson number criterion for nonlinear stability of three-dimensional stratified flow // Physical Review Letters. 1984. V. 52. P. 2352–2355.
  20. American Meteorological Society, 2023: Critical Richardson number. Glossary of Meteorology, http://glossary.ametsoc.org/wiki/critical_Richarson_number

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Map of the measurement area indicating the stations of the hydrophysical testing ground of the Pacific Oceanological Institute of the Far Eastern Branch of the Russian Academy of Sciences

Download (1MB)
3. Fig. 2. Zonal and meridional velocity components measured at the INF station

Download (137KB)
4. Fig. 3. From top to bottom: phase velocity of long linear internal waves of the first mode, maximum velocity of stratified flow and Froude number for observation data at stations S06 and INF. The critical value of the Froude number Fr = 1 is shown in red dotted line in the lower panel.

Download (109KB)
5. Fig. 4. Gradient Richardson number Ri based on observations at stations S06 and INF. Critical values ​​Ri = 0.25 and Ri = 1 are shown by the red dotted line.

Download (265KB)
6. Fig. 5. Scatter diagram of N2 – Sh2 calculated from observations at stations S06 and INF. Critical values ​​Ri = 0.25 and Ri = 1 are shown by the red dotted and dashed-dotted lines, respectively.

Download (158KB)

Copyright (c) 2025 Russian Academy of Sciences