Submesoscale eddy structures of Lake Ladoga according to radar data of Sentinel-1 for the warm period 2019–2022
- Authors: Zimin A.V.1,2,3, Atadzhanova O.A.1,4, Blagodatskikh E.A.1,4, Konik A.A.1, Filatov N.N.1,2, Rodionov A.A.1,5
-
Affiliations:
- Shirshov Institute of Oceanology, Russian Academy of Sciences
- Northern Water Problems Institute, Karelian Research Centre
- St. Petersburg University
- Marine Hydrophysical Institute, Russian Academy of Sciences
- Saint-Petersburg Research Center, Russian Academy of Sciences
- Issue: Vol 514, No 2 (2024)
- Pages: 350-355
- Section: LAND WATERS PROBLEMS
- Submitted: 31.01.2025
- Published: 12.09.2024
- URL: https://snv63.ru/2686-7397/article/view/650097
- DOI: https://doi.org/10.31857/S2686739724020201
- ID: 650097
Cite item
Abstract
Summary of the results of the analysis of the spatiotemporal variability of sub-mesoscale eddy structures on the surface for Lake Ladoga from May to October 2019–2022 is conducted. The original data consists of over 1000 high-resolution Sentinel-1A/B images. It has been found that eddy structures are widely distributed during the warm period of the year in the lake’s basin. A total of 496 surface manifestations of eddies were recorded. The average diameter of the observed structures was 2 km. More than 90% of the recorded eddies belong to the sub-mesoscale variability range. Cyclonic rotation was observed in 84% of the structures. The seasonal maximum of eddy activity is observed during the development of stable stratification over most of Lake Ladoga. Eddies are most frequently encountered to the north and northeast of Valaam Island in areas with depths of around 100 meters, but in close proximity to the unevenness of the seabed. Eddy formations are often observed on the cold side of the frontal boundary during the existence of the spring thermocline, indicating their important contribution to water exchange and mixing processes.
Full Text

About the authors
A. V. Zimin
Shirshov Institute of Oceanology, Russian Academy of Sciences; Northern Water Problems Institute, Karelian Research Centre; St. Petersburg University
Author for correspondence.
Email: zimin2@mail.ru
Russian Federation, Moscow; Petrozavodsk; St. Petersburg
O. A. Atadzhanova
Shirshov Institute of Oceanology, Russian Academy of Sciences; Marine Hydrophysical Institute, Russian Academy of Sciences
Email: zimin2@mail.ru
Russian Federation, Moscow; Sevastopol
E. A. Blagodatskikh
Shirshov Institute of Oceanology, Russian Academy of Sciences; Marine Hydrophysical Institute, Russian Academy of Sciences
Email: zimin2@mail.ru
Russian Federation, Moscow; Sevastopol
A. A. Konik
Shirshov Institute of Oceanology, Russian Academy of Sciences
Email: zimin2@mail.ru
Russian Federation, Moscow
N. N. Filatov
Shirshov Institute of Oceanology, Russian Academy of Sciences; Northern Water Problems Institute, Karelian Research Centre
Email: zimin2@mail.ru
Corresponding Member of the RAS
Russian Federation, Moscow; PetrozavodskA. A. Rodionov
Shirshov Institute of Oceanology, Russian Academy of Sciences; Saint-Petersburg Research Center, Russian Academy of Sciences
Email: zimin2@mail.ru
Corresponding Member of the RAS
Russian Federation, Moscow; St. PetersburgReferences
- Филатов Н. Н. Гидродинамика озер. СПб.: Наука, 1991. 200 с.
- Филатов Н. Н. Состояние и перспективы исследований гидрофизических процессов и экосистем внутренних водоемов (обзор) // Фундаментальная и прикладная гидрофизика. 2019. Т. 12. № 1. С. 3–14. https://doi.org/10.7868/S2073667319010015.
- Hutter K., Wang Y., Chubarenko I. Physics of Lakes. Volume 2: Lakes as Oscillators. Springer Berlin, Heidelberg, 2011. 646 p. https://doi.org/10.1007/978-3-642-19112-1
- Монин А. С., Каменкович В. М., Корт В. Г. Изменчивость Мирового океана. Л.: Гидрометеоиздат, 1974. 362 с.
- Зимин А. В. Субприливные процессы и явления в Белом море. М.: ГЕОС, 2018. 220 с.
- Thomas L. N., Tandon A., Mahadevan A. Submesoscale processes and dynamics // Geophysical Monograph Series. 2008. V. 177. P. 17–38. https://doi.org/10.1029/177GM04
- Karimova S., Gade M. Improved statistics of submesoscale eddies in the Baltic Sea retrieved from SAR imagery // International Journal of Remote Sensing. 2016. V. 37. № 10. P. 2394–2414. https://doi.org/10.1080/01431161.2016.1145367
- Atadzhanova O. A., Zimin A. V. Analysis of the characteristics of the submesoscale eddy manifestations in the Barents, the Kara and the White Seas using satellite data // Fundamentalnaya i Prikladnaya Gidrofizika. 2019. V. 12. № 3. P. 36–45.
- Кондратьев К. Я., Филатов Н. Н., Зайцев Л. В., Зубенко А. В. Особенности динамики вод Ладожского озера по данным дистанционного зондирования // Доклады АН СССР. 1987. T. 293. № 5. C. 1224–1227.
- Кондратьев К. Я., Липатов В. В., Тихомиров А. И. Тонкая структура термобара // Доклады АН СССР. 1988. Т. 300. № 1. С. 216–219.
- Kondratyev K. Ya., Filatov N. N., Melentev V. V., et al. Limnology and Remote Sensing: A Contemporary Approach. London: Springer Science & Business Media, 1999. 406 p.
- Науменко М. А., Гузиватый В. В., Каретников С. Г., Петрова Т. Н., Протопопова Е. В., Крючков А. М. Натурный эксперимент “Термический фронт-Ладога-2010” // Доклады РАН. 2012. Т. 444. № 1. С. 83–87.
- Меншуткин В. В., Руховец Л. А., Филатов Н. Н. Моделирование экосистем пресноводных озер (обзор) 2. Модели экосистем пресноводных озер // Водные ресурсы. 2014. Т. 41. № 1. С. 24–38. https://doi.org/10.7868/S0321059614010088.
- Гузиватый В. В., Науменко М. А. Течения на поверхности Ладожского озера на основе последовательных ИК-спутниковых съемок // Современное состояние и проблемы антропогенной трансформации экосистемы Ладожского озера в условиях изменяющегося климата. М.: Российская академия наук, 2021. С. 232–243.
- Mckinney P., Holt B., Matsumoto K. Small eddies observed in Lake Superior using SAR and sea surface temperature data // Journal of Great Lakes Research. 2012. V. 38. P. 786–797. https://doi.org/10.1016/j.jglr.2012.09.023
- Kouraev A., Zakharova E., Rémy F., Kostianoy A., Shimaraev M., Hall N., Zdorovennov R., Suknev A. Giant ice rings on lakes and field observations of lens‐like eddies in the Middle Baikal (2016–2017) // Limnology and Oceanography. 2019. V. 64. P. 2738–2754. https://doi.org/10.1002/lno.11338
- Зырянов В. Н., Чебанова М. К., Зырянов Д. В. Каньонные вихри. Приложение теории топографических вихрей к феномену ледовых колец Байкала // Водные ресурсы. 2022. Т. 49. № 2. С. 132–141. https://doi.org/10.31857/S0321059622020195.
- Чубаренко И. П. Горизонтальная конвекция над подводными склонами. Калининград: Терра Балтика, 2010. 256 с.
Supplementary files
