The phase shift between the global surface temperature and the CO2 content in the atmosphere according to simulations with an ensemble of CMIP6 models

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The phase shifts between the global surface temperature T and the carbon dioxide content in the atmosphere q obtained in numerical experiments with models of the Earth climate system of the CMIP6 project (Coupled Models Intercomparison Project, phase 6) for the period 1850–2014 are analyzed. It was found that the sign of the phase shift between q and T depends not only on the analyzed time interval, but also on the method of processing the initial series. The initial q series (with a filtered annual cycle) leads in phase the corresponding T series for most models and time intervals. The first differences (inter-monthly increments) for the q series lag in phase the corresponding first differences for the T series by about 10 months with an adequate reproduction of the results obtained by analyzing observational data for recent decades. This means that such delay cannot be an argument against the generally accepted theory of global warming, which links the current increase in temperature with the dominant influence of anthropogenic greenhouse gas emissions into the atmosphere.

Texto integral

Acesso é fechado

Sobre autores

K. Muryshev

Lomonosov Moscow State University; Obukhov Institute of Atmospheric Physics Russian Academy of Sciences

Autor responsável pela correspondência
Email: kmuryshev@mail.ru
Rússia, Moscow; Moscow

A. Eliseev

Lomonosov Moscow State University; Obukhov Institute of Atmospheric Physics Russian Academy of Sciences; Marchuk Institute of Numerical Mathematics Russian Academy of Sciences; Kazan Federal University

Email: kmuryshev@mail.ru
Rússia, Moscow; Moscow; Moscow; Kazan

I. Mokhov

Lomonosov Moscow State University; Obukhov Institute of Atmospheric Physics Russian Academy of Sciences; Moscow Institute of Physics and Technology (State University)

Email: kmuryshev@mail.ru

Academician of the RAS

Rússia, Moscow; Moscow; Dolgoprudniy

A. Timazhev

Lomonosov Moscow State University

Email: kmuryshev@mail.ru
Rússia, Moscow

G. Klimovich

Lomonosov Moscow State University

Email: kmuryshev@mail.ru
Rússia, Moscow

Bibliografia

  1. Climate Change 2021: The Physical Science Basis. Working Group I contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change / V. Masson-Delmotte et al. (ed.). Cambridge Univ. Press., 2021. 2406 p.
  2. Humlum O., Stordahl K., Solheim J. E. The phase relation between atmospheric carbon dioxide and global temperature // Global and Planetary Change. 2013. V. 100. P. 51–69.
  3. Cox P., Jones C. Illuminating the Modern Dance of Climate and CO 2 // Science. 2008. V. 321. № 5896. P. 1642–1644.
  4. Monnin E., Indermohle A., Dallenbach A., Flockiger J., Stauffer B., Stocker T., Raynaud D., Barnola J.M. Atmospheric CO 2 concentrations over the last glacial termination // Science. 2001. V. 291. № 5501. P. 112–114.
  5. Мохов И.И., Безверхний В.А., Карпенко А.А. Диагностика взаимных изменений содержания парниковых газов и температурного режима атмосферы по палеореконструкциям для антарктической станции Восток // Изв. РAH. Физика aтмocфepы и oкeaнa. 2005. Т. 41. № 5. С. 579–592.
  6. Мохов И.И. Взаимные изменения температуры и содержания аэрозоля в атмосфере по данным антарктических ледовых кернов для последних 800 тысяч лет // Вестник Московского университета. Серия 3. Физика. Астрономия. 2023. Т. 78. № 3. 2330903.
  7. Мурышев К.Е., Елисеев А.В., Мохов И.И., Тимажев А.В. Взаимное запаздывание между изменениями температуры и содержания углекислого газа в атмосфере в простой совместной модели климата и углеродного цикла // ДАН. 2015. Т. 463. № 6. С. 708–712.
  8. Мурышев К.Е., Тимажев А.В., Дембицкая М.В. Взаимное запаздывание между изменениями глобальной температуры и содержания углекислого газа в атмосфере при непарниковом внешнем воздействии на климатическую систему // Фундаментальная и прикладная климатология. 2017. № 3. С. 84–102.
  9. Muryshev K.E., Eliseev A.V., Mokhov I.I., Timazhev A.V. Lead-lag relationships between global mean temperature and the atmospheric CO 2 content in dependence of the type and time scale of the forcing // Global and Planetary Change. 2017. V. 148. P. 29–41.
  10. Мурышев К.Е., Елисеев А.В., Денисов С.Н., Мохов И.И., Тимажев А.В., Аржанов М.М. Фазовый сдвиг между изменениями глобальной температуры и содержания СО2 в атмосфере при внешних эмиссиях парниковых газов в атмосферу // Изв. РАН. Физика атмосферы и океана. 2019. Т. 55. № 3. С. 11–19.
  11. Мурышев К.Е., Елисеев А.В., Мохов И.И., Тимажев А.В., Аржанов М.М., Денисов С.Н. Влияние нелинейных процессов на временной лаг между изменениями глобальной температуры и содержания углекислого газа в атмосфере // Доклады АН. 2021. Т. 501. № 1. С. 62–68.
  12. Ganopolski A., Roche D. On the nature of lead-lag relationships during glacial-interglacial climate transitions // Quaternary Science Reviews. 2009. V. 28. P. 3337–3361.
  13. Cox P.M., Betts R.A., Jones C.D., Spall S.A., Totterdell I.J. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model // Nature. 2000. V. 408. № 6809. Р. 184–187
  14. Dufresne J.-L., Friedlingstein P., Berthelot M., Bopp L., Ciais P., Fairhead L., Le Treut H., Monfray P. On the magnitude of positive feedback between future climate change and the carbon cycle. // Geophys. Res. Lett. 2002. V. 29. № 10. 1405.
  15. Елисеев А. В., Мохов И. И., Карпенко А. А. Вариации климата и углеродного цикла в XX-XXI веках в модели промежуточной сложности // Изв. РАН. Физика атмосферы и океана. 2007. T. 43. № 1. С. 3–17.
  16. Eliseev A. V., Mokhov I. I. Carbon cycle-climate feedback sensitivity to parameter changes of a zero-dimensional terrestrial carbon cycle scheme in a climate model of intermediate complexity // Theor. Appl. Climatol. 2007. V. 89. № 1–2. P. 9–24.
  17. Мохов И. И., Елисеев А. В. Моделирование глобальных климатических изменений в XX–XXIII веках при новых сценариях антропогенных воздействий RCP // ДАН. 2012. Т. 443. № 6. С. 732–736.
  18. Оппенгейм А., Шафер Р. Цифровая обработка сигналов. М.: Техносфера, 2006. 856 с.
  19. Arora V. K., Katavouta A., Williams R. G., Jones C. D., Brovkin V., Friedlingstein P., Schwinger J., Bopp L., Boucher O., Cadule P., Chamberlain M. A., Christian J. R., Delire C., Fisher R. A., Hajima T., Ilyina T., Joetzjer E., Kawamiya M., Koven C. D., Krasting J. P., Law R. M., Lawrence D. M., Lenton A., Lindsay K., Pongratz J., Raddatz T., Sèfèrian R., Tachiiri K., Tjiputra J. F., Wiltshire A., Wu T., Ziehn T. Carbon-concentration and carbon-climate feedbacks in CMIP6 models and their comparison to CMIP5 models // Biogeosciences. 2020. V. 17. № 16. P. 4173–4222.
  20. Елисеев А. В. Глобальный цикл CO 2 : основные процессы и взаимодействие с климатом // Фундаментальная и прикладная климатология. 2017. Т. 4. С. 9–31.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Correlation function between the T and q series with filtered annual variation, obtained in numerical calculations with the MPI-ESM1-2-LR model for the period 1850‒2014 under the esm-hist scenario.

Baixar (161KB)
3. Fig. 2. Lag statistics for the original series for global surface temperature T and atmospheric CO2 content q obtained in numerical experiments with CMIP6 models (positive values ​​– T is ahead of q, negative values ​​– q is ahead of T) under the esm-hist scenario for the time intervals 1850–2014 (light bars) and 1984–2014 (dark bars). The lines show the 99% uncertainty intervals.

Baixar (265KB)
4. Fig. 3. Lag statistics for the first difference series for global surface temperature T and atmospheric CO2 content q obtained in numerical experiments with CMIP6 models (positive values ​​– T is ahead of q, negative values ​​– q is ahead of T) under the esm-hist scenario for the time intervals 1850–2014 (light bars) and 1984–2014 (dark bars). The lines show the 95% and 99% uncertainty intervals.

Baixar (305KB)
5. Fig. 4. Series q’ (black lines) and T’ (gray lines) based on calculations with the MPI-ESM1-2-LR model under the esm-hist scenario for the period 1984–2014. The gradient fill marks episodes that demonstrate a lag in changes in q relative to changes in T.

Baixar (502KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024