The first discovery of the paleoproterozoic aillikite dykes in Sarmatia: geochemistry and petrogenesis

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The aillikite dykes of carbonate-biotite composition, intersecting the Paleoproterozoic banded iron formations, were discovered in the Kursk block of Sarmatia for the first time. Their age is 2.10–2.07 Ga. The aillikite dykes have undergone epidote-amphibolite facies metamorphism (550 °С, 2–3 kbar), they are deformed and fouled; primary magmatic olivine and pyroxene did not survive. Geochemically, the ultramafic lamprophyres of the Kursk block are close to the petrotypical aillikites. They have low SiO2 and Al2O3 concentrations, high MgO, TiO2, K2O, Cr, Ni, Nb and strongly fractionated LREE and HREE. According to available data, the aillikites and the Dubravinsky complex carbonatites could have been formed at different stages of melting of the uniform deep lithospheric source, which was enriched by lithophile elements shortly before the melting episode, possibly at the suprasubduction environment at ca. 2.1 Ga.

Толық мәтін

Рұқсат жабық

Авторлар туралы

K. Savko

Voronezh State University; Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: ksavko@geol.vsu.ru
Ресей, Voronezh; Moscow

A. Samsonov

Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry Russian Academy of Sciences

Email: ksavko@geol.vsu.ru

Corresponding Member of the RAS

Ресей, Moscow

S. Tsybulyaev

Voronezh State University

Email: ksavko@geol.vsu.ru
Ресей, Voronezh

N. Bazikov

Voronezh State University

Email: ksavko@geol.vsu.ru
Ресей, Voronezh

E. Korish

Voronezh State University

Email: ksavko@geol.vsu.ru
Ресей, Voronezh

R. Terentiev

Voronezh State University

Email: ksavko@geol.vsu.ru
Ресей, Voronezh

Әдебиет тізімі

  1. Голивкин Н. И. Интрузивные и метасоматические породы / Геология, гидрогеология и железные руды бассейна Курской магнитной аномалии. Т. 1. Кн. 1. Докембрий. М.: Недра, 1970. С. 386–421.
  2. Каргин А. В., Носова А. А., Постников А. В., Чугаевa А. В., Постникова О. В., Попова Л. П., Пошибаев В. В., Сазонова Л. В., Докучаев А. Я., Смирнова М. Д. Девонские ультрамафические лампрофиры Иркинеево-Чадобецкого прогиба юга-запада Сибирской платформы: возраст, состав и значение для прогноза алмазоносности // Геология рудных месторождений. 2016. Т. 58. № 5. С. 430–450.
  3. Кориш Е. Х., Савко К. А., Сальникова Е. Б., Самсонов А. В., Иванова А. А., Ларионов А. Н., Цыбуляев С. В. Палеопротерозойский диорит-гранодиоритовый магматизм Курского блока Сарматии: расшифровка сближенных во времени геологических событий // Труды Карельского научного центра РАН. 2022. № 5. С. 60–63.
  4. Савко К. А. Фазовые равновесия в породах палеопротерозойской железистой формации Лебединского месторождения Курской магнитной аномалии и петрогенезис щелочно-амфиболовых железистых кварцитов // Петрология. 2006. Т. 14. № 6. С. 621–642.
  5. Цыбуляев С. В., Савко К. А., Самсонов А. В., Кориш Е. Х. Палеопротерозойские вулканиты тимской свиты Курского блока Сарматии: возраст и геодинамическая обстановка // Доклады Академии Наук. 2020. Т. 495. № 1. С. 36–40.
  6. Цыбуляев С. В., Савко К. А., Самсонов А. В, Кориш Е. Х. Палеопротерозойские рифтогенные вулканиты OIB- и MORB-типа Курского блока восточной Сарматии: петрология и геодинамика // Петрология. 2021. Т. 29. № 2. С. 136–171.
  7. Ashchepkov I., Zhmodik S., Belyanin D., Kiseleva O. N., Medvedev N., Travin A., Yudin D., Karmanov N. S., Downes H. Aillikites and Alkali Ultramafic Lamprophyres of the Beloziminsky Alkaline Ultrabasic-Carbonatite Massif: Possible Origin and Relations with Ore Deposits // Minerals. 2020. V. 10. 404.
  8. Doroshkevich A. G., Chebotarev D. A., Sharygin V. V., Prokopyev I. R., Nikolenko A. M. Petrology of alkaline silicate rocks and carbonatites of the Chuktukon massif, Chadobets upland, Russia: Sources, evolution and relation to the Triassic Siberian LIP // Lithos. 2019. V. 332–333. P. 245–260.
  9. Foley S. F., Pinter Z. Primary melt compositions in the Earth’s mantle. In: Magmas Under Pressure; Elsevier Inc.: Amsterdam, The Netherlands, 2018. P. 3–42
  10. Goldstein S. J., Jacobsen S. B. Nd and Sr isotopic systematics of river water suspended material: implications for crustal evolution // Earth and Planetary Science Letters. 1988. V. 87. P. 249–265.
  11. Gudfinnsson G. H., Presnall D. C. Continuous gradations among primary carbonatitic, kimberlitic melilititic, basaltic, picritic, and komatiitic melts in equilibrium with garnet lherzolite at 3–8 GPa // Journal of Petrology. 2005. V. 46. P. 1645–1659.
  12. Krmíček L., Rao N. V. C. Lamprophyres, lamproites and related rocks as tracers to supercontinent cycles and metallogenesis // Geological Society, London, Special Publications. 2022. V. 513. P. 1–16.
  13. Nosova A. A., Kopylova M. G., Sazonova L. V., Vozniak A. A., Kargin A. V., Lebedeva N. M., Volkova G. D., Peresetskaya E. V. Petrology of lamprophyre dykes in the Kola Alkaline Carbonatite Province (N Europe) // Lithos. 2021. V. 398–399. 106277.
  14. Rock N. M. S. Lamprophyres. Blackie, Glasgow and London, 1991. 285 p.
  15. Pandey R., Pandey A., Chalapathi N. V. R., Belyatsky B., Choudhary A. K., Lehmann B., Pandit D., Dhote P. Petrogenesis of end-Cretaceous/Early Eocene lamprophyres from the Deccan Large Igneous Province: Constraints on plume-lithosphere interaction and the post-Deccan lithosphere-asthenosphere boundary (LAB) beneath NW India // Lithos. 2019. V. 346–347. 105139.
  16. Savko K. A., Samsonov A. V., Kotov A. B., Sal’nikova E. B., Korish E. H., Larionov A. N., Anisimova I. V., Bazikov N. S. The Early Precambrian Metamorphic Events in Eastern Sarmatia // Precambrian Research. 2018. V. 311. P. 1–23.
  17. Savko K. A., Samsonov A. V., Larionov A. N., Chervyakovskaya M. V., Korish E. H., Larionova Yu. O., Bazikov N. S., Tsybulyaev S. V. A buried Paleoarchean core of the Eastern Sarmatia, Kursk block: U-Pb, Lu-Hf and Sm-Nd isotope mapping and paleotectonic application // Precambrian Research. 2021. V. 353. 106021.
  18. Savko K. A., Samsonov A. V., Santosh M., Ovchinnikova M. Yu. Neoarchean-Palaeoproterozoic sedimentary basins in the Sarmatian Craton: global correlations and connections // Geological Journal. 2021. V. 56. № 9. P. 4479–4498.
  19. Savko K. A., Samsonov A. V., Salnikova E. B., Stifeeva M. V., Kuznetsov A. B., Kotov A. B., Larionova Yu. O., Korish E. H., Larionov A. N., Chervyakovskaya M. V., Tsybulyaev S. V., Bazikov N. S. Paleoproterozoic alkaline-carbonatite magmatism in the convergent tectonic setting: evidences from 2.07 Ga Dubravinsky complex in the Eastern Sarmatia // Precambrian Research. 2023. V. 395. 107153.
  20. Tappe S., Foley S. F., Jenner G. A., Heaman L. M., Kjarsgaard B. A., Romer R. L., Stracke A., Joyce N., Hoefs J. Genesis of ultramafic lamprophyres and carbonatites at Aillik Bay, Labrador: a consequence of incipient lithospheric thinning beneath the North Atlantic Craton // Journal of Petrology. 2006. V. 47. P. 1261–1315.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Schematic geological map of the Tim structure and the position of the ayllikite dikes with insets of the structural scheme of Eastern Sarmatia and the East European Craton.

Жүктеу (1MB)
3. Fig. 2. Ayllikit dikes in the Lebedinsky iron ore quarry: a, b – a series of thin dikes in the BIF (2.4–2.5 billion years); c – a deformed and sheared dike; d – adjacency of deformed BIF to the dike contact.

Жүктеу (3MB)
4. Fig. 3. Chondrite-normalized distribution of rare earth elements (a) and primitive mantle-normalized distribution of minor and rare elements (b) in the ayllikite dikes of the Kursk block.

Жүктеу (497KB)
5. Fig. 4. Compositions of ayllikites of the Kursk block of Sarmatia on the SiO2–(K2O+Na2O) diagram with fields of ultramafic and alkaline lamprophyres [14].

Жүктеу (334KB)

© Russian Academy of Sciences, 2024