Olivine megacrysts in alkali-basaltoid dikes of the Western Sangilen, Southeastern Tuva
- Authors: Izokh A.E.1, Egorova V.V.1, Shelepaev R.A.1, Shelepov Y.Y.1
-
Affiliations:
- Sobolev Institute of Geology and Mineralogy Siberian Branch Russian Academy of Sciences
- Issue: Vol 517, No 1 (2024)
- Pages: 78-84
- Section: PETROLOGY
- Submitted: 31.01.2025
- Published: 13.12.2024
- URL: https://snv63.ru/2686-7397/article/view/650004
- DOI: https://doi.org/10.31857/S2686739724070094
- ID: 650004
Cite item
Abstract
Large (up to 4 cm) crystals of euhedral olivine and its intergrowths with clinopyroxene were discovered in the alkali-basaltoid dikes of the Western Sangilen, South-Eastern Tuva. The composition of olivine (Mg# 81–83, NiO 0.2–0.3 wt. %) differs sharply from the composition of olivines from mantle and gabbroid parageneses. It is shown that olivine is a liquidus phase that crystallized from an alkali basaltic melt at pressures of 10–13 kbar in intermediate magma chambers located at depths of 34–43 km, which corresponds to the level of the crust-lithospheric mantle boundary for the Western Sangilen.
Full Text

About the authors
A. E. Izokh
Sobolev Institute of Geology and Mineralogy Siberian Branch Russian Academy of Sciences
Author for correspondence.
Email: izokh@igm.nsc.ru
Russian Federation, Novosibirsk
V. V. Egorova
Sobolev Institute of Geology and Mineralogy Siberian Branch Russian Academy of Sciences
Email: izokh@igm.nsc.ru
Russian Federation, Novosibirsk
R. A. Shelepaev
Sobolev Institute of Geology and Mineralogy Siberian Branch Russian Academy of Sciences
Email: izokh@igm.nsc.ru
Russian Federation, Novosibirsk
Ya. Yu. Shelepov
Sobolev Institute of Geology and Mineralogy Siberian Branch Russian Academy of Sciences
Email: izokh@igm.nsc.ru
Russian Federation, Novosibirsk
References
- Irving A. J., Frey A. F. Trace element abundances in megacrysts and their host basalts: Constraints on partition coefficients and megacryst genesis // Geochimica et Cosmochimica Acta. 1984. V. 48. № 6. P. 1201–1221.
- Dobosi G., Jenner G. A. Petrologic implications of trace element variation in clinopyroxene megacrysts from the Nograd volcanic province, North Hungary: a study by laser ablation microprobe-inductively coupled plasma-mass spectrometry // Lithos. 1999. V. 46. P. 731–749.
- Shaw C. S. J., Eyzaguirre J. Origin of megacrysts in the mafic alkaline lavas of the West Eifel Volcanic Field, Germany // Lithos. 2000. V. 50. P. 75–95.
- Akinin V. V., Sobolev A. V., Ntaflos T., Richter W. Clinopyroxene megacrysts from Enmelen melanephelinitic volcanoes (Chukchi Peninsula, Russia): application to composition and evolution of mantle melts // Contributions to Mineralogy and Petrology. 2005. V. 150. P. 85–101.
- Righter K., Carmichael I. S. E. Mega-xenocrysts in alkali olivine basalts: Fragments of disrupted mantle assemblages // American Mineralogist. 1993. V. 78. P. 1230–1245.
- Dobosi G., Downes H., Embey-Isztin A., Jenner G. A. Origin of megacrysts and pyroxenite xenoliths from the Pliocene alkali basalts of the Pannonian Basin (Hungary) // Neues Jahrbuch für Mineralogie. 2003. V. 178. P. 217–237.
- Liu Y.-D., Ying J.-F. Origin of clinopyroxene megacrysts in volcanic rocks from the North China Craton: a comparison study with megacrysts worldwide // International Geology Review. 2020. V. 62. № 15. P. 1845–1861.
- Изох А. Э., Смирнов С. З., Егорова В. В., Чанг Туан Ань, Ковязин С. В., Нго Тхи Фыонг, Калинина В. В. Условия образования сапфира и циркона в областях щелочно-базальтоидного вулканизма Центрального Вьетнама // Геология и геофизика. 2010. Т. 51. № 7. С. 925–943.
- Блюман Б. А. Дайковые комплексы щелочных базальтоидов Сангилена (Юго-Восточная Тува) // Доклады АН СССР. 1976. Т. 247. № 3. С. 672–674.
- Немцович В. М. Агардагский комплекс щелочных базальтоидов на юго-востоке Тувы // Доклады АН СССР. 1976. Т. 227. № 2. С. 442–444.
- Кепежинскас В. В., Кепежинскас П. К., Усова Л. В. Происхождение камптонитов агардагского дайкового комплекса нагорья Сангилен (Тува) // Геология и геофизика. 1984. № 4. С. 55–62.
- Панина Л. И., Михалева Л. А., Смирнов С. З., Моторина И. В., Поспелова Л. Н. Химизм минералов как следствие смешения расплавов // Геология и геофизика. 1994. Т. 35. № 1. С. 118–127
- Изох А. Э., Поляков Г. В., Мальковец В. Г., Шелепаев Р. А., Травин А. В., Литасов Ю. Д., Гибшер А. А. Позднеордовикский возраст камптонитов агардагского комплекса Юго-Восточной Тувы – свидетельство проявления плюмового магматизма при коллизионных процессах // ДАН. 2001. Т. 379. № 5. С. 511–514.
- Гибшер А. А, Мальковец В. Г., Травин А. В., Белоусова Е. А., Шарыгин В. В., Конц З. Возраст камптонитовых даек агардагского щелочно-базальтоидного комплекса Западного Сангилена на основании Аr/Аr и U/Pb датирования // Геология и геофизика. 2012. Т. 53. № 8. C. 998–1013.
- Egorova V. V., Volkova N. I., Shelepaev R. A., Izokh A. E. The lithosphere beneath the Sangilen Plateau, Siberia: evidence from peridotite, pyroxenite and gabbro xenoliths from alkaline basalts // Mineralogy and Petrology. 2006. V. 88. P. 419–441.
- Кепежинскас В. В. Кайнозойские щелочные базальтоиды Монголии и их глубинные включения. М.: Наука, 1979. 312 с.
- Шелепаев Р. А., Егорова В. В., Изох А. Э., Зельтманн Р. Коллизионный базитовый магматизм складчатого обрамления юга Сибири (Западный Сангилен, Юго-Восточная Тува) // Геология и геофизика. 2018. Т. 59. № 5. С. 653–672.
- Nimis P. Clinopyroxene geobarometry of magmatic rocks. Part 2. Structural geobarometers for basic to acid, tholeiitic and mildly alkaline magmatic systems // Contribution to Mineralogy and Petrology. 1999. V. 135. P. 62–74.
- Putirka K. D. Thermometers and Barometers for Volcanic Systems // Reviews in Mineralogy and Geochemistry. 2008. V. 69. P. 61–120.
- Irving A. J. Geochemical and high-pressure experimental studies of xenoliths, megacrysts and basalts from southeastern Australia. Ph.D. Thesis, Australian National University, Canberra 1971. 243 p.
Supplementary files
