Olivine megacrysts in alkali-basaltoid dikes of the Western Sangilen, Southeastern Tuva

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Large (up to 4 cm) crystals of euhedral olivine and its intergrowths with clinopyroxene were discovered in the alkali-basaltoid dikes of the Western Sangilen, South-Eastern Tuva. The composition of olivine (Mg# 81–83, NiO 0.2–0.3 wt. %) differs sharply from the composition of olivines from mantle and gabbroid parageneses. It is shown that olivine is a liquidus phase that crystallized from an alkali basaltic melt at pressures of 10–13 kbar in intermediate magma chambers located at depths of 34–43 km, which corresponds to the level of the crust-lithospheric mantle boundary for the Western Sangilen.

Full Text

Restricted Access

About the authors

A. E. Izokh

Sobolev Institute of Geology and Mineralogy Siberian Branch Russian Academy of Sciences

Author for correspondence.
Email: izokh@igm.nsc.ru
Russian Federation, Novosibirsk

V. V. Egorova

Sobolev Institute of Geology and Mineralogy Siberian Branch Russian Academy of Sciences

Email: izokh@igm.nsc.ru
Russian Federation, Novosibirsk

R. A. Shelepaev

Sobolev Institute of Geology and Mineralogy Siberian Branch Russian Academy of Sciences

Email: izokh@igm.nsc.ru
Russian Federation, Novosibirsk

Ya. Yu. Shelepov

Sobolev Institute of Geology and Mineralogy Siberian Branch Russian Academy of Sciences

Email: izokh@igm.nsc.ru
Russian Federation, Novosibirsk

References

  1. Irving A. J., Frey A. F. Trace element abundances in megacrysts and their host basalts: Constraints on partition coefficients and megacryst genesis // Geochimica et Cosmochimica Acta. 1984. V. 48. № 6. P. 1201–1221.
  2. Dobosi G., Jenner G. A. Petrologic implications of trace element variation in clinopyroxene megacrysts from the Nograd volcanic province, North Hungary: a study by laser ablation microprobe-inductively coupled plasma-mass spectrometry // Lithos. 1999. V. 46. P. 731–749.
  3. Shaw C. S. J., Eyzaguirre J. Origin of megacrysts in the mafic alkaline lavas of the West Eifel Volcanic Field, Germany // Lithos. 2000. V. 50. P. 75–95.
  4. Akinin V. V., Sobolev A. V., Ntaflos T., Richter W. Clinopyroxene megacrysts from Enmelen melanephelinitic volcanoes (Chukchi Peninsula, Russia): application to composition and evolution of mantle melts // Contributions to Mineralogy and Petrology. 2005. V. 150. P. 85–101.
  5. Righter K., Carmichael I. S. E. Mega-xenocrysts in alkali olivine basalts: Fragments of disrupted mantle assemblages // American Mineralogist. 1993. V. 78. P. 1230–1245.
  6. Dobosi G., Downes H., Embey-Isztin A., Jenner G. A. Origin of megacrysts and pyroxenite xenoliths from the Pliocene alkali basalts of the Pannonian Basin (Hungary) // Neues Jahrbuch für Mineralogie. 2003. V. 178. P. 217–237.
  7. Liu Y.-D., Ying J.-F. Origin of clinopyroxene megacrysts in volcanic rocks from the North China Craton: a comparison study with megacrysts worldwide // International Geology Review. 2020. V. 62. № 15. P. 1845–1861.
  8. Изох А. Э., Смирнов С. З., Егорова В. В., Чанг Туан Ань, Ковязин С. В., Нго Тхи Фыонг, Калинина В. В. Условия образования сапфира и циркона в областях щелочно-базальтоидного вулканизма Центрального Вьетнама // Геология и геофизика. 2010. Т. 51. № 7. С. 925–943.
  9. Блюман Б. А. Дайковые комплексы щелочных базальтоидов Сангилена (Юго-Восточная Тува) // Доклады АН СССР. 1976. Т. 247. № 3. С. 672–674.
  10. Немцович В. М. Агардагский комплекс щелочных базальтоидов на юго-востоке Тувы // Доклады АН СССР. 1976. Т. 227. № 2. С. 442–444.
  11. Кепежинскас В. В., Кепежинскас П. К., Усова Л. В. Происхождение камптонитов агардагского дайкового комплекса нагорья Сангилен (Тува) // Геология и геофизика. 1984. № 4. С. 55–62.
  12. Панина Л. И., Михалева Л. А., Смирнов С. З., Моторина И. В., Поспелова Л. Н. Химизм минералов как следствие смешения расплавов // Геология и геофизика. 1994. Т. 35. № 1. С. 118–127
  13. Изох А. Э., Поляков Г. В., Мальковец В. Г., Шелепаев Р. А., Травин А. В., Литасов Ю. Д., Гибшер А. А. Позднеордовикский возраст камптонитов агардагского комплекса Юго-Восточной Тувы – свидетельство проявления плюмового магматизма при коллизионных процессах // ДАН. 2001. Т. 379. № 5. С. 511–514.
  14. Гибшер А. А, Мальковец В. Г., Травин А. В., Белоусова Е. А., Шарыгин В. В., Конц З. Возраст камптонитовых даек агардагского щелочно-базальтоидного комплекса Западного Сангилена на основании Аr/Аr и U/Pb датирования // Геология и геофизика. 2012. Т. 53. № 8. C. 998–1013.
  15. Egorova V. V., Volkova N. I., Shelepaev R. A., Izokh A. E. The lithosphere beneath the Sangilen Plateau, Siberia: evidence from peridotite, pyroxenite and gabbro xenoliths from alkaline basalts // Mineralogy and Petrology. 2006. V. 88. P. 419–441.
  16. Кепежинскас В. В. Кайнозойские щелочные базальтоиды Монголии и их глубинные включения. М.: Наука, 1979. 312 с.
  17. Шелепаев Р. А., Егорова В. В., Изох А. Э., Зельтманн Р. Коллизионный базитовый магматизм складчатого обрамления юга Сибири (Западный Сангилен, Юго-Восточная Тува) // Геология и геофизика. 2018. Т. 59. № 5. С. 653–672.
  18. Nimis P. Clinopyroxene geobarometry of magmatic rocks. Part 2. Structural geobarometers for basic to acid, tholeiitic and mildly alkaline magmatic systems // Contribution to Mineralogy and Petrology. 1999. V. 135. P. 62–74.
  19. Putirka K. D. Thermometers and Barometers for Volcanic Systems // Reviews in Mineralogy and Geochemistry. 2008. V. 69. P. 61–120.
  20. Irving A. J. Geochemical and high-pressure experimental studies of xenoliths, megacrysts and basalts from southeastern Australia. Ph.D. Thesis, Australian National University, Canberra 1971. 243 p.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Scheme of arrangement of camptonite dikes of the Agardag complex of Western Sangilen (southeastern Tuva) according to [15]. 1 – Precambrian metamorphosed terrigenous-carbonate rocks of the Moren complex; 2 – Cambrian volcanogenic-sedimentary rocks; 3 – hyperbasites; 4 – gabbroids of the Pravotarlashkinsky and Bashkymugursky massifs; 5 – monzodiorites of the Bashkymugursky massif; 6 – Ordovician granitoids; 7 – dikes of camptonites of the Agardag complex, a dike with olivine megacrysts is shown as a large star; 8 – faults.

Download (214KB)
3. Fig. 2. Photograph of olivine (Ol) megacryst in camptonite (dike 5H). The crystal size is 3.5 cm in length, it has a clear crystallographic facet.

Download (124KB)
4. Fig. 3. Composition of olivines from the Agardag complex dikes: 1 – megacrysts; 2 – cores of olivine phenocrysts in camptonites; 3 – marginal parts of olivine phenocrysts in camptonites; 4 – intergrowths of clinopyroxene and olivine megacrysts; 5 – olivine xenocrysts; 6 – olivine from lherzolite xenoliths carried out by camptonite dikes; 7-8 – olivines from gabbroids: 7 – Pravotarlashkinsky massif, 8 – Bashkymugursky massif. Mg# = Mg*100/ (Mg+Fe), at.%.

Download (121KB)
5. Fig. 4. (a) Results of thermobarometric calculations according to [18, 19]: 1 – for clinopyroxene megacrysts, 2 – for clinopyroxene and olivine intergrowths; 3 – for gabbroid xenoliths from dikes of the Agardag complex according to [15], 4 – experimental data according to [20]. (b) Formation pressures and composition of clinopyroxenes of the megacryst association of alkali basaltoids from different regions: 1-2 – from camptonites of the Agardag complex: 1 – megacrysts, 2 – intergrowths with olivine; 3 – Mongolia; 4 – Vietnam; 5 – Kyrgyzstan.

Download (111KB)

Copyright (c) 2024 Russian Academy of Sciences