Features of isomorphism of post-spinel phases: result of computer simulation of the composition of inclusions in lower mantle diamonds
- Authors: Buchinskiy V.V.1, Marchenko E.I.1, Iskrina A.V.1,2, Eremin N.N.1, Bobrov A.V.1,2
-
Affiliations:
- Lomonosov Moscow State University
- D. S. Korzhinsky Institute of Experimental Mineralogy, Russian Academy of Sciences
- Issue: Vol 515, No 2 (2024)
- Pages: 252-257
- Section: MINERALOGY
- Submitted: 31.01.2025
- Published: 15.10.2024
- URL: https://snv63.ru/2686-7397/article/view/649948
- DOI: https://doi.org/10.31857/S2686739724040106
- ID: 649948
Cite item
Abstract
The mixing properties of solid solutions of post-spinel phases of the composition CaCr2O4–CaAl2O4, CaCr2O4–CaFe2O4, MgCr2O4–MgAl2O4 and MgCr2O4–MgFe2O4 in the temperature range 1873– 2223 K and pressures 18–25 GPa were studied using the method of semi-empirical modeling. With these PT parameters, the energies of formation of impurity defects of trivalent metal ions (aluminum and iron) in isomorphic sites were estimated. It is shown that (1) the studied binary solid solutions are characterized by complete miscibility, (2) the incorporation of the Fe3+ impurity ion into the post-spinel phases of MgCr2O4 and CaCr2O4 is less favorable in terms of energy than the incorporation of Al3+ ions over the entire range of pressures and temperatures under study. The results obtained were used to interpret the composition of post-spinel phases forming inclusions in lower mantle diamonds.
Keywords
About the authors
V. V. Buchinskiy
Lomonosov Moscow State University
Email: marchenko-ekaterina@bk.ru
Russian Federation, Moscow
E. I. Marchenko
Lomonosov Moscow State University
Author for correspondence.
Email: marchenko-ekaterina@bk.ru
Russian Federation, Moscow
A. V. Iskrina
Lomonosov Moscow State University; D. S. Korzhinsky Institute of Experimental Mineralogy, Russian Academy of Sciences
Email: marchenko-ekaterina@bk.ru
Russian Federation, Moscow; Chernogolovka, Moscow region
N. N. Eremin
Lomonosov Moscow State University
Email: marchenko-ekaterina@bk.ru
Corresponding Member of the RAS
Russian Federation, MoscowA. V. Bobrov
Lomonosov Moscow State University; D. S. Korzhinsky Institute of Experimental Mineralogy, Russian Academy of Sciences
Email: marchenko-ekaterina@bk.ru
Russian Federation, Moscow; Chernogolovka, Moscow region
References
- Искрина А.В., Бобров А.В., Спивак А.В. Постшпинелевые фазы в мантии Земли // Геохимия. 2022. Т. 67. № 4. С. 303–317.
- Decker B.F., Kasper J.S. The structure of calcium ferrite // Acta Crystallographica. 1957. No. 10, P. 332–337.
- Giesber H.G., Pennington W.T., Kolis J.W. Redetermination of CaMn2O4 // Acta Crystallographica Section C: Crystal Structure Communications. 2001. V. 57. P. 329–330.
- Rogge M.P., Caldwell J.H., Ingram D.R., Green C.E., Geselbracht M.J., Siegrist T. A New Synthetic Route to Pseudo-Brookite-Type CaTi2O4 // Journal of Solid State Chemistry. 1998. V. 141. P. 338–342.
- Kaminsky F.V. The Earth’s Lower Mantle: Composition and Structure // Springer Geology. 2017. P. 340.
- Kesson S.E., Fitz Gerald J.D., Shelley J.M. Mineral chemistry and density of subducted basaltic crust at lower mantle pressures // Nature. 1994. V. 372. P. 767–769.
- Walter M.J., Kohn S.C., Araujo D., Bulanova G.P., Smith C.B., Gaillou E., Wang J., Steele A., Shirey S.B. Deep mantle cycling of oceanic crust: Evidence from diamonds and their mineral inclusions // Science. 2011. V. 334. P. 54–57.
- Kaminsky F.V., Wirth R., Schreiber A. A Microinclusion of Lower-Mantle Rock and Other Minerals and Nitrogen Lower-Mantle Inclusions in a Diamond // Canadian Mineralogist // 2015. V. 53(1). P. 83–104.
- Akaogi M., et al. High Pressure Transitions in the System MgAl2O4-CaAl2O4: A New Hexagonal Aluminous Phase with Implication for the Lower Mantle // Physics of the Earth and Planetary Interiors. 1999. V. 115(1). P. 67–77.
- Andrault D., Bolfan-Casanova N. High-pressure phase transformations in the MgFe2O4 and Fe2O3-MgSiO3 system // Phys. Chem. Min. 2001. V. 28. P. 211–217.
- Merlini M., Hanfland M., Gemmi M., Huotari S., Simonelly L., Strobel P. Letter: Fe3+ spin transition in CaFe2O4 at high pressure // American Mineralogist. 2010. V. 95. No. 1. P. 200–203.
- Yamanaka, T., Uchida A., Nakamoto Y. Structural transition of post‐spinel phases CaMn2O4, CaFe2O4, and CaTi2O4 under high pressures up to 80 GPa // Am. Mineral. 2008. V. 93(11–12). P. 1874–1881.
- Zhai S., Yin Y., et al. High-Pressure X-Ray Diffraction and Raman Spectroscopy of CaFe2O4-Type β-CaCr2O4 // Physics and Chemistry of Minerals. 2016. V. 43(4). P. 307–14.
- Gale J.D., Rohl A.L. The General Utility Lattice Program (GULP) // Molecular Simulation. 2003. V. 29(5). P. 291–341.
- Pedone A., et al. A New Self-Consistent Empirical Interatomic Potential Model for Oxides, Silicates, and Silicas-Based Glasses // Journal of Physical Chemistry B. 2006. V. 110(24). P. 11780–95.
- Eremin N.N., Deyanov R.Z., Urusov V.S. Choice of the Supercell with the Optimum Atomic Configuration in Simulation of Disordered Solid Solutions // Glass Physics and Chemistry. 2008. V. 34(1). P. 9–18.
- Jain A., et al. Commentary: The Materials Project: A Materials Genome Approach to Accelerating Materials Innovation // APL Materials. 2013. V. 1(1).
Supplementary files
