SOME FEATURES OF THE PROCESS OF INTERACTION OF IRON WITH METHANE AT A TEMPERATURE OF 900°C AND A PRESSURE OF 100 MPA
- Authors: Aranovich L.Y.1,2, Persikov E.S.1, Bukhtiyarov P.G.1, Shaposhnikova O.Y.1, Nekrasov A.N.1
-
Affiliations:
- Institute of Experimental Mineralogy of the Russian Academy of Sciences
- Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry of the Russian Academy of Sciences
- Issue: Vol 512, No 1 (2023)
- Pages: 60-65
- Section: GEOCHEMISTRY
- Submitted: 30.01.2025
- Published: 01.09.2023
- URL: https://snv63.ru/2686-7397/article/view/649830
- DOI: https://doi.org/10.31857/S2686739723600996
- EDN: https://elibrary.ru/IODSLJ
- ID: 649830
Cite item
Abstract
Using the original high-gas pressure unit (IHPV), experiments were conducted for the first time on the interaction of iron with methane at a temperature of 900°C and a pressure of 100 MPa. Complex methods (microprobe, Raman spectroscopy, chromatography, mass balance calculations) are used for a thorough analysis of fluid compositions and metallic phases formed in experiments. For the first time, experimental and theoretical quantitative data on the composition of the fluid and the composition of the fluid components dissolved in the metal were obtained. Unlike the previously studied Fe3C–H2 system, in experiments, when Fe reacts with methane, there is an active interaction of carbon formed due to the pyrolysis of methane with iron up to the synthesis of Fe3C carbide. The experiments have shown that increasing pressure inhibits significantly hydrogen yield during methane conversion on metallic iron. Carbon saturation of iron with the formation of Fe3C is not complete within the entire volume of the metal during 24 h runs at 900°С. Employing molybdenum containers facilitates CH4 decomposition.
Keywords
About the authors
L. Ya. Aranovich
Institute of Experimental Mineralogy of the Russian Academy of Sciences; Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry of the Russian Academy of Sciences
Email: olga_geolog@mail.ru
Russian, Chernogolovka; Russian,
Moscow
E. S. Persikov
Institute of Experimental Mineralogy of the Russian Academy of Sciences
Email: olga_geolog@mail.ru
Russian, Chernogolovka
P. G. Bukhtiyarov
Institute of Experimental Mineralogy of the Russian Academy of Sciences
Email: olga_geolog@mail.ru
Russian, Chernogolovka
O. Y. Shaposhnikova
Institute of Experimental Mineralogy of the Russian Academy of Sciences
Author for correspondence.
Email: olga_geolog@mail.ru
Russian, Chernogolovka
A. N. Nekrasov
Institute of Experimental Mineralogy of the Russian Academy of Sciences
Email: olga_geolog@mail.ru
Russian, Chernogolovka
References
- Wood B.J. Hydrogen: an important constituent of the core? // Science. 1997. V. 278. P. 1727.
- Маракушев А.А., Маракушев С.А. Происхождение и флюидная эволюция Земли // Пространство и Время. 2010. Т. 1. С. 98–118.
- Sweeney R. The role of hydrogen in geological processes in the Earth’s interior // Solid State Ionics. 1997. V. 97. P. 393–97.
- Williams Q., Hemley R.J. Hydrogen in the deep earth // Annual Review of Earth and Planetary Sciences. 2001. V. 29. P. 365–418.
- Narygina O., Dubrovinsky L.S., McCammon C.A., et al. X-ray diffraction and Mössbauer spectroscopy study of fcc iron hydride FeH at high pressures and implications for the composition of the Earth’s core // Earth and Planetary Science Letters. 2011. V. 307. P. 409–414.
- Morard G., Andrault D., Antonangeli D., et al. Fe–FeO and Fe–Fe3C melting relations at Earth’s core–mantle boundary conditions: Implications for a volatile-rich or oxygen-rich core // Earth and Planetary Science Letters. 2017. V. 473. P. 94–103.
- Litasov K.D., Shatskiy A.F., Ohtani E. Interaction of Fe and Fe3C with hydrogen and nitrogen at 6–20 GPa: a study by in situ X-Ray diffraction // Geochemistry International. 2016. V. 54. P. 914–921.
- Aranovich L.Y., Persikov E.S., Bukhtiyarov P.G., et al. Interaction of Fe3C with hydrogen: On compatibility of carbon with hydrogen in metallic Fe // Petrology. 2021. V. 29 (6). P. 696–702.
- Henghui Wang, Guangqiang Li, Jianghua Ma, Dong Zhao. The effect of methane decomposition on the formation and magnetic properties of iron carbide prepared from oolitic hematite // RSC Adv. 2017. 7. 3921–3927. https://doi.org/10.1039/C6RA26166C
- Галактионова Н.В. Водород в металлах. Москва: Металлургия. 1967. 303 с.
- Sugimoto H., Fukai Y. Solubility of hydrogen in metals under high hydrogen pressures: thermodynamical calculations // Acta Metallurgica et Materialia. 1992. V. 40 (9). P. 2327–2336.
- Олейников Б.В., Округин А.В., Томшин М.Д. и др. Самородное металлообразование в платформенных базитах. Якутск: ЯФ СО АН СССР. 1985. 124 с.
- Churakov S.V., Gottschalk M. Perturbation theory based equation of state for polar molecular fluids: i. pure fluids // Geochim. Cosmochim. Acta. 2003. V. 67. P. 2397–2414.
- Аранович Л.Я. Флюидно-минеральные равновесия и термодинамические свойства смешения флюидных систем // Петрология. 2013. Т. 21. С. 588–599.
Supplementary files
