Effect of titanium silicate mineral natisite on gas transport properties of copolyimide P84

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The development of membrane processes requires new materials for the production of highly efficient membranes. In this work, a composite based on P84 copolyimide with the additives of a new modifier of the titanosilicate mineral natisite was created. For this purpose, natisite was synthesized and identified. The P84/natisite composite (5 wt.%) prepared in a DMF solution was used to obtain a dense membrane. The features of the physicochemical, mechanical and gas transport properties of the P84/natisite membrane were studied in comparison with the P84 membrane. Transport properties were estimated by the permeability of He, O2, N2 and CO2 through the membranes. The value of gas permeability through the membranes made of the composite is lower compared to pure P84, and the selectivity of the separation of gas pairs H2/N2, CO2/N2 and O2/N2 is improved due to the inclusion of the natisite modifier. It has been shown that the introduction of 5 wt.% natisite additives does not have a significant effect on the physical and mechanical properties of the P84/natisite (5%) membrane, which meet the industrial requirements.

About the authors

A. E. Mukhin

Federal State Budgetary Educational Institution of Higher Education St. Petersburg State University

Email: a.pulyalina@spbu.ru

Institute of Chemistry

Russian Federation, St. Petersburg, 198504

G. A. Polotskaya

Federal State Budgetary Institution B.P.Konstantinov St. Petersburg Institute of Nuclear Physics of the Kurchatov Institute National Research Center

Email: a.pulyalina@spbu.ru

Institute of High Molecular Compounds

Russian Federation, St. Petersburg 199004

E. B. Ladanova

Federal State Budgetary Educational Institution of Higher Education St. Petersburg State University

Email: a.pulyalina@spbu.ru

Institute of Chemistry

Russian Federation, St. Petersburg, 198504

I. S. Kuryndin

Federal State Budgetary Institution B.P.Konstantinov St. Petersburg Institute of Nuclear Physics of the Kurchatov Institute National Research Center

Email: a.pulyalina@spbu.ru

Institute of High Molecular Compounds

Russian Federation, St. Petersburg 199004

V. N. Yakovenchuk

Kola Scientific Center of the Russian Academy of Sciences

Email: a.pulyalina@spbu.ru

Center for Nanomaterial Science, Geological Institute

Russian Federation, Apatity, 184209

G. O. Kalashnikova

Kola Scientific Center of the Russian Academy of Sciences

Email: a.pulyalina@spbu.ru

Center for Nanomaterial Science

Russian Federation, Apatity, 184209

A. Y. Pulyalina

Federal State Budgetary Educational Institution of Higher Education St. Petersburg State University; Kola Scientific Center of the Russian Academy of Sciences

Author for correspondence.
Email: a.pulyalina@spbu.ru

Institute of Chemistry, Center for Nanomaterial Science

Russian Federation, St. Petersburg, 198504; Apatity, 184209

References

  1. Baker R.W. // Membrane Technology and Applications, third ed., John Wiley & Sons, Ltd., 2012.
  2. Nunes S.P., Culfaz-Emecen P.Z., Ramon G.Z., Visser T., Koops G.H., Jin W. Ulbricht M. Thinking the future of membranes: Perspectives for advanced and new membrane materials and manufacturing processes // Membr.Sci. 2020. 598. 117761.
  3. Соколов С.Е., Грушевенко Е.А., Волков В.В., Борисов И.Л., Маркова С.Ю., Шалыгин М.Г., Волков А.В. Композиционная мембрана из полидецилметилсилоксана для разделения смесей углеводородов при пониженных температурах // Мембраны и мембранные технологии. 2022. Т. 12. № 6. С. 430–437.
  4. Сырцова Д.А., Алентьев А.Ю., Чирков С.В., Безгин Д.А., Никифоров Р.Ю., Левин И.С., Белов Н.А. Метод жидкофазного фторирования полимеров как способ увеличения селективности разделения O2/N2 // Мембраны и мембранные технологии. 2023. Т. 13. № 1. С. 42–55.
  5. Жмакин В.В., Маркова С.Ю., Тепляков В.В., Шалыгин М.Г. Перспектива полимерных мембран для рекуперации ксенона из сбросных медицинских газовых смесей // Мембраны и мембранные технологии. 2023. Т. 13. № 2. С. 128–136.
  6. Алентьев А.Ю., Никифоров Р.Ю., Левин И.С., Царев Д.А., Рыжих В.Е., Сырцова Д.А., Белов Н.А. Газотранспортные свойства сополимеров винилиденфторида и тетрафторэтилена // Мембраны и мембранные технологии. 2023. Т. 13. № 6. С. 494–504.
  7. Ismail A.F., Chandra Khulbe K. Matsuura T. Gas Separation Membranes: Polymeric and Inorganic. (1st Ed.). 2015. Springer International Publishing: Imprint: Springer, Cham, 2015
  8. Алентьев А.Ю., Рыжих В.Е., Сырцова Д.А., Белов Н.А. Полимерные материалы для решения актуальных задач мембранного газоразделения // Успехи химии. 2023. Т. 92(6) RCR 5083.]
  9. Polotskaya G.A., Penkova A. V., Toikka A. M., Pientka Z., Brozova L., Bleha M. // Transport of small molecules through polyphenylene oxide membranes modified by fullerene. Sep. Sci. Techn.. 2007. V. 42 (2). P. 333–347.
  10. Polotskaya G.A., Avagimova N.V., Toikka A.M., Tsvetkov N.V., Lezov A.A., Strelina I.A., Gofman I.V., Pientka Z. Optical, Mechanical, and Transport Studies of Nanodiamonds // Poly(Phenylene Oxide) Composites. Polymer Composites. 2017.
  11. Khan R., Liu W.-M., Haq I.U., Zhen H.-G., Mao H., Zhao Z.-P. Fabrication of highly selective PEBA mixed matrix membranes by incorporating metal-organic framework MIL-53 (Al) // J. Membr. Sci. 2023. P. 686.
  12. Liang J., Li J., Li X., Liu K., Wu L., Shan G. The sorption behavior of CHA-type zeolite for removing radioactive strontium from aqueous solutions // Separ. Purif. Technol. 230 (2020) 115874.
  13. Dyer A., Las T., Zubair M. The use of natural zeolites for radioactive waste treatment: studies on leaching from zeolite/cement composites // J. Radioanal. Nucl. Chem. 243 (2000). P. 839–841.
  14. Guo X., Zhang P., Navrotsky A. The thermodynamics of gas absorption and guest induced flexibility in zeolite Y. // Microporous Mesoporous Mater. 294 (2020) 109893.
  15. Qiang Z., Shen X., Guo M., Cheng F., Zhang M. A simple hydrothermal synthesis of zeolite X from bauxite tailings for highly efficient adsorbing CO2 at room temperature // Microporous Mesoporous Mater. 287 (2019). P. 77–84.
  16. Moorea Eli K., Ostrovekkhova A., Hummer D., Morrison S., Peralta Y., Spielman S.J. The influence of oxygen and electronegativity on iron mineral chemistry throughout Earth’s history // Precambrian Research. 2023. V. 386.
  17. Pekov V., Zubkova N.V., Chukanov N.V., Yapaskurt V.O., Turchkova A.G., Ksenofontov D.A., Pushcharovsky D.Yu. Natisite, Na2TiSiO5, an Indicator Mineral of Hyperagpaitic Hydrothermal Assemblages in the Lovozero and Khibiny Alkaline Plutons, Kola Peninsula: Occurrence, Crystal Chemistry, and Genetic Features // Geology of Ore Deposits. 2023. V. 62. P. 452–469.
  18. Kalashnikova G.O., Zhitova E.S., Selivanova E.A., Pakhomovsky Ya.A., Yakovenchuk V.N. et al. The new method for obtaining titanosilicate AM-4 and its decationated form: Crystal chemistry, properties and advanced areas of application. Microporous and Mesoporous Materials. 2021. 313.
  19. Pushcharovsky D., Ivanov-Schitz A. Structural Principles of Ion-Conducting Mineral-like Crystals with Tetrahedral, Octahedral, and Mixed Frameworks // Minerals. 2024. V. 14 (8). 770.
  20. Waskowska A., Gerward L., Olsen J.S., Sieradzki A., Morgenroth W. Na2TiGeO5: Crystal structure stability at low temperature and high pressure // J. of Physics and Chemistry of Solids. 2008. V. 69. P. 815–821.
  21. Pulyalina A., Grekov K., Tataurova V., Senchukova A., Novikov A., Faykov I., Polotskaya G. Effect of Ionic liquid on formation of copolyimide ultrafiltration membranes with improved rejection of La3+ // Scientific Reports. 2022. V. 12.
  22. White L.S. Transport properties of a polyimide solvent resistant nanofiltration membrane // J. Membr. 2002. 191.
  23. Liu R., Qiao X., Chung T.S. The development of high performance P84 co-polyimide hollow fibers for pervaporation dehydration of isopropanol. Chem. Eng. Sci. 2005. 60, 6674.
  24. Barsema J.N., Kapantaidakis G.C., van der Vegt N.F.A., Koops G.H, Wessling M. Preparation and characterization of highly selective dense and hollow fiber asymmetric membranes based on BTDA-TDI/MDI co-polyimide // J. Membr. 2003. 195.
  25. Hill A.J., Hannink R.H.J. Nanostructure Control of Materials, CRC Press, Boca Raton. 2006.
  26. White J.L., James L., Kim K.J., Thermoplastic and Rubber Compounds: Technology and Physical Chemistry // Carl Hanser Publishers. 2008.
  27. Boyer R.F. Physical properties of molecular crystals, liquids and glasses // J. Polym. Sci. Part A-1 Polym. Chem. 1969. 7. 2466–2466.
  28. Zhang H., Wang S., Weber S.G. Morphology and free volume of nanocomposite Teflon AF 2400 films and their relationship to transport behavior // J. Memb. Sci. 2013.V. 443 P. 115–123.
  29. Faykov I., Polotskaya G., Kuryndin I., Zoolshoev Z., Saprykina N., Tian N., Sorokina A., Pulyalina A. The effect of complex modifier consisting of star macromolecules and ionic liquid on structure and gas separation of polyamide membrane // Membranes. 2023. 13, P. 516.
  30. Chukanov N.V. Infrared spectra of mineral species: Extended library // Springer Geochemistry/Mineralogy, Springer Science+Business Media Dordrecht. 2014. P. 1726.
  31. Pulyalina A., Polotskaya G., Rostovtseva V., Pientka Z., Toikka A. Improved hydrogen separation using hybrid membrane composed of nanodiamonds and P84 copolyimide // Polymers. 2018. 10 (8), P. 828.
  32. Alentiev A.Yu., Ryzhikh V.E., Syrtsova D.A., Belov N.A. Polymer materials for solving actual problems of membrane gas separation // Russ. Chem. Rev. 2023. 92 (6), RCR5083.
  33. Robeson L.M. // J. Membr. Sci. 1991. V.62. P. 165.
  34. Robeson L.M. The upper bound revisited // J. Membr. 2008. 320. P. 390–400.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences