Drug Repositioning for Ovarian Cancer Treatment: An Update


Дәйексөз келтіру

Толық мәтін

Аннотация

Ovarian cancer (OC) is one of the most prevalent malignancies in female reproductive organs, and its 5-year survival is below 45%. Despite the advances in surgical and chemotherapeutic options, OC treatment is still a challenge, and new anticancer agents are urgently needed. Drug repositioning has gained significant attention in drug discovery, representing a smart way to identify new clinical applications for drugs whose human safety and pharmacokinetics have already been established, with great time and cost savings in pharmaceutical development endeavors. This review offers an update on the most promising drugs repurposable for OC treatment and/or prevention.

Авторлар туралы

Maria Cavalluzzi

Department of Pharmacy — Drug Sciences, University of Bari Aldo Moro

Хат алмасуға жауапты Автор.
Email: info@benthamscience.net

Maurizio Viale

UOC Biotherapy, IRCCS San Martino Hospital

Email: info@benthamscience.net

Natalie Rotondo

Pharmacy - Drug Sciences, University of Bari Aldo Moro

Email: info@benthamscience.net

Valeria Ferraro

Department of Pharmacy — Drug Sciences, University of Bari Aldo Moro

Email: info@benthamscience.net

Giovanni Lentini

Department of Pharmacy — Drug Sciences, University of Bari Aldo Moro

Email: info@benthamscience.net

Әдебиет тізімі

  1. Stewart, C.; Ralyea, C.; Lockwood, S. Ovarian cancer: An integrated review. Semin. Oncol. Nurs., 2019, 35(2), 151-156. doi: 10.1016/j.soncn.2019.02.001 PMID: 30867104
  2. Cheng, Y.H.; Wang, C.H.; Hsu, K.F.; Lee, G.B. Integrated microfluidic system for cell-free DNA extraction from plasma for mutant gene detection and quantification. Anal. Chem., 2022, 94(10), 4311-4318. doi: 10.1021/acs.analchem.1c04988 PMID: 35235296
  3. Webb, P.M.; Jordan, S.J. Epidemiology of epithelial ovarian cancer. Best Pract. Res. Clin. Obstet. Gynaecol., 2017, 41, 3-14. doi: 10.1016/j.bpobgyn.2016.08.006 PMID: 27743768
  4. Devouassoux-Shisheboran, M.; Genestie, C.; Ray-Coquard, I. Dualistic classification of epithelial ovarian cancer: Is it clinically relevant? Bull. Cancer, 2016, 103(3), 252-258. doi: 10.1016/j.bulcan.2015.12.005 PMID: 26853278
  5. McCluggage, W.G.; Singh, N.; Gilks, C.B. Key changes to the World Health Organization (WHO) classification of female genital tumours introduced in the 5th edition (2020). Histopathology, 2022, 80, 762-778.
  6. Liu, H.; Xu, Y.; Ji, J.; Dong, R.; Qiu, H.; Dai, X. Prognosis of ovarian clear cell cancer compared with other epithelial cancer types: A population-based analysis. Oncol. Lett., 2020, 19(3), 1947-1957. doi: 10.3892/ol.2020.11252 PMID: 32194689
  7. Lee, J.M.; Minasian, L.; Kohn, E.C. New strategies in ovarian cancer treatment. Cancer, 2019, 125(S24), 4623-4629. doi: 10.1002/cncr.32544 PMID: 31967682
  8. Gonzalez-Fierro, A.; Dueñas-González, A. Drug repurposing for cancer therapy, easier said than done. Semin. Cancer Biol., 2021, 68, 123-131. doi: 10.1016/j.semcancer.2019.12.012 PMID: 31877340
  9. Chong, C.R.; Sullivan, D.J., Jr New uses for old drugs. Nature, 2007, 448(7154), 645-646. doi: 10.1038/448645a PMID: 17687303
  10. Parvathaneni, V.; Kulkarni, N.S.; Muth, A.; Gupta, V. Drug repurposing: A promising tool to accelerate the drug discovery process. Drug Discov. Today, 2019, 24(10), 2076-2085. doi: 10.1016/j.drudis.2019.06.014 PMID: 31238113
  11. Nunes, M.; Henriques, A.M.; Bartosch, C.; Ricardo, S. Recycling the purpose of old drugs to treat ovarian cancer. Int. J. Mol. Sci., 2020, 21(20), 7768. doi: 10.3390/ijms21207768 PMID: 33092251
  12. Kobayashi, Y.; Banno, K.; Kunitomi, H.; Tominaga, E.; Aoki, D. Current state and outlook for drug repositioning anticipated in the field of ovarian cancer. J. Gynecol. Oncol., 2019, 30(1), e10. doi: 10.3802/jgo.2019.30.e10 PMID: 30479094
  13. Warburg, O. The metabolism of carcinoma cells. J. Cancer Res., 1925, 9(1), 148-163. doi: 10.1158/jcr.1925.148
  14. Li, W.; Zhang, X.; Sang, H.; Zhou, Y.; Shang, C.; Wang, Y.; Zhu, H. Effects of hyperglycemia on the progression of tumor diseases. J. Exp. Clin. Cancer Res., 2019, 38(1), 327. doi: 10.1186/s13046-019-1309-6 PMID: 31337431
  15. Shahid, R.K.; Ahmed, S.; Le, D.; Yadav, S. Diabetes and cancer: Risk, challenges, management and outcomes. Cancers, 2021, 13(22), 5735. doi: 10.3390/cancers13225735 PMID: 34830886
  16. Karimi, F.; Dinarvand, N.; Sabaghan, M.; Azadbakht, O.; Ataee, S.; Kharazinejad, E.; Moazamfard, M. Diabetes and ovarian cancer: Risk factors, molecular mechanisms and impact on prognosis. Endocrine, 2023. doi: 10.1007/s12020-023-03477-6 PMID: 37552417
  17. Nasri, H.; Rafieian-Kopaei, M. Metformin: Current knowledge. J. Res. Med. Sci., 2014, 19(7), 658-664. PMID: 25364368
  18. Evans, J.M.M.; Donnelly, L.A.; Emslie-Smith, A.M.; Alessi, D.R.; Morris, A.D. Metformin and reduced risk of cancer in diabetic patients. BMJ, 2005, 330(7503), 1304-1305. doi: 10.1136/bmj.38415.708634.F7 PMID: 15849206
  19. Wheaton, W.W.; Weinberg, S.E.; Hamanaka, R.B.; Soberanes, S.; Sullivan, L.B.; Anso, E.; Glasauer, A.; Dufour, E.; Mutlu, G.M.; Budigner, G.R.S.; Chandel, N.S. Metformin inhibits mitochondrial complex I of cancer cells to reduce tumorigenesis. eLife, 2014, 3, e02242. doi: 10.7554/eLife.02242 PMID: 24843020
  20. Adekola, K.; Rosen, S.T.; Shanmugam, M. Glucose transporters in cancer metabolism. Curr. Opin. Oncol., 2012, 24(6), 650-654. doi: 10.1097/CCO.0b013e328356da72 PMID: 22913968
  21. Li, L.; Wang, L.; Li, J.; Fan, Z.; Yang, L.; Zhang, Z.; Zhang, C.; Yue, D.; Qin, G.; Zhang, T.; Li, F.; Chen, X.; Ping, Y.; Wang, D.; Gao, Q.; He, Q.; Huang, L.; Li, H.; Huang, J.; Zhao, X.; Xue, W.; Sun, Z.; Lu, J.; Yu, J.J.; Zhao, J.; Zhang, B.; Zhang, Y. Metformin-induced reduction of CD39 and CD73 blocks myeloid-derived suppressor cell activity in patients with ovarian cancer. Cancer Res., 2018, 78(7), 1779-1791. doi: 10.1158/0008-5472.CAN-17-2460 PMID: 29374065
  22. Shank, J.J.; Yang, K.; Ghannam, J.; Cabrera, L.; Johnston, C.J.; Reynolds, R.K.; Buckanovich, R.J. Metformin targets ovarian cancer stem cells in vitro and in vivo. Gynecol. Oncol., 2012, 127(2), 390-397. doi: 10.1016/j.ygyno.2012.07.115 PMID: 22864111
  23. Brown, J.R.; Chan, D.K.; Shank, J.J.; Griffith, K.A.; Fan, H.; Szulawski, R.; Yang, K.; Reynolds, R.K.; Johnston, C.; McLean, K.; Uppal, S.; Liu, J.R.; Cabrera, L.; Taylor, S.E.; Orr, B.C.; Modugno, F.; Mehta, P.; Bregenzer, M.; Mehta, G.; Shen, H.; Coffman, L.; Buckanovich, R.J. Phase II clinical trial of metformin as a cancer stem cell-targeting agent in ovarian cancer. JCI Insight, 2020, 5(11), e133247. doi: 10.1172/jci.insight.133247 PMID: 32369446
  24. Xie, Y.; Peng, Z.; Shi, M.; Ji, M.; Guo, H.; Shi, H. Metformin combined with p38 MAPK inhibitor improves cisplatin sensitivity in cisplatin-resistant ovarian cancer. Mol. Med. Rep., 2014, 10(5), 2346-2350. doi: 10.3892/mmr.2014.2490 PMID: 25118792
  25. Du, J.; Shi, H.; Ren, F.; Wang, J.; Wu, Q.; Li, X.; Zhang, R. Inhibition of the IGF signaling pathway reverses cisplatin resistance in ovarian cancer cells. BMC Cancer, 2017, 17(1), 851. doi: 10.1186/s12885-017-3840-1 PMID: 29241458
  26. Liu, Y.; Feng, Y.; Liu, H.; Wu, J.; Tang, Y.; Wang, Q. Real-time assessment of platinum sensitivity of primary culture from a patient with ovarian cancer with extensive metastasis and the platinum sensitivity enhancing effect by metformin. Oncol. Lett., 2018, 16(4), 4253-4262. doi: 10.3892/ol.2018.9223 PMID: 30250536
  27. Lengyel, E.; Litchfield, L.M.; Mitra, A.K.; Nieman, K.M.; Mukherjee, A.; Zhang, Y.; Johnson, A.; Bradaric, M.; Lee, W.; Romero, I.L. Metformin inhibits ovarian cancer growth and increases sensitivity to paclitaxel in mouse models. Am. J. Obstet. Gynecol., 2015, 212(4), 479.e1-479.e10. doi: 10.1016/j.ajog.2014.10.026 PMID: 25446664
  28. Urpilainen, E.; Puistola, U.; Boussios, S.; Karihtala, P. Metformin and ovarian cancer: The evidence. Ann. Transl. Med., 2020, 8(24), 1711. doi: 10.21037/atm-20-1060 PMID: 33490223
  29. Bodmer, M.; Becker, C.; Meier, C.; Jick, S.S.; Meier, C.R. Use of metformin and the risk of ovarian cancer: A case-control analysis. Gynecol. Oncol., 2011, 123(2), 200-204. doi: 10.1016/j.ygyno.2011.06.038 PMID: 21802715
  30. Dilokthornsakul, P.; Chaiyakunapruk, N.; Termrungruanglert, W.; Pratoomsoot, C.; Saokeaw, S.; Sruamsiri, R. The effects of metformin on ovarian cancer: A systematic review. Int. J. Gynecol. Cancer, 2013, 23(9), 1544-1551. doi: 10.1097/IGC.0b013e3182a80a21 PMID: 24172091
  31. Tseng, C.H. Metformin reduces ovarian cancer risk in Taiwanese women with type 2 diabetes mellitus. Diabetes Metab. Res. Rev., 2015, 31(6), 619-626. doi: 10.1002/dmrr.2649 PMID: 25820555
  32. Shi, J.; Liu, B.; Wang, H.; Zhang, T.; Yang, L. Association of metformin use with ovarian cancer incidence and prognosis: A systematic review and meta-analysis. Int. J. Gynecol. Cancer, 2019, 29(1), 140-146. doi: 10.1136/ijgc-2018-000060 PMID: 30640696
  33. Najafi, F.; Rajati, F.; Sarokhani, D.; Bavandpour, M.; Moradinazar, M. The relationship between metformin consumption and cancer risk: An updated umbrella review of systematic reviews and meta-analyses. Int. J. Prev. Med., 2023, 14, 90. PMID: 37854987
  34. Romero, I.L.; McCormick, A.; McEwen, K.A.; Park, S.; Karrison, T.; Yamada, S.D.; Pannain, S.; Lengyel, E. Relationship of type II diabetes and metformin use to ovarian cancer progression, survival, and chemosensitivity. Obstet. Gynecol., 2012, 119(1), 61-67. doi: 10.1097/AOG.0b013e3182393ab3 PMID: 22183212
  35. Kumar, S.; Meuter, A.; Thapa, P.; Langstraat, C.; Giri, S.; Chien, J.; Rattan, R.; Cliby, W.; Shridhar, V. Metformin intake is associated with better survival in ovarian cancer. Cancer, 2013, 119(3), 555-562. doi: 10.1002/cncr.27706 PMID: 23208739
  36. Zhang, Z.J.; Li, S. The prognostic value of metformin for cancer patients with concurrent diabetes: A systematic review and meta‐analysis. Diabetes Obes. Metab., 2014, 16(8), 707-710. doi: 10.1111/dom.12267 PMID: 24460896
  37. Wang, S.B.; Lei, K.J.; Liu, J.P.; Jia, Y.M. Continuous use of metformin can improve survival in type 2 diabetic patients with ovarian cancer. Medicine, 2017, 96(29), e7605. doi: 10.1097/MD.0000000000007605 PMID: 28723808
  38. Noto, H.; Goto, A.; Tsujimoto, T.; Noda, M. Cancer risk in diabetic patients treated with metformin: A systematic review and meta-analysis. PLoS One, 2012, 7(3), e33411. doi: 10.1371/journal.pone.0033411 PMID: 22448244
  39. Park, J.Y.; Lim, M.C.; Baek, M.H.; Park, Y.H.; Kim, S. Impact of metformin on survival outcome in ovarian cancer: A nationwide population-based cohort study. J. Gynecol. Oncol., 2021, 32(4), e65. doi: 10.3802/jgo.2021.32.e65 PMID: 34085799
  40. Micha, J.P.; Rettenmaier, M.A.; Bohart, R.D.; Goldstein, B.H. A phase II, open-label, non-randomized, prospective study assessing paclitaxel, carboplatin and metformin in the treatment of advanced stage ovarian carcinoma. J. Gynecol. Oncol., 2023, 34(2), e15. doi: 10.3802/jgo.2023.34.e15 PMID: 36509462
  41. Broekman, K.E.; Hof, M.A.J.; Touw, D.J.; Gietema, J.A.; Nijman, H.W.; Lefrandt, J.D.; Reyners, A.K.L.; Jalving, M. Phase I study of metformin in combination with carboplatin/paclitaxel chemotherapy in patients with advanced epithelial ovarian cancer. Invest. New Drugs, 2020, 38(5), 1454-1462. doi: 10.1007/s10637-020-00920-7 PMID: 32146550
  42. Göbel, A.; Zinna, V.M.; Dell’Endice, S.; Jaschke, N.; Kuhlmann, J.D.; Wimberger, P.; Rachner, T.D. Anti-tumor effects of mevalonate pathway inhibition in ovarian cancer. BMC Cancer, 2020, 20(1), 703. doi: 10.1186/s12885-020-07164-x PMID: 32727400
  43. Schachter, M. Chemical, pharmacokinetic and pharmacodynamic properties of statins: An update. Fundam. Clin. Pharmacol., 2005, 19(1), 117-125. doi: 10.1111/j.1472-8206.2004.00299.x PMID: 15660968
  44. Matsuura, M.; Suzuki, T.; Suzuki, M.; Tanaka, R.; Ito, E.; Saito, T. Statin-mediated reduction of osteopontin expression induces apoptosis and cell growth arrest in ovarian clear cell carcinoma. Oncol. Rep., 2011, 25(1), 41-47. PMID: 21109955
  45. Robinson, E.; Nandi, M.; Wilkinson, L.L.; Arrowsmith, D.M.; Curtis, A.D.M.; Richardson, A. Preclinical evaluation of statins as a treatment for ovarian cancer. Gynecol. Oncol., 2013, 129(2), 417-424. doi: 10.1016/j.ygyno.2013.02.003 PMID: 23402903
  46. Kobayashi, Y.; Kashima, H.; Wu, R.C.; Jung, J.G.; Kuan, J.C.; Gu, J.; Xuan, J.; Sokoll, L.; Visvanathan, K.; Shih, I.M.; Wang, T.L. Mevalonate pathway antagonist suppresses formation of serous tubal intraepithelial carcinoma and ovarian carcinoma in mouse models. Clin. Cancer Res., 2015, 21(20), 4652-4662. doi: 10.1158/1078-0432.CCR-14-3368 PMID: 26109099
  47. Zeybek, B.; Costantine, M.; Kilic, G.S.; Borahay, M.A. Therapeutic roles of statins in gynecology and obstetrics: The current evidence. Reprod. Sci., 2018, 25(6), 802-817. doi: 10.1177/1933719117750751 PMID: 29320955
  48. Stine, J.E.; Guo, H.; Sheng, X.; Han, X.; Schointuch, M.N.; Gilliam, T.P.; Gehrig, P.A.; Zhou, C.; Bae-Jump, V.L. The HMG-CoA reductase inhibitor, simvastatin, exhibits anti-metastatic and anti-tumorigenic effects in ovarian cancer. Oncotarget, 2016, 7(1), 946-960. doi: 10.18632/oncotarget.5834 PMID: 26503475
  49. Lavie, O.; Pinchev, M.; Rennert, H.S.; Segev, Y.; Rennert, G. The effect of statins on risk and survival of gynecological malignancies. Gynecol. Oncol., 2013, 130(3), 615-619. doi: 10.1016/j.ygyno.2013.05.025 PMID: 23718932
  50. Harding, B.N.; Delaney, J.A.; Urban, R.R.; Weiss, N.S. Use of statin medications following diagnosis in relation to survival among women with ovarian cancer. Cancer Epidemiol. Biomarkers Prev., 2019, 28(7), 1127-1133. doi: 10.1158/1055-9965.EPI-18-1194 PMID: 31064757
  51. Couttenier, A.; Lacroix, O.; Vaes, E.; Cardwell, C.R.; De Schutter, H.; Robert, A. Statin use is associated with improved survival in ovarian cancer: A retrospective population-based study. PLoS One, 2017, 12(12), e0189233. doi: 10.1371/journal.pone.0189233 PMID: 29261726
  52. Majidi, A.; Na, R.; Jordan, S.J.; De Fazio, A.; Webb, P.M. Statin use and survival following a diagnosis of ovarian cancer: A prospective observational study. Int. J. Cancer, 2021, 148(7), 1608-1615. doi: 10.1002/ijc.33333 PMID: 33034053
  53. Feng, J.L.; Dixon-Suen, S.C.; Jordan, S.J.; Webb, P.M. Statin use and survival among women with ovarian cancer: An Australian national data-linkage study. Br. J. Cancer, 2021, 125(5), 766-771. doi: 10.1038/s41416-021-01460-4 PMID: 34135470
  54. Xie, W.; Ning, L.; Huang, Y.; Liu, Y.; Zhang, W.; Hu, Y.; Lang, J.; Yang, J. Statin use and survival outcomes in endocrine-related gynecologic cancers: A systematic review and meta-analysis. Oncotarget, 2017, 8(25), 41508-41517. doi: 10.18632/oncotarget.17242 PMID: 28489569
  55. Li, X.; Zhou, J. Impact of postdiagnostic statin use on ovarian cancer mortality: A systematic review and meta‐analysis of observational studies. Br. J. Clin. Pharmacol., 2018, 84(6), 1109-1120. doi: 10.1111/bcp.13559 PMID: 29453799
  56. Wang, Y.; Ren, F.; Song, Z.; Chen, P.; Liu, S.; Ouyang, L. Statin use and the risk of ovarian and endometrial cancers: A meta-analysis. BMC Cancer, 2019, 19(1), 730. doi: 10.1186/s12885-019-5954-0 PMID: 31340777
  57. Desai, P.; Wallace, R.; Anderson, M.L.; Howard, B.V.; Ray, R.M.; Wu, C.; Safford, M.; Martin, L.W.; Rohan, T.; Manson, J.E.; Simon, M.S. An analysis of the association between statin use and risk of endometrial and ovarian cancers in the Women’s Health Initiative. Gynecol. Oncol., 2018, 148(3), 540-546. doi: 10.1016/j.ygyno.2018.01.006 PMID: 29422345
  58. Kobayashi, Y.; Takeda, T.; Kunitomi, H.; Chiwaki, F.; Komatsu, M.; Nagai, S.; Nogami, Y.; Tsuji, K.; Masuda, K.; Ogiwara, H.; Sasaki, H.; Banno, K.; Aoki, D. Response predictive markers and synergistic agents for drug repositioning of statins in ovarian cancer. Pharmaceuticals, 2022, 15(2), 124. doi: 10.3390/ph15020124 PMID: 35215239
  59. Xia, L.; Ding, S.; Wang, X.; Zhang, X.; Zhu, L.; Zhang, H.; Li, H. Advances in ovarian cancer treatment using a combination of statins with other drugs. Front. Pharmacol., 2023, 13, 1048484. doi: 10.3389/fphar.2022.1048484 PMID: 36686716
  60. Luckman, S.P.; Hughes, D.E.; Coxon, F.P.; Russell, R.G.G.; Rogers, M.J.; Rogers, M.J. Nitrogen-containing bisphosphonates inhibit the mevalonate pathway and prevent post-translational prenylation of GTP-binding proteins, including Ras. J. Bone Miner. Res., 1998, 13(4), 581-589. doi: 10.1359/jbmr.1998.13.4.581 PMID: 9556058
  61. Holen, I.; Coleman, R.E. Anti-tumour activity of bisphosphonates in preclinical models of breast cancer. Breast Cancer Res., 2010, 12(6), 214. doi: 10.1186/bcr2769 PMID: 21176176
  62. Clezardin, P. Potential anticancer properties of bisphosphonates: Insights from preclinical studies. Anticancer. Agents Med. Chem., 2012, 12(2), 102-113. doi: 10.2174/187152012799014977 PMID: 21864232
  63. Koul, H.K.; Koul, S.; Meacham, R.B. New role for an established drug? Bisphosphonates as potential anticancer agents. Prostate Cancer Prostatic Dis., 2012, 15(2), 111-119. doi: 10.1038/pcan.2011.41 PMID: 21876554
  64. Goldvaser, H.; Amir, E. Role of bisphosphonates in breast cancer therapy. Curr. Treat. Options Oncol., 2019, 20(4), 26. doi: 10.1007/s11864-019-0623-8 PMID: 30874905
  65. Dionísio, M.R.; Mansinho, A.; Abreu, C.; Cavaco-Silva, J.; Casimiro, S.; Costa, L. Clinical and translational pharmacology of drugs for the prevention and treatment of bone metastases and cancer‐induced bone loss. Br. J. Clin. Pharmacol., 2019, 85(6), 1114-1124. doi: 10.1111/bcp.13852 PMID: 30601585
  66. Hadji, P.; Body, J.J.; Aapro, M.S.; Brufsky, A.; Coleman, R.E.; Guise, T.; Lipton, A.; Tubiana-Hulin, M. Practical guidance for the management of aromatase inhibitor-associated bone loss. Ann. Oncol., 2008, 19(8), 1407-1416. doi: 10.1093/annonc/mdn164 PMID: 18448451
  67. Wong, M.H.; Stockler, M.R.; Pavlakis, N. Bisphosphonates and other bone agents for breast cancer. Cochrane Database Syst. Rev., 2012, 2(2), CD003474. PMID: 22336790
  68. Mathew, A.; Brufsky, A. Bisphosphonates in breast cancer. Int. J. Cancer, 2015, 137(4), 753-764. doi: 10.1002/ijc.28965 PMID: 24824552
  69. Takahashi, S. Management of cancer treatment-induced bone loss (CTIBL) in patients with breast cancer or prostate cancer. J. Bone Miner. Metab., 2023, 41(3), 307-316. doi: 10.1007/s00774-023-01414-1 PMID: 37036530
  70. Morgan, G.J.; Davies, F.E.; Gregory, W.M.; Cocks, K.; Bell, S.E.; Szubert, A.J.; Navarro-Coy, N.; Drayson, M.T.; Owen, R.G.; Feyler, S.; Ashcroft, A.J.; Ross, F.; Byrne, J.; Roddie, H.; Rudin, C.; Cook, G.; Jackson, G.H.; Child, J.A. First-line treatment with zoledronic acid as compared with clodronic acid in multiple myeloma (MRC Myeloma IX): A randomised controlled trial. Lancet, 2010, 376(9757), 1989-1999. doi: 10.1016/S0140-6736(10)62051-X PMID: 21131037
  71. Wilson, C.; Ottewell, P.; Coleman, R.E.; Holen, I. The differential anti-tumour effects of zoledronic acid in breast cancer - evidence for a role of the activin signaling pathway. BMC Cancer, 2015, 15(1), 55. doi: 10.1186/s12885-015-1066-7 PMID: 25884855
  72. Fragni, M.; Bonini, S.A.; Bettinsoli, P.; Bodei, S.; Generali, D.; Bottini, A.; Spano, P.F.; Memo, M.; Sigala, S. The miR-21/PTEN/Akt signaling pathway is involved in the anti-tumoral effects of zoledronic acid in human breast cancer cell lines. Naunyn Schmiedebergs Arch. Pharmacol., 2016, 389(5), 529-538. doi: 10.1007/s00210-016-1224-8 PMID: 26905520
  73. Seto, H.; Kita, T.; Hirata, J.; Kikuchi, Y.; Kudoh, K. Inhibitory effects of bisphosphonates on the proliferation of human ovarian cancer cell lines and the mechanism. Med. Chem., 2006, 2(3), 223-226. doi: 10.2174/157340606776930727 PMID: 16948467
  74. Kobayashi, Y.; Kashima, H.; Rahmanto, Y.S.; Banno, K.; Yu, Y.; Matoba, Y.; Watanabe, K.; Iijima, M.; Takeda, T.; Kunitomi, H.; Iida, M.; Adachi, M.; Nakamura, K.; Tsuji, K.; Masuda, K.; Nomura, H.; Tominaga, E.; Aoki, D. Drug repositioning of mevalonate pathway inhibitors as antitumor agents for ovarian cancer. Oncotarget, 2017, 8(42), 72147-72156. doi: 10.18632/oncotarget.20046 PMID: 29069775
  75. Atmaca, H.; Gorumlu, G.; Karaca, B.; Degirmenci, M.; Tunali, D.; Cirak, Y.; Purcu, D.U.; Uzunoglu, S.; Karabulut, B.; Sanli, U.A.; Uslu, R. Combined gossypol and zoledronic acid treatment results in synergistic induction of cell death and regulates angiogenic molecules in ovarian cancer cells. Eur. Cytokine Netw., 2009, 20(3), 121-130. doi: 10.1684/ecn.2009.0159 PMID: 19825521
  76. Karabulut, B.; Karaca, B.; Varol, U.; Muslu, U.; Cakar, B.; Atmaca, H.; Kısım, A.; Uzunoglu, S.; Uslu, R. Enhancing cytotoxic and apoptotic effect in OVCAR-3 and MDAH-2774 cells with all-trans retinoic acid and zoledronic acid: A paradigm of synergistic molecular targeting treatment for ovarian cancer. J. Exp. Clin. Cancer Res., 2010, 29(1), 102. doi: 10.1186/1756-9966-29-102 PMID: 20673323
  77. Abdullah, M.I.; Abed, M.N.; Richardson, A. Inhibition of the mevalonate pathway augments the activity of pitavastatin against ovarian cancer cells. Sci. Rep., 2017, 7(1), 8090. doi: 10.1038/s41598-017-08649-9 PMID: 28808351
  78. Knight, L.A.; Kurbacher, C.M.; Glaysher, S.; Fernando, A.; Reichelt, R.; Dexel, S.; Reinhold, U.; Cree, I.A. Activity of mevalonate pathway inhibitors against breast and ovarian cancers in the ATP-based tumour chemosensitivity assay. BMC Cancer, 2009, 9(1), 38. doi: 10.1186/1471-2407-9-38 PMID: 19175937
  79. Muinelo-Romay, L.; Garcia, D.; Alonso-Alconada, L.; Vieito, M.; Carmona, M.; Martínez, N.; Aguín, S.; Abal, M.; López-López, R. Zoledronic acid as an antimetastatic agent for different human tumor cell lines. Anticancer Res., 2013, 33(12), 5295-5300. PMID: 24324062
  80. Hashimoto, K.; Morishige, K.; Sawada, K.; Tahara, M.; Kawagishi, R.; Ikebuchi, Y.; Sakata, M.; Tasaka, K.; Murata, Y. Alendronate inhibits intraperitoneal dissemination in in vivo ovarian cancer model. Cancer Res., 2005, 65(2), 540-545. doi: 10.1158/0008-5472.540.65.2 PMID: 15695397
  81. Oxford, G.; Theodorescu, D. Ras superfamily monomeric G proteins in carcinoma cell motility. Cancer Lett., 2003, 189(2), 117-128. doi: 10.1016/S0304-3835(02)00510-4 PMID: 12490304
  82. Rennert, G.; Rennert, H.S.; Pinchev, M.; Lavie, O. The effect of bisphosphonates on the risk of endometrial and ovarian malignancies. Gynecol. Oncol., 2014, 133(2), 309-313. doi: 10.1016/j.ygyno.2014.02.014 PMID: 24556062
  83. Tuesley, K.M.; Webb, P.M.; Protani, M.M.; Spilsbury, K.; Pearson, S.A.; Coory, M.D.; Donovan, P.; Steer, C.; Stewart, L.M.; Pandeya, N.; Jordan, S.J. Nitrogen-based bisphosphonate use and ovarian cancer risk in women aged 50 years and older. J. Natl. Cancer Inst., 2022, 114(6), 878-884. doi: 10.1093/jnci/djac050 PMID: 35262727
  84. Bae, Y.S.; Chang, J.; Park, S.M. Oral bisphosphonate use and the risk of female breast, ovarian, and cervical cancer: A nationwide population-based cohort study. Arch. Osteoporos., 2019, 14(1), 41. doi: 10.1007/s11657-019-0588-z PMID: 30888545
  85. Zhang, X.; Zhang, Y.; Li, B.; Fan, B.; Zhao, Y.; Yang, S. Risk reduction of endometrial and ovarian cancer after bisphosphonates use: A meta-analysis. Gynecol. Oncol., 2018, 150(3), 509-514. doi: 10.1016/j.ygyno.2018.06.012 PMID: 29960711
  86. Chai, E.Z.P.; Siveen, K.S.; Shanmugam, M.K.; Arfuso, F.; Sethi, G. Analysis of the intricate relationship between chronic inflammation and cancer. Biochem. J., 2015, 468(1), 1-15. doi: 10.1042/BJ20141337 PMID: 25940732
  87. Trabert, B.; Pinto, L.; Hartge, P.; Kemp, T.; Black, A.; Sherman, M.E.; Brinton, L.A.; Pfeiffer, R.M.; Shiels, M.S.; Chaturvedi, A.K.; Hildesheim, A.; Wentzensen, N. Pre-diagnostic serum levels of inflammation markers and risk of ovarian cancer in the prostate, lung, colorectal and ovarian cancer (PLCO) screening trial. Gynecol. Oncol., 2014, 135(2), 297-304. doi: 10.1016/j.ygyno.2014.08.025 PMID: 25158036
  88. Zhang, Z.; Chen, F.; Shang, L. Advances in antitumor effects of NSAIDs. Cancer Manag. Res., 2018, 10, 4631-4640. doi: 10.2147/CMAR.S175212 PMID: 30410398
  89. Thorat, M.A.; Cuzick, J. Role of aspirin in cancer prevention. Curr. Oncol. Rep., 2013, 15(6), 533-540. doi: 10.1007/s11912-013-0351-3 PMID: 24114189
  90. Guo, J.; Zhu, Y.; Yu, L.; Li, Y.; Guo, J.; Cai, J.; Liu, L.; Wang, Z. Aspirin inhibits tumor progression and enhances cisplatin sensitivity in epithelial ovarian cancer. PeerJ, 2021, 9, e11591. doi: 10.7717/peerj.11591 PMID: 34414020
  91. Merritt, M.A.; Rice, M.S.; Barnard, M.E.; Hankinson, S.E.; Matulonis, U.A.; Poole, E.M.; Tworoger, S.S. Pre-diagnosis and post-diagnosis use of common analgesics and ovarian cancer prognosis (NHS/NHSII): A cohort study. Lancet Oncol., 2018, 19(8), 1107-1116. doi: 10.1016/S1470-2045(18)30373-5 PMID: 30029888
  92. Verdoodt, F.; Kjaer, S.K.; Dehlendorff, C.; Friis, S. Aspirin use and ovarian cancer mortality in a Danish nationwide cohort study. Br. J. Cancer, 2018, 118(4), 611-615. doi: 10.1038/bjc.2017.449 PMID: 29315293
  93. Dixon, S.C.; Nagle, C.M.; Wentzensen, N.; Trabert, B.; Beeghly-Fadiel, A.; Schildkraut, J.M.; Moysich, K.B.; deFazio, A.; Risch, H.A.; Rossing, M.A.; Doherty, J.A.; Wicklund, K.G.; Goodman, M.T.; Modugno, F.; Ness, R.B.; Edwards, R.P.; Jensen, A.; Kjær, S.K.; Høgdall, E.; Berchuck, A.; Cramer, D.W.; Terry, K.L.; Poole, E.M.; Bandera, E.V.; Paddock, L.E.; Anton-Culver, H.; Ziogas, A.; Menon, U.; Gayther, S.A.; Ramus, S.J.; Gentry-Maharaj, A.; Pearce, C.L.; Wu, A.H.; Pike, M.C.; Webb, P.M. Use of common analgesic medications and ovarian cancer survival: Results from a pooled analysis in the Ovarian Cancer Association Consortium. Br. J. Cancer, 2017, 116(9), 1223-1228. doi: 10.1038/bjc.2017.68 PMID: 28350790
  94. Trabert, B.; Poole, E.M.; White, E.; Visvanathan, K.; Adami, H.O.; Anderson, G.L.; Brasky, T.M.; Brinton, L.A.; Fortner, R.T.; Gaudet, M.; Hartge, P.; Hoffman-Bolton, J.; Jones, M.; Lacey, J.V., Jr; Larsson, S.C.; Mackenzie, G.G.; Schouten, L.J.; Sandler, D.P.; O’Brien, K.; Patel, A.V.; Peters, U.; Prizment, A.; Robien, K.; Setiawan, V.W.; Swerdlow, A.; van den Brandt, P.A.; Weiderpass, E.; Wilkens, L.R.; Wolk, A.; Wentzensen, N.; Tworoger, S.S. Analgesic use and ovarian cancer risk: An analysis in the ovarian cancer cohort consortium. J. Natl. Cancer Inst., 2019, 111(2), 137-145. doi: 10.1093/jnci/djy100 PMID: 29860330
  95. Hurwitz, L.M.; Pinsky, P.F.; Huang, W.Y.; Freedman, N.D.; Trabert, B. Aspirin use and ovarian cancer risk using extended follow-up of the PLCO Cancer Screening Trial. Gynecol. Oncol., 2020, 159(2), 522-526. doi: 10.1016/j.ygyno.2020.08.038 PMID: 32919779
  96. Man, X.; Wang, B.; Tan, Y.; Yang, X.; Zhang, S. aspirin use and mortality in women with ovarian cancer: A meta-analysis. Front. Oncol., 2021, 10, 575831. doi: 10.3389/fonc.2020.575831 PMID: 33598421
  97. Wield, A.M.; Walsh, C.S.; Rimel, B.J.; Cass, I.; Karlan, B.Y.; Li, A.J. Aspirin use correlates with survival in women with clear cell ovarian cancer. Gynecol. Oncol. Rep., 2018, 25, 78-81. doi: 10.1016/j.gore.2018.06.004 PMID: 29922710
  98. Tsubamoto, H.; Ueda, T.; Inoue, K.; Sakata, K.; Shibahara, H.; Sonoda, T. Repurposing itraconazole as an anticancer agent. Oncol. Lett., 2017, 14(2), 1240-1246. doi: 10.3892/ol.2017.6325 PMID: 28789339
  99. Pounds, R.; Leonard, S.; Dawson, C.; Kehoe, S. Repurposing itraconazole for the treatment of cancer. Oncol. Lett., 2017, 14(3), 2587-2597. doi: 10.3892/ol.2017.6569 PMID: 28927025
  100. Li, C.L.; Fang, Z.X.; Wu, Z.; Hou, Y.Y.; Wu, H.T.; Liu, J. Repurposed itraconazole for use in the treatment of malignancies as a promising therapeutic strategy. Biomed. Pharmacother., 2022, 154, 113616. doi: 10.1016/j.biopha.2022.113616 PMID: 36055112
  101. Gupta, S.; Kim, J.; Gollapudi, S. Reversal of daunorubicin resistance in P388/ADR cells by itraconazole. J. Clin. Invest., 1991, 87(4), 1467-1469. doi: 10.1172/JCI115154 PMID: 1849151
  102. Kurosawa, M.; Okabe, M.; Hara, N.; Kawamura, K.; Suzuki, S.; Sakurada, K.; Asaka, M. Reversal effect of itraconazole on adriamycin and etoposide resistance in human leukemia cells. Ann. Hematol., 1996, 72(1), 17-21. doi: 10.1007/BF00663011 PMID: 8605275
  103. Takara, K.; Tanigawara, Y.; Komada, F.; Nishiguchi, K.; Sakaeda, T.; Okumura, K. Cellular pharmacokinetic aspects of reversal effect of itraconazole on P-glycoprotein-mediated resistance of anticancer drugs. Biol. Pharm. Bull., 1999, 22(12), 1355-1359. doi: 10.1248/bpb.22.1355 PMID: 10746169
  104. Chong, C.R.; Xu, J.; Lu, J.; Bhat, S.; Sullivan, D.J., Jr; Liu, J.O. Inhibition of angiogenesis by the antifungal drug itraconazole. ACS Chem. Biol., 2007, 2(4), 263-270. doi: 10.1021/cb600362d PMID: 17432820
  105. Choi, C.H.; Ryu, J.Y.; Cho, Y.J.; Jeon, H.K.; Choi, J.J.; Ylaya, K.; Lee, Y.Y.; Kim, T.J.; Chung, J.Y.; Hewitt, S.M.; Kim, B.G.; Bae, D.S.; Lee, J.W. The anti-cancer effects of itraconazole in epithelial ovarian cancer. Sci. Rep., 2017, 7(1), 6552. doi: 10.1038/s41598-017-06510-7 PMID: 28747628
  106. Tsubamoto, H.; Sonoda, T.; Yamasaki, M.; Inoue, K. Impact of combination chemotherapy with itraconazole on survival for patients with recurrent or persistent ovarian clear cell carcinoma. Anticancer Res., 2014, 34(4), 2007-2014. PMID: 24692739
  107. Tsubamoto, H.; Sonoda, T.; Yamasaki, M.; Inoue, K. Impact of combination chemotherapy with itraconazole on survival of patients with refractory ovarian cancer. Anticancer Res., 2014, 34(5), 2481-2487. PMID: 24778064
  108. Marastoni, S.; Madariaga, A.; Pesic, A.; Nair, S.N.; Li, Z.J.; Shalev, Z.; Ketela, T.; Colombo, I.; Mandilaras, V.; Cabanero, M.; Bruce, J.P.; Li, X.; Garg, S.; Wang, L.; Chen, E.X.; Gill, S.; Dhani, N.C.; Zhang, W.; Pintilie, M.; Bowering, V.; Koritzinsky, M.; Rottapel, R.; Wouters, B.G.; Oza, A.M.; Joshua, A.M.; Lheureux, S. Repurposing itraconazole and hydroxychloroquine to target lysosomal homeostasis in epithelial ovarian cancer. Cancer Research Communications, 2022, 2(5), 293-306. doi: 10.1158/2767-9764.CRC-22-0037 PMID: 36875717
  109. Laing, R.; Gillan, V.; Devaney, E. Ivermectin - old drug, new tricks? Trends Parasitol., 2017, 33(6), 463-472. doi: 10.1016/j.pt.2017.02.004 PMID: 28285851
  110. Juarez, M.; Schcolnik-Cabrera, A.; Dueñas-Gonzalez, A. The multitargeted drug ivermectin: From an antiparasitic agent to a repositioned cancer drug. Am. J. Cancer Res., 2018, 8(2), 317-331. PMID: 29511601
  111. Tang, M.; Hu, X.; Wang, Y.; Yao, X.; Zhang, W.; Yu, C.; Cheng, F.; Li, J.; Fang, Q. Ivermectin, a potential anticancer drug derived from an antiparasitic drug. Pharmacol. Res., 2021, 163, 105207. doi: 10.1016/j.phrs.2020.105207 PMID: 32971268
  112. Hashimoto, H.; Messerli, S.M.; Sudo, T.; Maruta, H. Ivermectin inactivates the kinase PAK1 and blocks the PAK1-dependent growth of human ovarian cancer and NF2 tumor cell lines. Drug Discov. Ther., 2009, 3(6), 243-246. PMID: 22495656
  113. Li, N.; Zhan, X. Anti-parasite drug ivermectin can suppress ovarian cancer by regulating lncRNA-EIF4A3-mRNA axes. EPMA J., 2020, 11(2), 289-309. doi: 10.1007/s13167-020-00209-y PMID: 32549918
  114. Kodama, M.; Kodama, T.; Newberg, J.Y.; Katayama, H.; Kobayashi, M.; Hanash, S.M.; Yoshihara, K.; Wei, Z.; Tien, J.C.; Rangel, R.; Hashimoto, K.; Mabuchi, S.; Sawada, K.; Kimura, T.; Copeland, N.G.; Jenkins, N.A. In vivo loss-of-function screens identify KPNB1 as a new druggable oncogene in epithelial ovarian cancer. Proc. Natl. Acad. Sci., 2017, 114(35), E7301-E7310. doi: 10.1073/pnas.1705441114 PMID: 28811376
  115. Zhan, X.; Li, N. The anti-cancer effects of anti-parasite drug ivermectin in ovarian cancer. In: Ovarian Cancer - Updates in Tumour Biology and Therapeutics; IntechOpen, 2021. doi: 10.5772/intechopen.95556
  116. Zhang, X.; Qin, T.; Zhu, Z.; Hong, F.; Xu, Y.; Zhang, X.; Xu, X.; Ma, A. Ivermectin augments the in vitro and in vivo efficacy of cisplatin in epithelial ovarian cancer by suppressing Akt/mTOR signaling. Am. J. Med. Sci., 2020, 359(2), 123-129. doi: 10.1016/j.amjms.2019.11.001 PMID: 32039764
  117. Xia, Y.; Chang, T.; Wang, Y.; Liu, Y.; Li, W.; Li, M.; Fan, H.Y. YAP promotes ovarian cancer cell tumorigenesis and is indicative of a poor prognosis for ovarian cancer patients. PLoS One, 2014, 9(3), e91770. doi: 10.1371/journal.pone.0091770 PMID: 24622501
  118. Nishio, M.; Sugimachi, K.; Goto, H.; Wang, J.; Morikawa, T.; Miyachi, Y.; Takano, Y.; Hikasa, H.; Itoh, T.; Suzuki, S.O.; Kurihara, H.; Aishima, S.; Leask, A.; Sasaki, T.; Nakano, T.; Nishina, H.; Nishikawa, Y.; Sekido, Y.; Nakao, K.; Shin-ya, K.; Mimori, K.; Suzuki, A. Dysregulated YAP1/TAZ and TGF-β signaling mediate hepatocarcinogenesis in Mob1a/1b -deficient mice. Proc. Natl. Acad. Sci., 2016, 113(1), E71-E80. doi: 10.1073/pnas.1517188113 PMID: 26699479
  119. Nambara, S.; Masuda, T.; Nishio, M.; Kuramitsu, S.; Tobo, T.; Ogawa, Y.; Hu, Q.; Iguchi, T.; Kuroda, Y.; Ito, S.; Eguchi, H.; Sugimachi, K.; Saeki, H.; Oki, E.; Maehara, Y.; Suzuki, A.; Mimori, K. Antitumor effects of the antiparasitic agent ivermectin via inhibition of Yes-associated protein 1 expression in gastric cancer. Oncotarget, 2017, 8(64), 107666-107677. doi: 10.18632/oncotarget.22587 PMID: 29296196
  120. Bruno, C.; Carocci, A.; Catalano, A.; Cavalluzzi, M.M.; Corbo, F.; Franchini, C.; Lentini, G.; Tortorella, V. Facile, alternative route to Lubeluzole, its enantiomer, and the racemate. Chirality, 2006, 18(4), 227-231. doi: 10.1002/chir.20240 PMID: 16521088
  121. Grand, B.L.; Dordain-Maffre, M.; John, G.W. Lubeluzole‐induced prolongation of cardiac action potential in rabbit Purkinje fibres. Fundam. Clin. Pharmacol., 2000, 14(2), 159-162. doi: 10.1111/j.1472-8206.2000.tb00405.x PMID: 10796064
  122. Gandolfo, C.; Sandercock, P.; Conti, M. Lubeluzole for acute ischaemic stroke. Cochrane Database Syst. Rev., 2002, 1(1), CD001924. PMID: 11869612
  123. Desaphy, J.F.; Carbonara, R.; Costanza, T.; Lentini, G.; Cavalluzzi, M.M.; Bruno, C.; Franchini, C.; Camerino, D.C. Molecular dissection of lubeluzole use-dependent block of voltage-gated sodium channels discloses new therapeutic potentials. Mol. Pharmacol., 2013, 83(2), 406-415. doi: 10.1124/mol.112.080804 PMID: 23175529
  124. Bruno, C.; Cavalluzzi, M.M.; Rusciano, M.R.; Lovece, A.; Carrieri, A.; Pracella, R.; Giannuzzi, G.; Polimeno, L.; Viale, M.; Illario, M.; Franchini, C.; Lentini, G. The chemosensitizing agent lubeluzole binds calmodulin and inhibits Ca2+/calmodulin-dependent kinase II. Eur. J. Med. Chem., 2016, 116, 36-45. doi: 10.1016/j.ejmech.2016.03.045 PMID: 27043269
  125. Gualdani, R.; Cavalluzzi, M.M.; Tadini-Buoninsegni, F.; Convertino, M.; Gailly, P.; Stary-Weinzinger, A.; Lentini, G. Molecular insights into hERG potassium channel blockade by lubeluzole. Cell. Physiol. Biochem., 2018, 45(6), 2233-2245. doi: 10.1159/000488169 PMID: 29550817
  126. Cavalluzzi, M.M.; Viale, M.; Bruno, C.; Carocci, A.; Catalano, A.; Carrieri, A.; Franchini, C.; Lentini, G. A convenient synthesis of lubeluzole and its enantiomer: Evaluation as chemosensitizing agents on human ovarian adenocarcinoma and lung carcinoma cells. Bioorg. Med. Chem. Lett., 2013, 23(17), 4820-4823. doi: 10.1016/j.bmcl.2013.06.077 PMID: 23886686
  127. Cavalluzzi, M.M.; Budriesi, R.; De Salvia, M.A.; Quintieri, L.; Piarulli, M.; Milani, G.; Gualdani, R.; Micucci, M.; Corazza, I.; Rosato, A.; Viale, M.; Caputo, L.; Franchini, C.; Lentini, G. Lubeluzole: From anti-ischemic drug to preclinical antidiarrheal studies. Pharmacol. Rep., 2021, 73(1), 172-184. doi: 10.1007/s43440-020-00167-2 PMID: 33074530
  128. Viale, M.; Lentini, G.; Gangemi, R.; Castagnola, P.; Milani, G.; Ravera, S.; Bertola, N.; Carrieri, A.; Cavalluzzi, M. Lubeluzole repositioning as chemosensitizing agent on multidrug-resistant human ovarian A2780/DX3 cancer cells. Molecules, 2022, 27(22), 7870. doi: 10.3390/molecules27227870 PMID: 36431971
  129. Wright, C.; Moore, R.D. Disulfiram treatment of alcoholism. Am. J. Med., 1990, 88(6), 647-655. doi: 10.1016/0002-9343(90)90534-K PMID: 2189310
  130. Interventions For Addiction. Medication for Cravings in Substance Use Disorders; Elsevier Inc, 2013.
  131. Swift, R.; Leggio, L. Adjunctive pharmacotherapy in the treatment of alcohol and drug dependence. In: Evidence-Based Addiction Treatment; Miller, P.M., Ed.; Academic Press, 2009. doi: 10.1016/B978-0-12-374348-0.00015-X
  132. Jiao, Y.; Hannafon, B.N.; Ding, W.Q. Disulfiram’s anticancer activity: Evidence and mechanisms. Anticancer. Agents Med. Chem., 2016, 16, 1378-1384.
  133. Wang, L.; Yu, Y.; Zhou, C.; Wan, R.; Li, Y. Anticancer effects of disulfiram: A systematic review of in vitro, animal, and human studies. Syst. Rev., 2022, 11(1), 109. doi: 10.1186/s13643-021-01858-4 PMID: 35655266
  134. Zhang, S.; Zong, Y.; Chen, L.; Li, Q.; Li, Z.; Meng, R. The immunomodulatory function and antitumor effect of disulfiram: Paving the way for novel cancer therapeutics. Discov. Oncol., 2023, 14(1), 103. doi: 10.1007/s12672-023-00729-9 PMID: 37326784
  135. Guo, F.; Yang, Z.; Kulbe, H.; Albers, A.E.; Sehouli, J.; Kaufmann, A.M. Inhibitory effect on ovarian cancer ALDH+ stem-like cells by Disulfiram and Copper treatment through ALDH and ROS modulation. Biomed. Pharmacother., 2019, 118, 109371. doi: 10.1016/j.biopha.2019.109371 PMID: 31545281
  136. Rezk, Y.A.; Yang, K.; Bai, S.; Mclean, K.; Johnston, C.; Reynolds, R.K.; Buckanovich, R.J. Disulfiram’s antineoplastic effects on ovarian cancer. J. Cancer Ther., 2015, 6(14), 1196-1205. doi: 10.4236/jct.2015.614130
  137. Gan, Y.; Liu, T.; Feng, W.; Wang, L.; Li, L.; Ning, Y. Drug repositioning of disulfiram induces endometrioid epithelial ovarian cancer cell death via the both apoptosis and cuproptosis pathways. Oncol. Res., 2023, 31(3), 333-343. doi: 10.32604/or.2023.028694 PMID: 37305383
  138. Tsvetkov, P.; Coy, S.; Petrova, B.; Dreishpoon, M.; Verma, A.; Abdusamad, M.; Rossen, J.; Joesch-Cohen, L.; Humeidi, R.; Spangler, R.D.; Eaton, J.K.; Frenkel, E.; Kocak, M.; Corsello, S.M.; Lutsenko, S.; Kanarek, N.; Santagata, S.; Golub, T.R. Copper induces cell death by targeting lipoylated TCA cycle proteins. Science, 2022, 375(6586), 1254-1261. doi: 10.1126/science.abf0529 PMID: 35298263
  139. Tang, B.; Wu, M.; Zhang, L.; Jian, S.; Lv, S.; Lin, T.; Zhu, S.; Liu, L.; Wang, Y.; Yi, Z.; Jiang, F. Combined treatment of disulfiram with PARP inhibitors suppresses ovarian cancer. Front. Oncol., 2023, 13, 1154073. doi: 10.3389/fonc.2023.1154073 PMID: 37143950
  140. Wang, N.; Ma, T.; Yu, B. Targeting epigenetic regulators to overcome drug resistance in cancers. Signal Transduct. Target. Ther., 2023, 8(1), 69. doi: 10.1038/s41392-023-01341-7 PMID: 36797239
  141. Wang, Y.; Huang, Z.; Li, B.; Liu, L.; Huang, C. The emerging roles and therapeutic implications of epigenetic modifications in ovarian cancer. Front. Endocrinol., 2022, 13, 863541. doi: 10.3389/fendo.2022.863541 PMID: 35620395
  142. Asadollahi, R.; Hyde, C.A.C.; Zhong, X.Y. Epigenetics of ovarian cancer: From the lab to the clinic. Gynecol. Oncol., 2010, 118(1), 81-87. doi: 10.1016/j.ygyno.2010.03.015 PMID: 20421130
  143. Matthews, B.; Bowden, N.; Wong-Brown, M. Epigenetic mechanisms and therapeutic targets in chemoresistant high-grade serous ovarian cancer. Cancers, 2021, 13(23), 5993. doi: 10.3390/cancers13235993 PMID: 34885103
  144. Jurkowska, R.Z.; Jurkowski, T.P.; Jeltsch, A. Structure and function of mammalian DNA methyltransferases. ChemBioChem, 2011, 12(2), 206-222. doi: 10.1002/cbic.201000195 PMID: 21243710
  145. Sato, T.; Issa, J.P.J.; Kropf, P. DNA hypomethylating drugs in cancer therapy. Cold Spring Harb. Perspect. Med., 2017, 7(5), a026948. doi: 10.1101/cshperspect.a026948 PMID: 28159832
  146. Smith, H.J.; Straughn, J.M.; Buchsbaum, D.J.; Arend, R.C. Epigenetic therapy for the treatment of epithelial ovarian cancer: A clinical review. Gynecol. Oncol. Rep., 2017, 20, 81-86. doi: 10.1016/j.gore.2017.03.007 PMID: 28378010
  147. Rauscher, S.; Greil, R.; Geisberger, R. Re-sensitizing tumor cells to cancer drugs with epigenetic regulators. Curr. Cancer Drug Targets, 2021, 21(4), 353-359. doi: 10.2174/1568009620666210108102723 PMID: 33423645
  148. Kim, H-J.; Bae, S.C. Histone deacetylase inhibitors: Molecular mechanisms of action and clinical trials as anti-cancer drugs. Am. J. Transl. Res., 2011, 3(2), 166-179. PMID: 21416059
  149. Moufarrij, S.; Dandapani, M.; Arthofer, E.; Gomez, S.; Srivastava, A.; Lopez-Acevedo, M.; Villagra, A.; Chiappinelli, K.B. Epigenetic therapy for ovarian cancer: Promise and progress. Clin. Epigenetics, 2019, 11(1), 7. doi: 10.1186/s13148-018-0602-0 PMID: 30646939
  150. Armando, R.G.; Mengual, G.D.L.; Gomez, D.E. New drugs are not enough-drug repositioning in oncology: An update. Int. J. Oncol., 2020, 56(3), 651-684. doi: 10.3892/ijo.2020.4966 PMID: 32124955
  151. Moreira-Silva, F.; Camilo, V.; Gaspar, V.; Mano, J.F.; Henrique, R.; Jerónimo, C. Repurposing old drugs into new epigenetic inhibitors: Promising candidates for cancer treatment? Pharmaceutics, 2020, 12(5), 410. doi: 10.3390/pharmaceutics12050410 PMID: 32365701
  152. Correia, A.S.; Gärtner, F.; Vale, N. Drug combination and repurposing for cancer therapy: The example of breast cancer. Heliyon, 2021, 7(1), e05948. doi: 10.1016/j.heliyon.2021.e05948 PMID: 33490692
  153. Jager, K.J.; Zoccali, C.; MacLeod, A.; Dekker, F.W. Confounding: What it is and how to deal with it. Kidney Int., 2008, 73(3), 256-260. doi: 10.1038/sj.ki.5002650 PMID: 17978811
  154. Schulz, K.F.; Altman, D.G.; Moher, D. CONSORT 2010 Statement: Updated guidelines for reporting parallel group randomised trials. BMJ, 2010, 340(1), c332. doi: 10.1136/bmj.c332 PMID: 20332509

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Bentham Science Publishers, 2024