Cervical Cancer Therapeutics: An In-depth Significance of Herbal and Chemical Approaches of Nanoparticles
- Авторлар: Saraswat I.1, Goel A.2
-
Мекемелер:
- Department of Biotechnology, GLA University
- Department of Biotechnology,, GLA University
- Шығарылым: Том 24, № 8 (2024)
- Беттер: 627-636
- Бөлім: Oncology
- URL: https://snv63.ru/1871-5206/article/view/644284
- DOI: https://doi.org/10.2174/0118715206289468240130051102
- ID: 644284
Дәйексөз келтіру
Толық мәтін
Аннотация
Cervical cancer emerges as a prominent health issue, demanding attention on a global level for women's well-being, which frequently calls for more specialized and efficient treatment alternatives. Traditional therapies may have limited tumour targeting and adverse side effects. Recent breakthroughs have induced a transformative shift in the strategies employed against cervical cancer. biocompatible herbal nanoparticles and metallic particles made of gold, silver, and iron have become promising friends in the effort to fight against this serious disease and understand the possibility of these nanoparticles for targeted medication administration. this review article delves into the latest advancements in cervical cancer research. The safety and fabrication of these nanomaterials and their remarkable efficacy against cervical tumour spots are addressed. This review study, in short, provides an extensive introduction to the fascinating field of metallic and herbal nanoparticles in cervical cancer treatment. The information that has been examined points to a bright future in which women with cervical cancer may experience fewer side effects, more effective therapy, and an improved quality of life. This review holds promise and has the potential to fundamentally reshape the future of cervical cancer treatment by addressing urgent issues and unmet needs in the field.
Авторлар туралы
Istuti Saraswat
Department of Biotechnology, GLA University
Email: info@benthamscience.net
Anjana Goel
Department of Biotechnology,, GLA University
Хат алмасуға жауапты Автор.
Email: info@benthamscience.net
Әдебиет тізімі
- Cabral, B.P.; da Graça, D.F.M.; Mota, F.B. The recent landscape of cancer research worldwide: A bibliometric and network analysis. Oncotarget, 2018, 9(55), 30474-30484. doi: 10.18632/oncotarget.25730 PMID: 30093962
- Wu, M.S.; Aquino, L.B.B.; Barbaza, M.Y.U.; Hsieh, C.L.; De Castro-Cruz, K.A.; Yang, L.L.; Tsai, P.W. Anti-inflammatory and anticancer properties of bioactive compounds from Sesamum indicum L.A review. Molecules, 2019, 24(24), 4426. doi: 10.3390/molecules24244426 PMID: 31817084
- Debela, D.T.; Muzazu, S.G.Y.; Heraro, K.D.; Ndalama, M.T.; Mesele, B.W.; Haile, D.C.; Kitui, S.K.; Manyazewal, T. New approaches and procedures for cancer treatment: Current perspectives. SAGE Open Med., 2021, 9. doi: 10.1177/20503121211034366 PMID: 34408877
- Giana, F.E.; Bonetto, F.J.; Bellotti, M.I. Assay based on electrical impedance spectroscopy to discriminate between normal and cancerous mammalian cells. Phys. Rev. E, 2018, 97(3), 032410. doi: 10.1103/PhysRevE.97.032410 PMID: 29776129
- Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin., 2023, 73(1), 17-48. doi: 10.3322/caac.21763 PMID: 36633525
- Ferlay, J.; Colombet, M.; Soerjomataram, I.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Cancer statistics for the year 2020: An overview. Int. J. Cancer, 2021, 149(4), 778-789. doi: 10.1002/ijc.33588 PMID: 33818764
- Sathishkumar, K.; Chaturvedi, M.; Das, P.; Stephen, S.; Mathur, P. Cancer incidence estimates for 2022 & projection for 2025: Result from national cancer registry programme, India. Indian J. Med. Res., 2022, 156(4&5), 598-607. PMID: 36510887
- Mathur, P.; Sathishkumar, K.; Chaturvedi, M.; Das, P.; Sudarshan, K.L.; Santhappan, S.; Nallasamy, V.; John, A.; Narasimhan, S.; Roselind, F.S. Cancer statistics, 2020: Report from national cancer registry programme, India. JCO Glob. Oncol., 2020, 6(6), 1063-1075. doi: 10.1200/GO.20.00122 PMID: 32673076
- Vaccarella, S.; Laversanne, M.; Ferlay, J.; Bray, F. Cervical cancer in Africa, Latin America and the Caribbean and Asia: Regional inequalities and changing trends. Int. J. Cancer, 2017, 141(10), 1997-2001. doi: 10.1002/ijc.30901 PMID: 28734013
- Zhang, S.; Xu, H.; Zhang, L.; Qiao, Y. Cervical cancer: Epidemiology, risk factors and screening. Chin. J. Cancer Res., 2020, 32(6), 720-728. doi: 10.21147/j.issn.1000-9604.2020.06.05 PMID: 33446995
- Brüggmann, D.; Quinkert-Schmolke, K.; Jaque, J.M.; Quarcoo, D.; Bohlmann, M.K.; Klingelhöfer, D.; Groneberg, D.A. Global cervical cancer research: A scientometric density equalizing mapping and socioeconomic analysis. PLoS One, 2022, 17(1), e0261503. doi: 10.1371/journal.pone.0261503 PMID: 34990465
- Castle, P.E.; Einstein, M.H.; Sahasrabuddhe, V.V. Cervical cancer prevention and control in women living with human immunodeficiency virus. CA Cancer J. Clin., 2021, 71(6), 505-526. doi: 10.3322/caac.21696 PMID: 34499351
- Cohen, P.A.; Jhingran, A.; Oaknin, A.; Denny, L. Cervical cancer. Lancet, 2019, 393(10167), 169-182. doi: 10.1016/S0140-6736(18)32470-X PMID: 30638582
- Cubie, H.A.; Campbell, C. Cervical cancer screening The challenges of complete pathways of care in low-income countries: Focus on Malawi. Womens Health, 2020, 16, 1745506520914804. doi: 10.1177/1745506520914804 PMID: 32364058
- Lechner, M.; Liu, J.; Masterson, L.; Fenton, T.R. HPV-associated oropharyngeal cancer: Epidemiology, molecular biology and clinical management. Nat. Rev. Clin. Oncol., 2022, 19(5), 306-327. doi: 10.1038/s41571-022-00603-7 PMID: 35105976
- Namdari, M.; Eatemadi, A.; Soleimaninejad, M.; Hammed, A.T. A brief review on the application of nanoparticle enclosed herbal medicine for the treatment of infective endocarditis. Biomed. Pharmacother., 2017, 87, 321-331. doi: 10.1016/j.biopha.2016.12.099 PMID: 28064105
- Shafey, A.M.E. Green synthesis of metal and metal oxide nanoparticles from plant leaf extracts and their applications: A review. Green Proc. Syn., 2020, 9(1), 304-339. doi: 10.1515/gps-2020-0031
- Gorain, B.; Pandey, M.; Leng, N.H.; Yan, C.W.; Nie, K.W.; Kaur, S.J.; Marshall, V.; Sisinthy, S.P.; Panneerselvam, J.; Molugulu, N.; Kesharwani, P.; Choudhury, H. Advanced drug delivery systems containing herbal components for wound healing. Int. J. Pharm., 2022, 617, 121617. doi: 10.1016/j.ijpharm.2022.121617 PMID: 35218900
- Chavda, V.P.; Patel, A.B.; Mistry, K.J.; Suthar, S.F.; Wu, Z.X.; Chen, Z.S.; Hou, K. Nano-drug delivery systems entrapping natural bioactive compounds for cancer: Recent progress and future challenges. Front. Oncol., 2022, 12, 867655. doi: 10.3389/fonc.2022.867655 PMID: 35425710
- Tiwari, R.; Latheef, S.K.; Ahmed, I.; Iqbal, H.M.N.; Bule, M.H.; Dhama, K.; Samad, H.A.; Karthik, K.; Alagawany, M.; El-Hack, M.E.A.; Yatoo, M.I.; Farag, M.R. Herbal immunomodulators-a remedial panacea for designing and developing effective drugs and medicines: current scenario and future prospects. Curr. Drug Metab., 2018, 19(3), 264-301. doi: 10.2174/1389200219666180129125436 PMID: 29380694
- Martínez, R.C.J.; Tarhini, M.; Badri, W.; Miladi, K.; Greige-Gerges, H.; Nazari, Q.A.; Galindo, R.S.A.; Román, R.Á.; Fessi, H.; Elaissari, A. Nanoprecipitation process: From encapsulation to drug delivery. Int. J. Pharm., 2017, 532(1), 66-81. doi: 10.1016/j.ijpharm.2017.08.064 PMID: 28801107
- Jalili, A.; Bagherifar, R.; Nokhodchi, A.; Conway, B.; Javadzadeh, Y. Current advances in nanotechnology-mediated delivery of herbal and plant-derived medicines. Adv. Pharm. Bull., 2023, 13(4), 712-722. doi: 10.34172/apb.2023.087 PMID: 38022806
- Rodrigues, F.C.; Devi, N.G.; Thakur, G. Role of targeted drug delivery in cancer therapeutics. In: Advances and Challenges in Pharmaceutical Technology; , 2021; p. 327-354. doi: 10.1016/B978-0-12-820043-8.00008-6
- Gujar, K.; Wairkar, S. Nanocrystal technology for improving therapeutic efficacy of flavonoids. Phytomedicine, 2020, 71, 153240. doi: 10.1016/j.phymed.2020.153240 PMID: 32450461
- Shruthi, V. Formulation and charecterization of artemisinin nanoparticles doctoral dissertation. Jaya College of Paramedical Sciences; Thiruninravur, Chennai, 2019.
- Takke, A.; Shende, P. Nanotherapeutic silibinin: An insight of phytomedicine in healthcare reformation. Nanomedicine, 2019, 21, 102057. doi: 10.1016/j.nano.2019.102057 PMID: 31340181
- Paul, A.T.; Jindal, A. Nano-natural products as anticancer agents. Anticancer Plants: Clinical Trials and Nanotec., 2017, 3, 27-50.
- Zafar, S.; Jain, G.K.; Ahmad, F.J. Nanomedicine approaches for the delivery of herbal anticancer drugs. Nanomed. Bioactives: Healthcare Appl., 2020, 201-229.
- Patil, A.V. Development and characterization of nanoparticulate formulations of water-insoluble anticancer drug. In: Doctoral dissertation; Rajiv Gandhi University of Health Sciences India, 2011.
- Noor, N.S.; Kaus, N.H.M.; Szewczuk, M.R.; Hamid, S.B.S. Formulation, characterization and cytotoxicity effects of novel thymoquinone-PLGA-PF68 nanoparticles. Int. J. Mol. Sci., 2021, 22(17), 9420. doi: 10.3390/ijms22179420 PMID: 34502328
- Mathur, M. Achievements, constraints and gaps of nano-techniques per tains to augmenting herbal drug efficacy. Medicinal Plants Int. J. Phytomed. Related Industries, 2016, 8(3), 171-198. doi: 10.5958/0975-6892.2016.00031.9
- Jahangir, M.A.; Zafar, A.; Khan, S.; Kala, C.; Muheem, A.; Taleuzzaman, M. Phytonutrients and technological development in formulations. J. Pharm. Res. Sci. Tech., 2022, 6(1), 38-66. doi: 10.31531/jprst.1000159
- Murthy, K.C.; Monika, P.; Jayaprakasha, G.K.; Patil, B.S. Nanoencapsulation: An advanced nanotechnological approach to enhance the biological efficacy of curcumin. American Chemical Society, In Advances in plant Phenolics: From chemistry to human health, 2018, 383-405.
- Sharma, S.; Hafeez, A.; Usmani, S.A. Nanoformulation approaches of naringenin- an updated review on leveraging pharmaceutical and preclinical attributes from the bioactive. J. Drug Deliv. Sci. Technol., 2022, 76, 103724. doi: 10.1016/j.jddst.2022.103724
- Gajbhiye, K.R.; Salve, R.; Narwade, M.; Sheikh, A.; Kesharwani, P.; Gajbhiye, V. Lipid polymer hybrid nanoparticles: A custom-tailored next-generation approach for cancer therapeutics. Mol. Cancer, 2023, 22(1), 160. doi: 10.1186/s12943-023-01849-0 PMID: 37784179
- Rajpoot, K. Solid lipid nanoparticles: A promising nanomaterial in drug delivery. Curr. Pharm. Des., 2019, 25(37), 3943-3959. doi: 10.2174/1381612825666190903155321 PMID: 31481000
- Parmar, G.R.; Sailor, G.U. Nanotechnological approach for design and delivery of phytopharmaceuticals. Nanocarriers: Drug Delivery System: An Evidence Based Approach, 2021, 281-301.
- Saraf, S.; Gupta, A.; Alexander, A.; Khan, J.; Jangde, M.; Saraf, S. Advancements and avenues in nanophytomedicines for better pharmacological responses. J. Nanosci. Nanotechnol., 2015, 15(6), 4070-4079. doi: 10.1166/jnn.2015.10333 PMID: 26369014
- Li, Z.; Zheng, W.; Wang, H.; Cheng, Y.; Fang, Y.; Wu, F.; Sun, G.; Sun, G.; Lv, C.; Hui, B. Application of animal models in cancer research: Recent progress and future prospects. Cancer Manag. Res., 2021, 13, 2455-2475. doi: 10.2147/CMAR.S302565 PMID: 33758544
- Blidisel, A.; Marcovici, I.; Coricovac, D.; Hut, F.; Dehelean, C.A.; Cretu, O.M. Experimental models of hepatocellular carcinoma. Cancers, 2021, 13(15), 3651. doi: 10.3390/cancers13153651 PMID: 34359553
- Gaspar, T.B.; Lopes, J.M.; Soares, P.; Vinagre, J. An update on genetically engineered mouse models of pancreatic neuroendocrine neoplasms. Endocr. Relat. Cancer, 2022, 29(12), R191-R208. doi: 10.1530/ERC-22-0166 PMID: 36197786
- Sur, S.; Ray, R.B. Bitter melon (momordica charantia), a nutraceutical approach for cancer prevention and therapy. Cancers, 2020, 12(8), 2064. doi: 10.3390/cancers12082064 PMID: 32726914
- Seltzer, E.S.; Watters, A.K.; MacKenzie, D., Jr; Granat, L.M.; Zhang, D. Cannabidiol (CBD) as a promising anti-cancer drug. Cancers, 2020, 12(11), 3203. doi: 10.3390/cancers12113203 PMID: 33143283
- Han, C.C.; Wang, Y. Anti-inflammation effects of Sophora flavescens nanoparticles. Inflammation, 2012, 35(4), 1262-1268. doi: 10.1007/s10753-012-9437-6 PMID: 22327863
- Sivakumar, S.; Subban, M.; Chinnasamy, R.; Chinnaperumal, K.; Nakouti, I.; El-Sheikh, M.A.; Shaik, J.P. Green synthesized silver nanoparticles using Andrographis macrobotrys Nees leaf extract and its potential to antibacterial, antioxidant, anti-inflammatory and lung cancer cells cytotoxicity effects. Inorg. Chem. Commun., 2023, 153, 110787. doi: 10.1016/j.inoche.2023.110787
- Siddique, S.; Chow, J.C.L. Gold nanoparticles for drug delivery and cancer therapy. Appl. Sci., 2020, 10(11), 3824. doi: 10.3390/app10113824
- Shen, Z.; Wu, A.; Chen, X. Iron oxide nanoparticle based contrast agents for magnetic resonance imaging. Mol. Pharm., 2017, 14(5), 1352-1364. doi: 10.1021/acs.molpharmaceut.6b00839 PMID: 27776215
- Tyagi, P.K.; Arya, A.; Mazumder, A.M.; Tyagi, S. Development of copper nanoparticles and their prospective uses as antioxidants, antimicrobials, anticancer agents in the pharmaceutical sector. Precis. Nanomed., 2023, 6(2), 1048-1065. doi: 10.33218/001c.83932
- Anjum, S.; Hashim, M.; Malik, S.A.; Khan, M.; Lorenzo, J.M.; Abbasi, B.H.; Hano, C. Recent advances in zinc oxide nanoparticles (ZnO NPs) for cancer diagnosis, target drug delivery, and treatment. Cancers, 2021, 13(18), 4570. doi: 10.3390/cancers13184570 PMID: 34572797
- Tinajero-Díaz, E.; Salado-Leza, D.; Gonzalez, C.; Martínez Velázquez, M.; López, Z.; Bravo-Madrigal, J.; Knauth, P.; Flores-Hernández, F.Y.; Herrera-Rodríguez, S.E.; Navarro, R.E.; Cabrera-Wrooman, A.; Krötzsch, E.; Carvajal, Z.Y.G.; Hernández-Gutiérrez, R. Green metallic nanoparticles for cancer therapy: Evaluation models and cancer applications. Pharmaceutics, 2021, 13(10), 1719. doi: 10.3390/pharmaceutics13101719 PMID: 34684012
- Păduraru, D.N.; Ion, D.; Niculescu, A.G.; Mușat, F.; Andronic, O.; Grumezescu, A.M.; Bolocan, A. Recent developments in metallic nanomaterials for cancer therapy, diagnosing and imaging applications. Pharmaceutics, 2022, 14(2), 435. doi: 10.3390/pharmaceutics14020435 PMID: 35214167
- Huang, Y.; Xiao, D.; Burton-Freeman, B.M.; Edirisinghe, I. Chemical changes of bioactive phytochemicals during thermal processing. Shipin Kexue, 2016, 1-9. doi: 10.1016/B978-0-08-100596-5.03055-9
- Ahmad, F.; Ashraf, N.; Ashraf, T.; Zhou, R.B.; Yin, D.C. Biological synthesis of metallic nanoparticles (MNPs) by plants and microbes: Their cellular uptake, biocompatibility, and biomedical applications. Appl. Microbiol. Biotechnol., 2019, 103(7), 2913-2935. doi: 10.1007/s00253-019-09675-5 PMID: 30778643
- Ullah Khan, S.; Saleh, T.A.; Wahab, A.; Ullah Khan, M.H.; Khan, D.; Ullah Khan, W.; Rahim, A.; Kamal, S.; Ullah Khan, F.; Fahad, S. Nanosilver: New ageless and versatile biomedical therapeutic scaffold. Int. J. Nanomed., 2018, 13, 733-762. doi: 10.2147/IJN.S153167 PMID: 29440898
- Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; Rodriguez-Torres, M.P.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; Habtemariam, S.; Shin, H.S. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnol., 2018, 16(1), 71. doi: 10.1186/s12951-018-0392-8 PMID: 30231877
- Jeyaraj, M.; Arun, R.; Sathishkumar, G. MubarakAli, D.; Rajesh, M.; Sivanandhan, G.; Kapildev, G.; Manickavasagam, M.; Thajuddin, N.; Ganapathi, A. An evidence on G2/M arrest, DNA damage and caspase mediated apoptotic effect of biosynthesized gold nanoparticles on human cervical carcinoma cells (HeLa). Mater. Res. Bull., 2014, 52, 15-24. doi: 10.1016/j.materresbull.2013.12.060
- Ratan, Z.A.; Haidere, M.F.; Nurunnabi, M.; Shahriar, S.M.; Ahammad, A.J.S.; Shim, Y.Y.; Reaney, M.J.T.; Cho, J.Y. Green chemistry synthesis of silver nanoparticles and their potential anticancer effects. Cancers, 2020, 12(4), 855. doi: 10.3390/cancers12040855 PMID: 32244822
- Dey, A.; Yogamoorthy, A.; Sundarapandian, S.M. Green synthesis of gold nanoparticles and evaluation of its cytotoxic property against colon cancer cell line. Res. J. Life Sci. Bioinform. Pharm. Chem. Sci., 2018, 4, 1-17.
- Cheeseman, S.; Christofferson, A.J.; Kariuki, R.; Cozzolino, D.; Daeneke, T.; Crawford, R.J.; Truong, V.K.; Chapman, J.; Elbourne, A. Antimicrobial metal nanomaterials: From passive to stimuli‐activated applications. Adv. Sci., 2020, 7(10), 1902913. doi: 10.1002/advs.201902913 PMID: 32440470
- Sanità, G.; Carrese, B.; Lamberti, A. Nanoparticle surface functionalization: How to improve biocompatibility and cellular internalization. Front. Mol. Biosci., 2020, 7, 587012. doi: 10.3389/fmolb.2020.587012 PMID: 33324678
- Ke, Y.; Al Aboody, M.S.; Alturaiki, W.; Alsagaby, S.A.; Alfaiz, F.A.; Veeraraghavan, V.P.; Mickymaray, S. Photosynthesized gold nanoparticles from Catharanthus roseus induces caspase-mediated apoptosis in cervical cancer cells (HeLa). Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 1938-1946. doi: 10.1080/21691401.2019.1614017 PMID: 31099261
- Jiang, J.; Pi, J.; Cai, J. The advancing of zinc oxide nanoparticles for biomedical applications. Bioinorg. Chem. Appl., 2018, 2018, 1-18. doi: 10.1155/2018/1062562 PMID: 30073019
- Khandel, P.; Yadaw, R.K.; Soni, D.K.; Kanwar, L.; Shahi, S.K. Biogenesis of metal nanoparticles and their pharmacological applications: present status and application prospects. J. Nanostructure Chem., 2018, 8(3), 217-254. doi: 10.1007/s40097-018-0267-4
- Selim, Y.A. Green synthesis of zinc oxide nanoparticles using aqueous extract of Deverratortuosa and their cytotoxic activities. Sci. Rep., 2020, 10(1), 3445. doi: 10.1038/s41598-020-60541-1 PMID: 32103090
- Siddiqi, K.S.; Husen, A. Current status of plant metabolite-based fabrication of copper/copper oxide nanoparticles and their applications: A review. Biomater. Res., 2020, 24(1), 11. doi: 10.1186/s40824-020-00188-1 PMID: 32514371
- Cuong, H.N.; Pansambal, S.; Ghotekar, S.; Oza, R.; Thanh Hai, N.T.; Viet, N.M.; Nguyen, V.H. New frontiers in the plant extract mediated biosynthesis of copper oxide (CuO) nanoparticles and their potential applications: A review. Environ. Res., 2022, 203, 111858. doi: 10.1016/j.envres.2021.111858 PMID: 34389352
- Ying, S.; Guan, Z.; Ofoegbu, P.C.; Clubb, P.; Rico, C.; He, F.; Hong, J. Green synthesis of nanoparticles: Current developments and limitations. Environ. Technol. Innovation, 2022, 26, 102336. doi: 10.1016/j.eti.2022.102336
- Chandra, H.; Kumari, P.; Bontempi, E.; Yadav, S. Medicinal plants: Treasure trove for green synthesis of metallic nanoparticles and their biomedical applications. Biocatal. Agric. Biotechnol., 2020, 24, 101518. doi: 10.1016/j.bcab.2020.101518
- Jain, S.; Saxena, N.; Sharma, M.K.; Chatterjee, S. Metal nanoparticles and medicinal plants: Present status and future prospects in cancer therapy. Mater. Today Proc., 2020, 31, 662-673. doi: 10.1016/j.matpr.2020.06.602
- S M. S.; Naveen, N.R.; Rao, G.K.; Gopan, G.; Chopra, H.; Park, M.N.; Alshahrani, M.M.; Jose, J.; Emran, T.B.; Kim, B. A spotlight on alkaloid nanoformulations for the treatment of lung cancer. Front. Oncol., 2022, 12, 994155. doi: 10.3389/fonc.2022.994155 PMID: 36330493
- Shang, Y.; Hasan, M.K.; Ahammed, G.J.; Li, M.; Yin, H.; Zhou, J. Applications of nanotechnology in plant growth and crop protection: A review. Molecules, 2019, 24(14), 2558-2580. doi: 10.3390/molecules24142558 PMID: 31337070
- Ramezani Farani, M.; Azarian, M.; Heydari Sheikh Hossein, H.; Abdolvahabi, Z.; Mohammadi Abgarmi, Z.; Moradi, A.; Mousavi, S.M.; Ashrafizadeh, M.; Makvandi, P.; Saeb, M.R.; Rabiee, N. Folic acid-adorned curcumin-loaded iron oxide nanoparticles for cervical cancer. ACS Appl. Bio Mater., 2022, 5(3), 1305-1318. doi: 10.1021/acsabm.1c01311 PMID: 35201760
- Zhao, Z.; Anselmo, A.C.; Mitragotri, S. Viral vector‐based gene therapies in the clinic. Bioeng. Transl. Med., 2022, 7(1), e10258. doi: 10.1002/btm2.10258 PMID: 35079633
- Santiago-Ortiz, J.L.; Schaffer, D.V. Adeno-associated virus (AAV) vectors in cancer gene therapy. J. Control. Release, 2016, 240, 287-301. doi: 10.1016/j.jconrel.2016.01.001 PMID: 26796040
- Kaiser, J. How safe is a popular gene therapy vector? Science, 2020, 367(6474), 131. doi: 10.1126/science.367.6474.131 PMID: 31919200
- Kaeppel, C.; Beattie, S.G.; Fronza, R.; van Logtenstein, R.; Salmon, F.; Schmidt, S.; Wolf, S.; Nowrouzi, A.; Glimm, H.; von Kalle, C.; Petry, H.; Gaudet, D.; Schmidt, M. A largely random AAV integration profile after LPLD gene therapy. Nat. Med., 2013, 19(7), 889-891. doi: 10.1038/nm.3230 PMID: 23770691
- Chowdhury, E.A.; Meno-Tetang, G.; Chang, H.Y.; Wu, S.; Huang, H.W.; Jamier, T.; Chandran, J.; Shah, D.K. Current progress and limitations of AAV mediated delivery of protein therapeutic genes and the importance of developing quantitative pharmacokinetic/pharmacodynamic (PK/PD) models. Adv. Drug Deliv. Rev., 2021, 170, 214-237. doi: 10.1016/j.addr.2021.01.017 PMID: 33486008
- Stanicki, D.; Vangijzegem, T.; Ternad, I.; Laurent, S. An update on the applications and characteristics of magnetic iron oxide nanoparticles for drug delivery. Expert Opin. Drug Deliv., 2022, 19(3), 321-335. doi: 10.1080/17425247.2022.2047020 PMID: 35202551
- Luther, D.C.; Huang, R.; Jeon, T.; Zhang, X.; Lee, Y.W.; Nagaraj, H.; Rotello, V.M. Delivery of drugs, proteins, and nucleic acids using inorganic nanoparticles. Adv. Drug Deliv. Rev., 2020, 156, 188-213. doi: 10.1016/j.addr.2020.06.020 PMID: 32610061
- Tong, S.; Zhu, H.; Bao, G. Magnetic iron oxide nanoparticles for disease detection and therapy. Mater. Today, 2019, 31, 86-99. doi: 10.1016/j.mattod.2019.06.003 PMID: 32831620
- Hola, K.; Markova, Z.; Zoppellaro, G.; Tucek, J.; Zboril, R. Tailored functionalization of iron oxide nanoparticles for MRI, drug delivery, magnetic separation and immobilization of biosubstances. Biotechnol. Adv., 2015, 33(6), 1162-1176. doi: 10.1016/j.biotechadv.2015.02.003 PMID: 25689073
- Luo, X.; Zhao, W.; Li, B.; Zhang, X.; Zhang, C.; Bratasz, A.; Deng, B.; McComb, D.W.; Dong, Y. Co-delivery of mRNA and SPIONs through amino-ester nanomaterials. Nano Res., 2018, 11(10), 5596-5603. doi: 10.1007/s12274-018-2082-0 PMID: 31737222
- Zhang, Y.; Fu, X.; Jia, J.; Wikerholmen, T.; Xi, K.; Kong, Y.; Wang, J.; Chen, H.; Ma, Y.; Li, Z.; Wang, C.; Qi, Q.; Thorsen, F.; Wang, J.; Cui, J.; Li, X.; Ni, S. Glioblastoma therapy using codelivery of cisplatin and glutathione peroxidase targeting siRNA from iron oxide nanoparticles. ACS Appl. Mater. Interfaces, 2020, 12(39), 43408-43421. doi: 10.1021/acsami.0c12042 PMID: 32885649
- Yang, Z.; Duan, J.; Wang, J.; Liu, Q.; Shang, R.; Yang, X.; Lu, P.; Xia, C.; Wang, L.; Dou, K. Superparamagnetic iron oxide nanoparticles modified with polyethylenimine and galactose for siRNA targeted delivery in hepatocellular carcinoma therapy. Int. J. Nanomedicine, 2018, 13, 1851-1865. doi: 10.2147/IJN.S155537 PMID: 29618926
- Revia, R.A.; Stephen, Z.R.; Zhang, M. Theranostic nanoparticles for RNA-Based cancer treatment. Acc. Chem. Res., 2019, 52(6), 1496-1506. doi: 10.1021/acs.accounts.9b00101 PMID: 31135134
- Song, Y.; Li, D.; Lu, Y.; Jiang, K.; Yang, Y.; Xu, Y.; Dong, L.; Yan, X.; Ling, D.; Yang, X.; Yu, S.H. Ferrimagnetic mPEG- b -PHEP copolymer micelles loaded with iron oxide nanocubes and emodin for enhanced magnetic hyperthermiachemotherapy. Natl. Sci. Rev., 2020, 7(4), 723-736. doi: 10.1093/nsr/nwz201 PMID: 34692091
- Ulbrich, K.; Holá, K.; ubr, V.; Bakandritsos, A.; Tuček, J.; Zbořil, R. Targeted drug delivery with polymers and magnetic nanoparticles: Covalent and noncovalent approaches, release control, and clinical studies. Chem. Rev., 2016, 116(9), 5338-5431. doi: 10.1021/acs.chemrev.5b00589 PMID: 27109701
- Lee, G.Y.; Qian, W.P.; Wang, L.; Wang, Y.A.; Staley, C.A.; Satpathy, M.; Nie, S.; Mao, H.; Yang, L. Theranostic nanoparticles with controlled release of gemcitabine for targeted therapy and MRI of pancreatic cancer. ACS Nano, 2013, 7(3), 2078-2089. doi: 10.1021/nn3043463 PMID: 23402593
- Lee, N.; Yoo, D.; Ling, D.; Cho, M.H.; Hyeon, T.; Cheon, J. Iron oxide-based nanoparticles for multimodal imaging and magnetoresponsive therapy. Chem. Rev., 2015, 115(19), 10637-10689. doi: 10.1021/acs.chemrev.5b00112 PMID: 26250431
- Gavilán, H.; Avugadda, S.K.; Fernández-Cabada, T.; Soni, N.; Cassani, M.; Mai, B.T.; Chantrell, R.; Pellegrino, T. Magnetic nanoparticles and clusters for magnetic hyperthermia: Optimizing their heat performance and developing combinatorial therapies to tackle cancer. Chem. Soc. Rev., 2021, 50(20), 11614-11667. doi: 10.1039/D1CS00427A PMID: 34661212
- Li, Y.; Chen, W.; Qi, Y.; Wang, S.; Li, L.; Li, W.; Xie, T.; Zhu, H.; Tang, Z.; Zhou, M. H2S-Scavenged and activated iron oxide−hydroxide nanospindles for MRI−guided photothermal therapy and ferroptosis in colon cancer. Small, 2020, 16(37), 2001356. doi: 10.1002/smll.202001356 PMID: 32789963
- Laurent, S.; Saei, A.A.; Behzadi, S.; Panahifar, A.; Mahmoudi, M. Superparamagnetic iron oxide nanoparticles for delivery of therapeutic agents: Opportunities and challenges. Expert Opin. Drug Deliv., 2014, 11(9), 1449-1470. doi: 10.1517/17425247.2014.924501 PMID: 24870351
- Vázquez-Núñez, E.; Molina-Guerrero, C.E.; Peña-Castro, J.M.; Fernández-Luqueño, F.; de la Rosa-Álvarez, M.G. Use of nanotechnology for the bioremediation of contaminants: A review. Processes, 2020, 8(7), 826. doi: 10.3390/pr8070826
- Smith, R.A.; Andrews, K.S.; Brooks, D.; Fedewa, S.A.; Manassaram-Baptiste, D.; Saslow, D.; Wender, R.C. Cancer screening in the United States, 2019: A review of current American Cancer Society guidelines and current issues in cancer screening. CA Cancer J. Clin., 2019, 69(3), 184-210. doi: 10.3322/caac.21557 PMID: 30875085
- Benelmekki, M. An introduction to nanoparticles and nanotechnology. In: Designing hybrid nanoparticles; Morgan & Claypool Publishers, 2015. doi: 10.1088/978-1-6270-5469-0ch1
- Shipunova, V.O.; Belova, M.M.; Kotelnikova, P.A.; Shilova, O.N.; Mirkasymov, A.B.; Danilova, N.V.; Komedchikova, E.N.; Popovtzer, R.; Deyev, S.M.; Nikitin, M.P. Photothermal therapy with HER2-targeted silver nanoparticles leading to cancer remission. Pharmaceutics, 2022, 14(5), 1013. doi: 10.3390/pharmaceutics14051013 PMID: 35631598
- Chaudhary, V. Sonu; Chowdhury, R.; Thukral, P.; Pathania, D.; Saklani, S.; Lucky; Rustagi, S.; Gautam, A.; Mishra, Y.K.; Singh, P.; Kaushik, A. Biogenic green metal nano systems as efficient anti-cancer agents. Environ. Res., 2023, 229, 115933. doi: 10.1016/j.envres.2023.115933 PMID: 37080272
- Li, X.; Chen, L.; Luan, S.; Zhou, J.; Xiao, X.; Yang, Y.; Mao, C.; Fang, P.; Chen, L.; Zeng, X.; Gao, H. The development and progress of nanomedicine for oesophagal cancer diagnosis and treatment. In: Seminars in cancer biology; Academic Press, 2022; Vol. 86, pp. 873-885.
- Muhamad, M.; Ab Rahim, N.; Wan Omar, W.A.; Nik Mohamed Kamal, N.N.S. Cytotoxicity, and genotoxicity of biogenic silver nanoparticles in A549 and BEAS-2B cell lines. Bioinorg. Chem. Appl., 2022, 2022, 8546079. doi: 10.1155/2022/8546079 PMID: 36193250
- Kumar, H.; Bhardwaj, K.; Nepovimova, E.; Kuča, K.; Singh Dhanjal, D.; Bhardwaj, S.; Bhatia, S.K.; Verma, R.; Kumar, D. Antioxidant functionalized nanoparticles: A combat against oxidative stress. Nanomaterials, 2020, 10(7), 1334. doi: 10.3390/nano10071334 PMID: 32650608
- Baranwal, A.; Mahato, K.; Srivastava, A.; Maurya, P.K.; Chandra, P. Phytofabricated metallic nanoparticles and their clinical applications. RSC Advances, 2016, 6(107), 105996-106010. doi: 10.1039/C6RA23411A
- Rasool, M.; Malik, A.; Waquar, S.; Arooj, M.; Zahid, S.; Asif, M.; Shaheen, S.; Hussain, A.; Ullah, H.; Gan, S.H. New challenges in the use of nanomedicine in cancer therapy. Bioengineered, 2022, 13(1), 759-773. doi: 10.1080/21655979.2021.2012907 PMID: 34856849
- Shamaila, S.; Sajjad, A.K.L.; Ryma, N-A.; Farooqi, S.A.; Jabeen, N.; Majeed, S.; Farooq, I. Advancements in nanoparticle fabrication by hazard free eco-friendly green routes. Appl. Mater. Today, 2016, 5, 150-199. doi: 10.1016/j.apmt.2016.09.009
Қосымша файлдар
