An Expedition on Synthetic Methodology of FDA-approved Anticancer Drugs (2018-2021)
- Authors: Vishakha S.1, Navneesh N.1, Kurmi B.D.2, Das Gupta G.3, Verma S.K.1, Jain A.4, Patel P.1
-
Affiliations:
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy
- Department of Pharmaceutics, ISF College of Pharmacy,
- Department of Pharmaceutics, ISF College of Pharmacy
- Department of Pharmaceutical Sciences, Texas A & M University, Kingsville
- Issue: Vol 24, No 8 (2024)
- Pages: 590-626
- Section: Oncology
- URL: https://snv63.ru/1871-5206/article/view/644281
- DOI: https://doi.org/10.2174/0118715206259585240105051941
- ID: 644281
Cite item
Full Text
Abstract
New drugs being established in the market every year produce specified structures for selective biological targeting. With medicinal insights into molecular recognition, these begot molecules open new rooms for designing potential new drug molecules. In this review, we report the compilation and analysis of a total of 56 drugs including 33 organic small molecules (Mobocertinib, Infigratinib, Sotorasib, Trilaciclib, Umbralisib, Tepotinib, Relugolix, Pralsetinib, Decitabine, Ripretinib, Selpercatinib, Capmatinib, Pemigatinib, Tucatinib, Selumetinib, Tazemetostat, Avapritinib, Zanubrutinib, Entrectinib, Pexidartinib, Darolutamide, Selinexor, Alpelisib, Erdafitinib, Gilteritinib, Larotrectinib, Glasdegib, Lorlatinib, Talazoparib, Dacomitinib, Duvelisib, Ivosidenib, Apalutamide), 6 metal complexes (Edotreotide Gallium Ga-68, fluoroestradiol F-18, Cu 64 dotatate, Gallium 68 PSMA-11, Piflufolastat F-18, 177Lu (lutetium)), 16 macromolecules as monoclonal antibody conjugates (Brentuximabvedotin, Amivantamab-vmjw, Loncastuximabtesirine, Dostarlimab, Margetuximab, Naxitamab, Belantamabmafodotin, Tafasitamab, Inebilizumab, SacituzumabGovitecan, Isatuximab, Trastuzumab, Enfortumabvedotin, Polatuzumab, Cemiplimab, Mogamulizumab) and 1 peptide enzyme (Erwiniachrysanthemi-derived asparaginase) approved by the U.S. FDA between 2018 to 2021. These drugs act as anticancer agents against various cancer types, especially non-small cell lung, lymphoma, breast, prostate, multiple myeloma, neuroendocrine tumor, cervical, bladder, cholangiocarcinoma, myeloid leukemia, gastrointestinal, neuroblastoma, thyroid, epithelioid and cutaneous squamous cell carcinoma. The review comprises the key structural features, approval times, target selectivity, mechanisms of action, therapeutic indication, formulations, and possible synthetic approaches of these approved drugs. These crucial details will benefit the scientific community for futuristic new developments in this arena.
About the authors
S. Vishakha
Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy
Email: info@benthamscience.net
N. Navneesh
Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy
Email: info@benthamscience.net
Balak Das Kurmi
Department of Pharmaceutics, ISF College of Pharmacy,
Email: info@benthamscience.net
Ghanshyam Das Gupta
Department of Pharmaceutics, ISF College of Pharmacy
Email: info@benthamscience.net
Sant Kumar Verma
Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy
Email: info@benthamscience.net
Ankit Jain
Department of Pharmaceutical Sciences, Texas A & M University, Kingsville
Email: info@benthamscience.net
Preeti Patel
Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy
Author for correspondence.
Email: info@benthamscience.net
References
- Mullard, A. 2014 FDA drug approvals. Nat. Rev. Drug Discov., 2015, 14(2), 77-81. doi: 10.1038/nrd4545 PMID: 25633781
- Kalra, B.S.; Batta, A.; Khirasaria, R. Trends in FDA drug approvals over last 2 decades: An observational study. J. Family Med. Prim. Care, 2020, 9(1), 105-114. doi: 10.4103/jfmpc.jfmpc_578_19 PMID: 32110574
- Gad, S.C.; Sullivan, D.W. Tissue, cell, and gene therapy. In: Drug Safety Evaluation; , 2023; pp. 789-800.
- Ramezankhani, R.; Torabi, S.; Minaei, N.; Madani, H.; Rezaeiani, S.; Hassani, S.N.; Gee, A.P.; Dominici, M.; Silva, D.N.; Baharvand, H.; Hajizadeh-Saffar, E. Two decades of global progress in authorized advanced therapy medicinal products: An emerging revolution in therapeutic strategies. Front. Cell Dev. Biol., 2020, 8, 547653. doi: 10.3389/fcell.2020.547653 PMID: 33392179
- Punia, A.; Malhotra, H. International regulatory processes and policies for innovator biologics, biosimilars, and biobetters. In: Biologics, Biosimilars, and Biobetters: An Introduction for Pharmacists; Physicians, and Other Health Practitioners, 2020; pp. 159-176. doi: 10.1002/9781119564690.ch10
- Pinnow, E.; Amr, S.; Bentzen, S.M.; Brajovic, S.; Hungerford, L.; St George, D.M.; Dal Pan, G. Postmarket safety outcomes for new molecular entity (NME) drugs approved by the Food and Drug Administration between 2002 and 2014. Clin. Pharmacol. Ther., 2018, 104(2), 390-400. doi: 10.1002/cpt.944 PMID: 29266187
- Sacks, L.V.; Shamsuddin, H.H.; Yasinskaya, Y.I.; Bouri, K.; Lanthier, M.L.; Sherman, R.E. Scientific and regulatory reasons for delay and denial of FDA approval of initial applications for new drugs, 2000-2012. JAMA, 2014, 311(4), 378-384. doi: 10.1001/jama.2013.282542 PMID: 24449316
- Zhong, H.; Chan, G.; Hu, Y.; Hu, H.; Ouyang, D. A comprehensive map of FDA-approved pharmaceutical products. Pharmaceutics, 2018, 10(4), 263. doi: 10.3390/pharmaceutics10040263 PMID: 30563197
- Hussaarts, L.; Mühlebach, S.; Shah, V.P.; McNeil, S.; Borchard, G.; Flühmann, B.; Weinstein, V.; Neervannan, S.; Griffiths, E.; Jiang, W.; Wolff-Holz, E.; Crommelin, D.J.A.; de Vlieger, J.S.B. Equivalence of complex drug products: Advances in and challenges for current regulatory frameworks. Ann. N. Y. Acad. Sci., 2017, 1407(1), 39-49. doi: 10.1111/nyas.13347 PMID: 28445611
- Huang, R.; Southall, N.; Wang, Y.; Yasgar, A.; Shinn, P.; Jadhav, A.; Nguyen, D.T.; Austin, C.P. The NCGC pharmaceutical collection: A comprehensive resource of clinically approved drugs enabling repurposing and chemical genomics. Sci. Transl. Med., 2011, 3(80), 80ps16. doi: 10.1126/scitranslmed.3001862 PMID: 21525397
- Böhm, M.; Frey, N.; Giannitsis, E.; Sliwa, K.; Zeiher, A.M. Coronavirus Disease 2019 (COVID-19) and its implications for cardiovascular care: Expert document from the German Cardiac Society and the World Heart Federation. Clin. Res. Cardiol., 2020, 109(12), 1446-1459. doi: 10.1007/s00392-020-01656-3 PMID: 32462267
- Zhang, H.; Wang, L.; Chen, Y.; Wu, Q.; Chen, G.; Shen, X.; Wang, Q.; Yan, Y.; Yu, Y.; Zhong, Y.; Wang, X.; Chua, M.L.K.; Xie, C. Outcomes of novel coronavirus disease 2019 (COVID‐19) infection in 107 patients with cancer from Wuhan, China. Cancer, 2020, 126(17), 4023-4031. doi: 10.1002/cncr.33042 PMID: 32573776
- Tiwari, D.; Bhati, B.S.; Al-Turjman, F.; Nagpal, B. Pandemic coronavirus disease (COVID‐19): World effects analysis and prediction using machine‐learning techniques. Expert Syst., 2022, 39(3), e12714. doi: 10.1111/exsy.12714 PMID: 34177035
- Zheng, W.; Xiang, L.; Fadare, O.; Kong, B. A proposed model for endometrial serous carcinogenesis. Am. J. Surg. Pathol., 2011, 35(1), e1-e14. doi: 10.1097/PAS.0b013e318202772e PMID: 21164282
- Darian-Smith, E. Dying for the economy: Disposable people and economies of death in the Global North. State Crime, 2021, 10(1), 61. doi: 10.13169/statecrime.10.1.0061
- Hebbar, P.B.; Sudha, A.; Dsouza, V.; Chilgod, L.; Amin, A. Healthcare delivery in India amid the COVID-19 pandemic: Challenges and opportunities. Indian J. Med. Ethics, 2020, 5(3), 215-218. doi: 10.20529/IJME.2020.064 PMID: 32546453
- Chang, A.Y.; Cullen, M.R.; Harrington, R.A.; Barry, M. The impact of novel coronavirus COVID‐19 on noncommunicable disease patients and health systems: A review. J. Intern. Med., 2021, 289(4), 450-462. doi: 10.1111/joim.13184 PMID: 33020988
- Rasmussen, J.W.; Martinez, E.; Louka, P.; Wingett, D.G. Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications. Expert Opin. Drug Deliv., 2010, 7(9), 1063-1077. doi: 10.1517/17425247.2010.502560 PMID: 20716019
- Riely, G.J.; Neal, J.W.; Camidge, D.R.; Spira, A.I.; Piotrowska, Z.; Costa, D.B.; Tsao, A.S.; Patel, J.D.; Gadgeel, S.M.; Bazhenova, L.; Zhu, V.W.; West, H.L.; Mekhail, T.; Gentzler, R.D.; Nguyen, D.; Vincent, S.; Zhang, S.; Lin, J.; Bunn, V.; Jin, S.; Li, S.; Jänne, P.A. Activity and safety of mobocertinib (TAK-788) in previously treated nonsmall cell lung cancer with EGFR exon 20 insertion mutations from a phase I/II trial. Cancer Discov., 2021, 11(7), 1688-1699. doi: 10.1158/2159-8290.CD-20-1598 PMID: 33632775
- Imran, M.; Khan, S.A.; Alshammari, M.K.; Alreshidi, M.A.; Alreshidi, A.A.; Alghonaim, R.S.; Alanazi, F.A.; Alshehri, S.; Ghoneim, M.M.; Shakeel, F. Discovery, development, inventions, and patent trends on Mobocertinib succinate: The first-in-class oral treatment for NSCLC with EGFR Exon 20 insertions. Biomedicines, 2021, 9(12), 1938. doi: 10.3390/biomedicines9121938 PMID: 34944754
- Gonzalvez, F.; Vincent, S.; Baker, T.E.; Gould, A.E. Mobocertinib (TAK-788): A targeted inhibitor of EGFR exon 20 insertion mutants in non-small cell lung cancer. Cancer Discov., 2021, 11, 1672-1687. doi: 10.1016/j.bmcl.2022.129084
- Ardizzone, A.; Scuderi, S.A.; Giuffrida, D.; Colarossi, C.; Puglisi, C.; Campolo, M.; Cuzzocrea, S.; Esposito, E.; Paterniti, I. Role of fibroblast growth factors receptors (FGFRs) in brain tumors, focus on astrocytoma and glioblastoma. Cancers, 2020, 12(12), 3825. doi: 10.3390/cancers12123825 PMID: 33352931
- Benedetto Tiz, D.; Bagnoli, L.; Rosati, O.; Marini, F.; Sancineto, L.; Santi, C. New halogen-containing drugs approved by FDA in 2021: An overview on their syntheses and pharmaceutical use. Molecules, 2022, 27(5), 1643. doi: 10.3390/molecules27051643 PMID: 35268744
- Guagnano, V.; Furet, P.; Spanka, C.; Bordas, V.; Le Douget, M.; Stamm, C.; Brueggen, J.; Jensen, M.R.; Schnell, C.; Schmid, H. Discovery of 3-(2,6-Dichloro-3,5-Dimethoxy-Phenyl)-1-{6-4-(4-Ethyl-Piperazin-1-Yl)-Phenylamino-Pyrimidin-4-Yl} 1-Methyl-Urea (NVP-BGJ398), a potent and selective inhibitor of the fibroblast growth factor receptor family of receptor tyrosine kinase. J. Med. Chem., 2011, 54, 7066-7083. doi: 10.1021/jm2006222 PMID: 21936542
- Sebastian, M.; Eberhardt, W.E.E.; Hoffknecht, P.; Metzenmacher, M.; Wehler, T.; Kokowski, K.; Alt, J.; Schütte, W.; Büttner, R.; Heukamp, L.C.; Stenzinger, A.; Jänicke, M.; Fleitz, A.; Zacharias, S.; Dille, S.; Hipper, A.; Sandberg, M.; Weichert, W.; Groschek, M.; von der Heyde, E.; Rauh, J.; Dechow, T.; Thomas, M.; Griesinger, F. KRAS G12C-mutated advanced non-small cell lung cancer: A real-world cohort from the German prospective, observational, nation-wide CRISP Registry (AIO-TRK-0315). Lung Cancer, 2021, 154, 51-61. doi: 10.1016/j.lungcan.2021.02.005 PMID: 33611226
- Kargbo, R. Synthesis of sotorasib. J. Am. Chem. Soc., 2021, 143, 10576-10581.
- Lanman, B.A.; Chen, J.; Reed, A.B.; Cee, V.J.; Liu, L.; Kopecky, D.J.; Lopez, P.; Wurz, R.P.; Nguyen, T.T.; Booker, S. Kras G12c inhibitors and methods of using the same. WO Patent 2018217651, 2018.
- Tan, A.R.; Wright, G.S.; Thummala, A.R.; Danso, M.A.; Popovic, L.; Pluard, T.J.; Han, H.S.; Vojnović, .; Vasev, N.; Ma, L.; Richards, D.A.; Wilks, S.T.; Milenković, D.; Xiao, J.; Sorrentino, J.; Horton, J.; OShaughnessy, J. Trilaciclib prior to chemotherapy in patients with metastatic triple-negative breast cancer: Final efficacy and subgroup analysis from a randomized phase II study. Clin. Cancer Res., 2022, 28(4), 629-636. doi: 10.1158/1078-0432.CCR-21-2272 PMID: 34887261
- Young, J.A. Trilaciclib: A first-in-class therapy to reduce chemotherapy-induced myelosuppression. Touch Rev. Oncol. Haematol., 2022, 18(2), 152-158.
- Yuan, S.; Wang, D.S.; Liu, H.; Zhang, S.N.; Yang, W.G.; Lv, M.; Zhou, Y.X.; Zhang, S.Y.; Song, J.; Liu, H.M. New drug approvals for 2021: Synthesis and clinical applications. Eur. J. Med. Chem., 2023, 245(Pt 1), 114898. doi: 10.1016/j.ejmech.2022.114898 PMID: 36370552
- Ma, Y.; Gao, Q.; Zhou, L.; Liu, S.; Cheng, H.G.; Zhou, Q. Diversity‐oriented synthesis of flavones and isoflavones via palladium/norbornene cooperative catalysis. Chin. J. Chem., 2022, 40(6), 675-680. doi: 10.1002/cjoc.202100693
- Weiss, M.; Miskin, H.; Sportelli, P.; Vakkalanka, S.K.V.S. Combination of anti-Cd20 antibody and Pi3 kinase selective inhibitor. WO Patent 2014071125, 2014.
- Zhang, N.; An, B.; Zhou, Y.; Li, X.; Yan, M. Synthesis, evaluation, and mechanism study of new tepotinib derivatives as antiproliferative agents. Molecules, 2019, 24(6), 1173. doi: 10.3390/molecules24061173 PMID: 30934578
- Yu, Y.; Liu, A.; Dhawan, G.; Mei, H.; Zhang, W.; Izawa, K.; Soloshonok, V.A.; Han, J. Fluorine-containing pharmaceuticals approved by the FDA in 2020: Synthesis and biological activity. Chin. Chem. Lett., 2021, 32(11), 3342-3354. doi: 10.1016/j.cclet.2021.05.042
- Krawczyk, H. The stilbene derivatives, nucleosides, and nucleosides modified by stilbene derivatives. Bioorg. Chem., 2019, 90, 103073. doi: 10.1016/j.bioorg.2019.103073 PMID: 31234131
- Dhillon, S. Decitabine/cedazuridine: First approval. Drugs, 2020, 80(13), 1373-1378. doi: 10.1007/s40265-020-01389-7 PMID: 32860582
- Ammirati, E.; Turchetta, S.; Zenoni, M.; Brandi, P.; Berardi, G.; Anibaldi, M.D.F.; De Ferra, L. Process for the synthesis of azacitidine and decitabine. US Patent 20110245485A1, 2011.
- Smith, B.D.; Kaufman, M.D.; Lu, W.P.; Gupta, A.; Leary, C.B.; Wise, S.C.; Rutkoski, T.J.; Ahn, Y.M.; Al-Ani, G.; Bulfer, S.L. Ripretinib (DCC-2618) is a switch control kinase inhibitor of a broad spectrum of oncogenic and drug-resistant KIT and PDGFRA variants. Cancer cell, 2019, 35(5), 738-751.e9.
- Liang, X.; Yang, Q.; Wu, P.; He, C.; Yin, L.; Xu, F.; Yin, Z.; Yue, G.; Zou, Y.; Li, L.; Song, X.; Lv, C.; Zhang, W.; Jing, B. The synthesis review of the approved tyrosine kinase inhibitors for anticancer therapy in 20152020. Bioorg. Chem., 2021, 113, 105011. doi: 10.1016/j.bioorg.2021.105011 PMID: 34091289
- Al-Zaqri, N.; Pooventhiran, T.; Alharthi, F.A.; Bhattacharyya, U.; Thomas, R. Structural investigations, quantum mechanical studies on proton and metal affinity and biological activity predictions of selpercatinib. J. Mol. Liq., 2021, 325, 114765. doi: 10.1016/j.molliq.2020.114765 PMID: 33746318
- Junqiang, W.; Xiaolong, Q.; Tao, X.; Zhiwei, Z.; Xiaobo, X.; Dong, W. Synthesis of serpatatinib. CN Patent 113321668A, 2021.
- Hughes, D.L. Review of synthetic routes and crystalline forms of the oncology drugs capmatinib, selpercatinib, and pralsetinib. Org. Process Res. Dev., 2021, 25(10), 2192-2204. doi: 10.1021/acs.oprd.1c00282
- Kocienski, P. Synthesis of pemigatinib. Synfacts, 2021, 17(10), 1076. doi: 10.1055/s-0040-1720180
- García-Alonso, S.; Ocaña, A.; Pandiella, A. Trastuzumab emtansine: Mechanisms of action and resistance, clinical progress, and beyond. Trends Cancer, 2020, 6(2), 130-146. doi: 10.1016/j.trecan.2019.12.010 PMID: 32061303
- Upton, R.; Banuelos, A.; Feng, D.; Biswas, T.; Kao, K.; McKenna, K.; Willingham, S.; Ho, P.Y.; Rosental, B.; Tal, M.C.; Raveh, T.; Volkmer, J.P.; Pegram, M.D.; Weissman, I.L. Combining CD47 blockade with trastuzumab eliminates HER2-positive breast cancer cells and overcomes trastuzumab tolerance. Proc. Natl. Acad. Sci., 2021, 118(29), e2026849118. doi: 10.1073/pnas.2026849118 PMID: 34257155
- Kocienski, P. Synthesis of tucatinib. Synfacts, 2019, 15(09), 0965.
- ONeil, B.H.; Goff, L.W.; Kauh, J.S.W.; Strosberg, J.R.; Bekaii-Saab, T.S.; Lee, R.; Kazi, A.; Moore, D.T.; Learoyd, M.; Lush, R.M.; Sebti, S.M.; Sullivan, D.M. Phase II study of the mitogen-activated protein kinase 1/2 inhibitor selumetinib in patients with advanced hepatocellular carcinoma. J. Clin. Oncol., 2011, 29(17), 2350-2356. doi: 10.1200/JCO.2010.33.9432 PMID: 21519015
- Mukhopadhyay, S.; Maitra, A.; Choudhury, S. Selumetinib: The first ever approved drug for neurofibromatosis-1 related inoperable plexiform neurofibroma. Curr. Med. Res. Opin., 2021, 37(5), 789-794. doi: 10.1080/03007995.2021.1900089 PMID: 33683166
- Chen, W.; Yu, D.; Sun, S.Y.; Li, F. Nanoparticles for co-delivery of osimertinib and selumetinib to overcome osimertinib-acquired resistance in non-small cell lung cancer. Acta Biomater., 2021, 129, 258-268. doi: 10.1016/j.actbio.2021.05.018 PMID: 34048974
- Wallace, E.L.; Lyssikatos, J.P.; Hurley, B.T.; Marlow, A.L. N3 alkylated benzimidazole derivatives as mek inhibitors. WO Patent 2003077914A1, 2003.
- Liu, A.; Han, J.; Nakano, A.; Konno, H.; Moriwaki, H.; Abe, H.; Izawa, K.; Soloshonok, V.A. New pharmaceuticals approved by FDA in 2020: Small‐molecule drugs derived from amino acids and related compounds. Chirality, 2022, 34(1), 86-103. doi: 10.1002/chir.23376 PMID: 34713503
- Kuntz, K.W. Salt form of a human histone methyltransferase EZH2 inhibitor. WO Patent 2013155317A1, 2013.
- Alsalme, A.; Pooventhiran, T.; Al-Zaqri, N.; Rao, D.J.; Thomas, R. Structural, physico-chemical landscapes, ground state and excited state properties in different solvent atmosphere of Avapritinib and its ultrasensitive detection using SERS/GERS on self-assembly formation with graphene quantum dots. J. Mol. Liq., 2021, 322, 114555. doi: 10.1016/j.molliq.2020.114555
- Ayala-Aguilera, C.C.; Valero, T.; Lorente-Macías, Á.; Baillache, D.J.; Croke, S.; Unciti-Broceta, A. Small molecule kinase inhibitor drugs (19952021): Medical indication, pharmacology, and synthesis. J. Med. Chem., 2022, 65(2), 1047-1131. doi: 10.1021/acs.jmedchem.1c00963 PMID: 34624192
- Guo, Y.; Liu, Y.; Hu, N.; Yu, D.; Zhou, C.; Shi, G.; Zhang, B.; Wei, M.; Liu, J.; Luo, L.; Tang, Z.; Song, H.; Guo, Y.; Liu, X.; Su, D.; Zhang, S.; Song, X.; Zhou, X.; Hong, Y.; Chen, S.; Cheng, Z.; Young, S.; Wei, Q.; Wang, H.; Wang, Q.; Lv, L.; Wang, F.; Xu, H.; Sun, H.; Xing, H.; Li, N.; Zhang, W.; Wang, Z.; Liu, G.; Sun, Z.; Zhou, D.; Li, W.; Liu, L.; Wang, L.; Wang, Z. Discovery of zanubrutinib (BGB-3111), a novel, potent, and selective covalent inhibitor of Brutons tyrosine kinase. J. Med. Chem., 2019, 62(17), 7923-7940. doi: 10.1021/acs.jmedchem.9b00687 PMID: 31381333
- Osman, H.M.; Tuncbilek, M. Entrectinib: A new selective tyrosine kinase inhibitor approved for the treatment of pediatric and adult patients with NTRK fusionpositive, recurrent or advanced solid tumors. Curr. Med. Chem., 2022, 29(15), 2602-2616. doi: 10.2174/0929867328666210914121324 PMID: 34521321
- Menichincheri, M.; Ardini, E.; Magnaghi, P.; Avanzi, N.; Banfi, P.; Bossi, R.; Buffa, L.; Canevari, G.; Ceriani, L.; Colombo, M.; Corti, L.; Donati, D.; Fasolini, M.; Felder, E.; Fiorelli, C.; Fiorentini, F.; Galvani, A.; Isacchi, A.; Borgia, A.L.; Marchionni, C.; Nesi, M.; Orrenius, C.; Panzeri, A.; Pesenti, E.; Rusconi, L.; Saccardo, M.B.; Vanotti, E.; Perrone, E.; Orsini, P. Discovery of entrectinib: A new 3-aminoindazole as a potent anaplastic lymphoma kinase (ALK), c-Ros oncogene 1 kinase (ROS1), and Pan-tropomyosin receptor kinases (Pan-TRKs) inhibitor. J. Med. Chem., 2016, 59(7), 3392-3408. doi: 10.1021/acs.jmedchem.6b00064 PMID: 27003761
- Kocienski, P. Synthesis of pexidartinib. Synfacts, 2019, 15(09), 0966.
- Chen, D.; Zhang, Y.; Li, J.; Liu, Y. Exploratory process development of pexidartinib through the tandem TsujiTrost reaction and Heck coupling. Synthesis, 2019, 51(12), 2564-2571. doi: 10.1055/s-0037-1612421
- Sugawara, T.; Baumgart, S.J.; Nevedomskaya, E.; Reichert, K.; Steuber, H.; Lejeune, P.; Mumberg, D.; Haendler, B. Darolutamide is a potent androgen receptor antagonist with strong efficacy in prostate cancer models. Int. J. Cancer, 2019, 145(5), 1382-1394. doi: 10.1002/ijc.32242 PMID: 30828788
- Wang, L.; Li, R.; Song, C.; Chen, Y.; Long, H.; Yang, L. Smallmolecule anti-cancer drugs from 2016 to 2020: Synthesis and clinical application. Nat. Prod. Commun., 2021, 16(9), 1934578X211040326.
- Mancuso, J. Selinexor (Xpovio), An XPO1 inhibitor and a new class of therapeutics for treating multiple myeloma. Current Drug Syn., 2022, 530, 2286-2303. doi: 10.1002/9781119847281.ch13
- Nair, A.S.; Singh, A.K.; Kumar, A.; Kumar, S.; Sukumaran, S.; Koyiparambath, V.P.; Pappachen, L.K.; Rangarajan, T.M.; Kim, H.; Mathew, B. FDA-approved trifluoromethyl group-containing drugs: A review of 20 years. Processes, 2022, 10(10), 2054. doi: 10.3390/pr10102054
- André, F.; Ciruelos, E.; Rubovszky, G.; Campone, M.; Loibl, S.; Rugo, H.S.; Iwata, H.; Conte, P.; Mayer, I.A.; Kaufman, B.; Yamashita, T.; Lu, Y.S.; Inoue, K.; Takahashi, M.; Pápai, Z.; Longin, A.S.; Mills, D.; Wilke, C.; Hirawat, S.; Juric, D. Alpelisib for PIK3CA-mutated, hormone receptorpositive advanced breast cancer. N. Engl. J. Med., 2019, 380(20), 1929-1940. doi: 10.1056/NEJMoa1813904 PMID: 31091374
- Sun, X.; Feng, L.; Sun, C.; Kang, C. Synthesis of quinoxaline derivatives as intermediates to obtain erdafitinib. Pharm. Chem. J., 2021, 55(9), 951-953. doi: 10.1007/s11094-021-02521-x
- Sheikhi, N.; Bahraminejad, M.; Saeedi, M.; Mirfazli, S.S. A review: FDA-approved fluorine-containing small molecules from 2015 to 2022. Eur. J. Med. Chem., 2023, 260, 115758. doi: 10.1016/j.ejmech.2023.115758 PMID: 37657268
- Gorcea, C.M.; Burthem, J.; Tholouli, E. ASP2215 in the treatment of relapsed/refractory acute myeloid leukemia with FLT3 mutation: Background and design of the ADMIRAL trial. Future Oncol., 2018, 14(20), 1995-2004. doi: 10.2217/fon-2017-0582 PMID: 29498296
- Flick, A.C.; Leverett, C.A.; Ding, H.X.; McInturff, E.; Fink, S.J.; Mahapatra, S.; Carney, D.W.; Lindsey, E.A.; DeForest, J.C.; France, S.P.; Berritt, S.; Bigi-Botterill, S.V.; Gibson, T.S.; Liu, Y.; ODonnell, C.J. Synthetic approaches to the new drugs approved during 2019. J. Med. Chem., 2021, 64(7), 3604-3657. doi: 10.1021/acs.jmedchem.1c00208 PMID: 33783211
- Mori, M.; Kaneko, N.; Ueno, Y.; Yamada, M.; Tanaka, R.; Saito, R.; Shimada, I.; Mori, K.; Kuromitsu, S. Gilteritinib, a FLT3/AXL inhibitor, shows antileukemic activity in mouse models of FLT3 mutated acute myeloid leukemia. Invest. New Drugs, 2017, 35(5), 556-565. doi: 10.1007/s10637-017-0470-z PMID: 28516360
- Xu, H.; Chen, L.; Chen, Y.; Fu, Y.; Xu, F.; Chen, G. Study on the synthesis technology of anticancer drug Gilteritinib fumarate. Russ. Chem. Bull., 2023, 72(8), 1921-1928. doi: 10.1007/s11172-023-3977-9
- Qinglei, Y.; Zhiguo, Z.; Qiang, G.; Baofu, Z. Preparation of gilteritinib derivatives as inhibitors of FLT3-Axl. CN Patent 106083821, 2016.
- Attia, M.H.; Elrazaz, E.Z.; El-Emam, S.Z.; Taher, A.T.; Abdel-Aziz, H.A.; Abouzid, K.A.M. Synthesis and in-vitro anti-proliferative evaluation of some pyrazolo1,5-apyrimidines as novel larotrectinib analogs. Bioorg. Chem., 2020, 94, 103458. doi: 10.1016/j.bioorg.2019.103458 PMID: 31785854
- Haidong, J.L.; Ruiwan, Z.L.; Wang, G.; Yang, D.; Wenyuan, S.Y.; Ying, Z.; Haiyan, H. A kind of preparation method and their intermediate of larotrectinib. CN Patent 107987082A, 2019.
- Peklar, B.; Perdih, F.; Makuc, D.; Plavec, J.; Cluzeau, J.; Kitanovski, Z.; Časar, Z. Glasdegib dimaleate: Synthesis, characterization and comparison of its properties with monomaleate analogue. Pharmaceutics, 2022, 14(8), 1641. doi: 10.3390/pharmaceutics14081641 PMID: 36015269
- Munchhof, M.J.; Li, Q.; Shavnya, A.; Borzillo, G.V.; Boyden, T.L.; Jones, C.S.; LaGreca, S.D.; Martinez-Alsina, L.; Patel, N.; Pelletier, K.; Reiter, L.A.; Robbins, M.D.; Tkalcevic, G.T. Discovery of PF-04449913, a potent and orally bioavailable inhibitor of smoothened. ACS Med. Chem. Lett., 2012, 3(2), 106-111. doi: 10.1021/ml2002423 PMID: 24900436
- Kocienski, P. Synthesis of lorlatinib. Synfacts, 2018, 14(12), 1227. doi: 10.1055/s-0037-1611138
- Wang, B.; Chu, D.; Feng, Y.; Shen, Y.; Aoyagi-Scharber, M.; Post, L.E. Discovery and characterization of (8 S, 9 R)-5-Fluoro-8-(4-fluorophenyl)-9-(1-methyl-1H-1,2,4-triazol-5-yl)-2,7,8,9-tetrahydro-3H-pyrido4,3,2-dephthalazin-3-one (BMN 673, Talazoparib), a novel, highly potent, and orally efficacious poly(ADP-ribose) polymerase-1/2 inhibitor, as an anticancer agent. J. Med. Chem., 2016, 59(1), 335-357. doi: 10.1021/acs.jmedchem.5b01498 PMID: 26652717
- Wang, S.; Yuan, X.H.; Wang, S.Q.; Zhao, W.; Chen, X.B.; Yu, B. FDA-approved pyrimidine-fused bicyclic heterocycles for cancer therapy: Synthesis and clinical application. Eur. J. Med. Chem., 2021, 214, 113218. doi: 10.1016/j.ejmech.2021.113218 PMID: 33540357
- Lin, G.M.K. Synthesis method of EGFR (Epidermal Growth Factor Receptor) inhibitor dacomitinib. CN Patent 103304492.A, 2013.
- Rodrigues, D.A.; Sagrillo, F.S.; Fraga, C.A.M.; Duvelisib, A. 2018 novel FDA-approved small molecule inhibiting phosphoinositide 3-kinases. Pharmaceuticals, 2019, 12(2), 69. doi: 10.3390/ph12020069 PMID: 31064155
- Ren, Y.L. Certain chemical entities, compositions and methods. WO Patent 2011008302A, 2009.
- Megías-Vericat, J.E.; Solana-Altabella, A.; Ballesta-López, O.; Martínez-Cuadrón, D.; Montesinos, P. Drug-drug interactions of newly approved small molecule inhibitors for acute myeloid leukemia. Ann. Hematol., 2020, 99(9), 1989-2007. doi: 10.1007/s00277-020-04186-0 PMID: 32683457
- Kocienski, P. Synthesis of ivosidenib. Synfacts, 2018, 14(07), 0674.
- Saad, F.; Bögemann, M.; Suzuki, K.; Shore, N. Treatment of nonmetastatic castration-resistant prostate cancer: Focus on second-generation androgen receptor inhibitors. Prostate Cancer Prostatic Dis., 2021, 24(2), 323-334. doi: 10.1038/s41391-020-00310-3 PMID: 33558665
- Saladi, V.N.; Kammari, B.R.; Mandad, P.R.; Krishna, G.R.; Sajja, E.; Thirumali, R.S.; Marutapilli, A.; Mathad, V.T. Novel pharmaceutical cocrystal of apalutamide, a nonsteroidal antiandrogen drug: Synthesis, crystal structure, dissolution, stress, and excipient compatibility. Cryst. Growth Des., 2022, 22(2), 1130-1142. doi: 10.1021/acs.cgd.1c01087
- Seligson, J.M.; Patron, A.M.; Berger, M.J.; Harvey, R.D.; Seligson, N.D. Sacituzumab govitecan-hziy: An antibody-drug conjugate for the treatment of refractory, metastatic, triple-negative breast cancer. Ann. Pharmacother., 2021, 55(7), 921-931. doi: 10.1177/1060028020966548 PMID: 33070624
- Akhtar, S.; Ali, T.A.; Faiyaz, A.; Khan, O.S.; Raza, S.S.; Kulinski, M.; Omri, H.E.; Bhat, A.A.; Uddin, S. Cytokine-mediated dysregulation of signaling pathways in the pathogenesis of multiple myeloma. Int. J. Mol. Sci., 2020, 21(14), 5002. doi: 10.3390/ijms21145002 PMID: 32679860
- El-Shershaby, H.M.; Farrag, N.S.; Ebeid, N.H.; Moustafa, K.A. Radiolabeling and cytotoxicity of monoclonal antibody Isatuximab functionalized silver nanoparticles on the growth of multiple myeloma. Int. J. Pharm., 2022, 624, 122019. doi: 10.1016/j.ijpharm.2022.122019 PMID: 35842081
- Matos, M.J.; Labão-Almeida, C.; Sayers, C.; Dada, O.; Tacke, M.; Bernardes, G.J.L. Synthesis and biological evaluation of homogeneous thiol‐linked NHC*‐au‐albumin and ‐trastuzumab bioconjugates. Chemistry, 2018, 24(47), 12250-12253. doi: 10.1002/chem.201800872 PMID: 29729206
- Halford, Z.; Anderson, M.K.; Clark, M.D. Enfortumab vedotin-ejfv: A first-in-class antinectin-4 antibody-drug conjugate for the management of urothelial carcinoma. Ann. Pharmacother., 2021, 55(6), 772-782. doi: 10.1177/1060028020960402 PMID: 32945172
- Chang, E.; Weinstock, C.; Zhang, L.; Charlab, R.; Dorff, S.E.; Gong, Y.; Hsu, V.; Li, F.; Ricks, T.K.; Song, P.; Tang, S.; Waldron, P.E.; Yu, J.; Zahalka, E.; Goldberg, K.B.; Pazdur, R.; Theoret, M.R.; Ibrahim, A.; Beaver, J.A. FDA approval summary: Enfortumab vedotin for locally advanced or metastatic urothelial carcinoma. Clin. Cancer Res., 2021, 27(4), 922-927. doi: 10.1158/1078-0432.CCR-20-2275 PMID: 32962979
- Burke, J.M.; Morschhauser, F.; Andorsky, D.; Lee, C.; Sharman, J.P. Antibodydrug conjugates for previously treated aggressive lymphomas: Focus on polatuzumab vedotin. Expert Rev. Clin. Pharmacol., 2020, 13(10), 1073-1083. doi: 10.1080/17512433.2020.1826303 PMID: 32985934
- Lin, C.C.; Zucali, P.; Carthon, B.; Bauer, T.M.; Tucci, M.; Italiano, A.; Iacovelli, R.; Su, W.C.; Massard, C.; Saleh, M. Abstract LB040: Targeting CD38 and PD-1 with isatuximab (Isa) plus cemiplimab (Cemi) in patients (PTS) with advanced malignancies: Results from a phase 1/2 open-label, multicenter study. Cancer Res., 2021, 81(S13), LB040-LB040.
- Flanagan, E.P.; Levy, M.; Katz, E.; Cimbora, D.; Drappa, J.; Mealy, M.A.; She, D.; Cree, B.A.C. Inebilizumab for treatment of neuromyelitis optica spectrum disorder in patients with prior rituximab use from the N-MOmentum Study. Mult. Scler. Relat. Disord., 2022, 57, 103352. doi: 10.1016/j.msard.2021.103352 PMID: 35158461
- Frampton, J.E. Inebilizumab: First approval. Drugs, 2020, 80(12), 1259-1264. doi: 10.1007/s40265-020-01370-4 PMID: 32729016
- Ohmachi, K.; Ogura, M.; Suehiro, Y.; Ando, K.; Uchida, T.; Choi, I.; Ogawa, Y.; Kobayashi, M.; Fukino, K.; Yokoi, Y.; Okamura, J. A multicenter phase I study of inebilizumab, a humanized anti-CD19 monoclonal antibody, in Japanese patients with relapsed or refractory B-cell lymphoma and multiple myeloma. Int. J. Hematol., 2019, 109(6), 657-664. doi: 10.1007/s12185-019-02635-9 PMID: 30915717
- Hoy, S.M. Tafasitamab: First approval. Drugs, 2020, 80(16), 1731-1737. doi: 10.1007/s40265-020-01405-w PMID: 32946059
- Baines, A.C.; Ershler, R.; Kanapuru, B.; Xu, Q.; Shen, G.; Li, L.; Ma, L.; Okusanya, O.O.; Simpson, N.E.; Nguyen, W.; Theoret, M.R.; Pazdur, R.; Gormley, N.J. FDA approval summary: Belantamab mafodotin for patients with relapsed or refractory multiple myeloma. Clin. Cancer Res., 2022, 28(21), 4629-4633. doi: 10.1158/1078-0432.CCR-22-0618 PMID: 35736811
- Rajpal, M.; Shenoy, A.K.; Malhotra, A. Rising from the Ashes: The curious case of the development of biologics for the treatment of neuroblastoma. In: Biologics and Biosimilars; CRC Press, 2022; pp. 239-256. doi: 10.1201/9780429485626-16
- Khakinahad, Y.; Sohrabi, S.; Razi, S.; Narmani, A.; Khaleghi, S.; Asadiyun, M.; Jafari, H.; Mohammadnejad, J. Margetuximab conjugated-PEG-PAMAM G4 nano-complex: A smart nano-device for suppression of breast cancer. Biomed. Eng. Lett., 2022, 12(3), 317-329. doi: 10.1007/s13534-022-00225-z PMID: 35892030
- Oaknin, A.; Tinker, A.V.; Gilbert, L.; Samouëlian, V.; Mathews, C.; Brown, J.; Barretina-Ginesta, M.P.; Moreno, V.; Gravina, A.; Abdeddaim, C.; Banerjee, S.; Guo, W.; Danaee, H.; Im, E.; Sabatier, R. Clinical activity and safety of the anti-PD-1 monoclonal antibody dostarlimab for patients with recurrent or advanced dMMR endometrial cancer. Future Oncol., 2021, 17(29), 3781-3785. doi: 10.2217/fon-2021-0598 PMID: 34427115
- Park, U.B.; Jeong, T.J.; Gu, N.; Lee, H.T.; Heo, Y.S. Molecular basis of PD-1 blockade by dostarlimab, the FDA-approved antibody for cancer immunotherapy. Biochem. Biophys. Res. Commun., 2022, 599, 31-37. doi: 10.1016/j.bbrc.2022.02.026 PMID: 35168061
- Hartley, J.A. Antibody-drug conjugates (ADCs) delivering pyrrolobenzodiazepine (PBD) dimers for cancer therapy. Expert Opin. Biol. Ther., 2021, 21(7), 931-943. doi: 10.1080/14712598.2020.1776255 PMID: 32543981
- Syed, Y.Y. Amivantamab: First approval. Drugs, 2021, 81(11), 1349-1353. doi: 10.1007/s40265-021-01561-7 PMID: 34292533
- Olivier, T.; Prasad, V. Amivantamab and mobocertinib in exon 20 insertions EGFR mutant lung cancer, challenge to the current guidelines. Transl. Oncol., 2022, 23, 101475. doi: 10.1016/j.tranon.2022.101475 PMID: 35785671
- Criscitiello, C.; Morganti, S.; Curigliano, G. Antibodydrug conjugates in solid tumors: A look into novel targets. J. Hematol. Oncol., 2021, 14(1), 20. doi: 10.1186/s13045-021-01035-z PMID: 33509252
- Khongorzul, P.; Ling, C.J.; Khan, F.U.; Ihsan, A.U.; Zhang, J. Antibodydrug conjugates: A comprehensive review. Mol. Cancer Res., 2020, 18(1), 3-19. doi: 10.1158/1541-7786.MCR-19-0582 PMID: 31659006
- Yap, T.A.; Parkes, E.E.; Peng, W.; Moyers, J.T.; Curran, M.A.; Tawbi, H.A. Development of immunotherapy combination strategies in cancer. Cancer Discov., 2021, 11(6), 1368-1397. doi: 10.1158/2159-8290.CD-20-1209 PMID: 33811048
- Senter, P.D.; Sievers, E.L. The discovery and development of brentuximab vedotin for use in relapsed Hodgkin lymphoma and systemic anaplastic large cell lymphoma. Nat. Biotechnol., 2012, 30(7), 631-637. doi: 10.1038/nbt.2289 PMID: 22781692
- Kasamon, Y.L.; Chen, H.; de Claro, R.A.; Nie, L.; Ye, J.; Blumenthal, G.M.; Farrell, A.T.; Pazdur, R. FDA approval summary: Mogamulizumab-kpkc for mycosis fungoides and sézary syndrome. Clin. Cancer Res., 2019, 25(24), 7275-7280. doi: 10.1158/1078-0432.CCR-19-2030 PMID: 31366601
- Moore, D.C.; Elmes, J.B.; Shibu, P.A.; Larck, C.; Park, S.I. Mogamulizumab: An anti-CC chemokine receptor 4 antibody for T-cell lymphomas. Ann. Pharmacother., 2020, 54(4), 371-379. doi: 10.1177/1060028019884863 PMID: 31648540
- Keam, S.J. Piflufolastat F 18: Diagnostic first approval. Mol. Diagn. Ther., 2021, 25(5), 647-656. doi: 10.1007/s40291-021-00548-0 PMID: 34292532
- Carlucci, G.; Ippisch, R.; Slavik, R.; Mishoe, A.; Blecha, J.; Zhu, S. 68 Ga-PSMA-11 NDA approval: A novel and successful academic partnership. J. Nucl. Med., 2021, 62(2), 149-155. doi: 10.2967/jnumed.120.260455 PMID: 33443068
- Dearling, J.L.J.; van Dam, E.M.; Harris, M.J.; Packard, A.B. Detection and therapy of neuroblastoma minimal residual disease using 64/67CuCu-SARTATE in a preclinical model of hepatic metastases. EJNMMI Res., 2021, 11(1), 20. doi: 10.1186/s13550-021-00763-0 PMID: 33394212
- Gutfilen, B.; Souza, S.; Valentini, G. Copper-64: A real theranostic agent. Drug Des. Devel. Ther., 2018, 12, 3235-3245. doi: 10.2147/DDDT.S170879 PMID: 30323557
- Katzenellenbogen, J.A. The quest for improving the management of breast cancer by functional imaging: The discovery and development of 16α-18Ffluoroestradiol (FES), a PET radiotracer for the estrogen receptor, a historical review. Nucl. Med. Biol., 2021, 92, 24-37. doi: 10.1016/j.nucmedbio.2020.02.007 PMID: 32229068
- Yoo, J.; Dence, C.S.; Sharp, T.L.; Katzenellenbogen, J.A.; Welch, M.J. Synthesis of an estrogen receptor β-selective radioligand: 5-18Ffluoro-(2R,3S)-2,3-bis(4-hydroxyphenyl)pentanenitrile and comparison of in vivo distribution with 16α-18Ffluoro-17β-estradiol. J. Med. Chem., 2005, 48(20), 6366-6378. doi: 10.1021/jm050121f PMID: 16190762
- De Araujo Bispo, A.C.; do Nascimento, L.T.C.; Castro, A.C.F.; Lima, L.A.R.; Ferreira, S.M.Z.M.D.; da Silva, J.B.; Mamede, M. Synthesis and characterization of the radiopharmaceutical 18F fluoroestradiol. Braz. J. Radiat. Sci., 2021, 9(1A)
- Sammartano, A.; Migliari, S.; Scarlattei, M.; Baldari, G.; Ruffini, L. Validation of quality control parameters of cassette-based gallium-68-DOTA-Tyr3-octreotate synthesis. Indian J. Nucl. Med., 2020, 35(4), 291-298. doi: 10.4103/ijnm.IJNM_66_20 PMID: 33642752
- Hromadik, L.K.; Sturges, L. Caring for patients receiving 177Lu-DOTATATE, Lutathera®: A treatment of hope for patients with gastroenteropancreatic neuroendocrine tumors. J. Radiol. Nurs., 2019, 38(1), 28-32. doi: 10.1016/j.jradnu.2018.11.003
- Hennrich, U.; Kopka, K. Lutathera®: The first FDA-and EMA-approved radiopharmaceutical for peptide receptor radionuclide therapy. Pharmaceuticals, 2019, 12(3), 114. doi: 10.3390/ph12030114 PMID: 31362406
- Pallem, C. Solid-state fermentation of corn husk for the synthesis of Asparaginase by Fusarium oxysporum. Asian J. Pharm. Pharmacol., 2019, 5(4), 678-681. doi: 10.31024/ajpp.2019.5.4.5
- Salzer, W.L.; Asselin, B.L.; Plourde, P.V.; Corn, T.; Hunger, S.P. Development of asparaginase Erwinia chrysanthemi for the treatment of acute lymphoblastic leukemia. Ann. N. Y. Acad. Sci., 2014, 1329(1), 81-92. doi: 10.1111/nyas.12496 PMID: 25098829
Supplementary files
