An Expedition on Synthetic Methodology of FDA-approved Anticancer Drugs (2018-2021)


Cite item

Full Text

Abstract

New drugs being established in the market every year produce specified structures for selective biological targeting. With medicinal insights into molecular recognition, these begot molecules open new rooms for designing potential new drug molecules. In this review, we report the compilation and analysis of a total of 56 drugs including 33 organic small molecules (Mobocertinib, Infigratinib, Sotorasib, Trilaciclib, Umbralisib, Tepotinib, Relugolix, Pralsetinib, Decitabine, Ripretinib, Selpercatinib, Capmatinib, Pemigatinib, Tucatinib, Selumetinib, Tazemetostat, Avapritinib, Zanubrutinib, Entrectinib, Pexidartinib, Darolutamide, Selinexor, Alpelisib, Erdafitinib, Gilteritinib, Larotrectinib, Glasdegib, Lorlatinib, Talazoparib, Dacomitinib, Duvelisib, Ivosidenib, Apalutamide), 6 metal complexes (Edotreotide Gallium Ga-68, fluoroestradiol F-18, Cu 64 dotatate, Gallium 68 PSMA-11, Piflufolastat F-18, 177Lu (lutetium)), 16 macromolecules as monoclonal antibody conjugates (Brentuximabvedotin, Amivantamab-vmjw, Loncastuximabtesirine, Dostarlimab, Margetuximab, Naxitamab, Belantamabmafodotin, Tafasitamab, Inebilizumab, SacituzumabGovitecan, Isatuximab, Trastuzumab, Enfortumabvedotin, Polatuzumab, Cemiplimab, Mogamulizumab) and 1 peptide enzyme (Erwiniachrysanthemi-derived asparaginase) approved by the U.S. FDA between 2018 to 2021. These drugs act as anticancer agents against various cancer types, especially non-small cell lung, lymphoma, breast, prostate, multiple myeloma, neuroendocrine tumor, cervical, bladder, cholangiocarcinoma, myeloid leukemia, gastrointestinal, neuroblastoma, thyroid, epithelioid and cutaneous squamous cell carcinoma. The review comprises the key structural features, approval times, target selectivity, mechanisms of action, therapeutic indication, formulations, and possible synthetic approaches of these approved drugs. These crucial details will benefit the scientific community for futuristic new developments in this arena.

About the authors

S. Vishakha

Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy

Email: info@benthamscience.net

N. Navneesh

Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy

Email: info@benthamscience.net

Balak Das Kurmi

Department of Pharmaceutics, ISF College of Pharmacy,

Email: info@benthamscience.net

Ghanshyam Das Gupta

Department of Pharmaceutics, ISF College of Pharmacy

Email: info@benthamscience.net

Sant Kumar Verma

Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy

Email: info@benthamscience.net

Ankit Jain

Department of Pharmaceutical Sciences, Texas A & M University, Kingsville

Email: info@benthamscience.net

Preeti Patel

Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy

Author for correspondence.
Email: info@benthamscience.net

References

  1. Mullard, A. 2014 FDA drug approvals. Nat. Rev. Drug Discov., 2015, 14(2), 77-81. doi: 10.1038/nrd4545 PMID: 25633781
  2. Kalra, B.S.; Batta, A.; Khirasaria, R. Trends in FDA drug approvals over last 2 decades: An observational study. J. Family Med. Prim. Care, 2020, 9(1), 105-114. doi: 10.4103/jfmpc.jfmpc_578_19 PMID: 32110574
  3. Gad, S.C.; Sullivan, D.W. Tissue, cell, and gene therapy. In: Drug Safety Evaluation; , 2023; pp. 789-800.
  4. Ramezankhani, R.; Torabi, S.; Minaei, N.; Madani, H.; Rezaeiani, S.; Hassani, S.N.; Gee, A.P.; Dominici, M.; Silva, D.N.; Baharvand, H.; Hajizadeh-Saffar, E. Two decades of global progress in authorized advanced therapy medicinal products: An emerging revolution in therapeutic strategies. Front. Cell Dev. Biol., 2020, 8, 547653. doi: 10.3389/fcell.2020.547653 PMID: 33392179
  5. Punia, A.; Malhotra, H. International regulatory processes and policies for innovator biologics, biosimilars, and biobetters. In: Biologics, Biosimilars, and Biobetters: An Introduction for Pharmacists; Physicians, and Other Health Practitioners, 2020; pp. 159-176. doi: 10.1002/9781119564690.ch10
  6. Pinnow, E.; Amr, S.; Bentzen, S.M.; Brajovic, S.; Hungerford, L.; St George, D.M.; Dal Pan, G. Postmarket safety outcomes for new molecular entity (NME) drugs approved by the Food and Drug Administration between 2002 and 2014. Clin. Pharmacol. Ther., 2018, 104(2), 390-400. doi: 10.1002/cpt.944 PMID: 29266187
  7. Sacks, L.V.; Shamsuddin, H.H.; Yasinskaya, Y.I.; Bouri, K.; Lanthier, M.L.; Sherman, R.E. Scientific and regulatory reasons for delay and denial of FDA approval of initial applications for new drugs, 2000-2012. JAMA, 2014, 311(4), 378-384. doi: 10.1001/jama.2013.282542 PMID: 24449316
  8. Zhong, H.; Chan, G.; Hu, Y.; Hu, H.; Ouyang, D. A comprehensive map of FDA-approved pharmaceutical products. Pharmaceutics, 2018, 10(4), 263. doi: 10.3390/pharmaceutics10040263 PMID: 30563197
  9. Hussaarts, L.; Mühlebach, S.; Shah, V.P.; McNeil, S.; Borchard, G.; Flühmann, B.; Weinstein, V.; Neervannan, S.; Griffiths, E.; Jiang, W.; Wolff-Holz, E.; Crommelin, D.J.A.; de Vlieger, J.S.B. Equivalence of complex drug products: Advances in and challenges for current regulatory frameworks. Ann. N. Y. Acad. Sci., 2017, 1407(1), 39-49. doi: 10.1111/nyas.13347 PMID: 28445611
  10. Huang, R.; Southall, N.; Wang, Y.; Yasgar, A.; Shinn, P.; Jadhav, A.; Nguyen, D.T.; Austin, C.P. The NCGC pharmaceutical collection: A comprehensive resource of clinically approved drugs enabling repurposing and chemical genomics. Sci. Transl. Med., 2011, 3(80), 80ps16. doi: 10.1126/scitranslmed.3001862 PMID: 21525397
  11. Böhm, M.; Frey, N.; Giannitsis, E.; Sliwa, K.; Zeiher, A.M. Coronavirus Disease 2019 (COVID-19) and its implications for cardiovascular care: Expert document from the German Cardiac Society and the World Heart Federation. Clin. Res. Cardiol., 2020, 109(12), 1446-1459. doi: 10.1007/s00392-020-01656-3 PMID: 32462267
  12. Zhang, H.; Wang, L.; Chen, Y.; Wu, Q.; Chen, G.; Shen, X.; Wang, Q.; Yan, Y.; Yu, Y.; Zhong, Y.; Wang, X.; Chua, M.L.K.; Xie, C. Outcomes of novel coronavirus disease 2019 (COVID‐19) infection in 107 patients with cancer from Wuhan, China. Cancer, 2020, 126(17), 4023-4031. doi: 10.1002/cncr.33042 PMID: 32573776
  13. Tiwari, D.; Bhati, B.S.; Al-Turjman, F.; Nagpal, B. Pandemic coronavirus disease (COVID‐19): World effects analysis and prediction using machine‐learning techniques. Expert Syst., 2022, 39(3), e12714. doi: 10.1111/exsy.12714 PMID: 34177035
  14. Zheng, W.; Xiang, L.; Fadare, O.; Kong, B. A proposed model for endometrial serous carcinogenesis. Am. J. Surg. Pathol., 2011, 35(1), e1-e14. doi: 10.1097/PAS.0b013e318202772e PMID: 21164282
  15. Darian-Smith, E. Dying for the economy: Disposable people and economies of death in the Global North. State Crime, 2021, 10(1), 61. doi: 10.13169/statecrime.10.1.0061
  16. Hebbar, P.B.; Sudha, A.; Dsouza, V.; Chilgod, L.; Amin, A. Healthcare delivery in India amid the COVID-19 pandemic: Challenges and opportunities. Indian J. Med. Ethics, 2020, 5(3), 215-218. doi: 10.20529/IJME.2020.064 PMID: 32546453
  17. Chang, A.Y.; Cullen, M.R.; Harrington, R.A.; Barry, M. The impact of novel coronavirus COVID‐19 on noncommunicable disease patients and health systems: A review. J. Intern. Med., 2021, 289(4), 450-462. doi: 10.1111/joim.13184 PMID: 33020988
  18. Rasmussen, J.W.; Martinez, E.; Louka, P.; Wingett, D.G. Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications. Expert Opin. Drug Deliv., 2010, 7(9), 1063-1077. doi: 10.1517/17425247.2010.502560 PMID: 20716019
  19. Riely, G.J.; Neal, J.W.; Camidge, D.R.; Spira, A.I.; Piotrowska, Z.; Costa, D.B.; Tsao, A.S.; Patel, J.D.; Gadgeel, S.M.; Bazhenova, L.; Zhu, V.W.; West, H.L.; Mekhail, T.; Gentzler, R.D.; Nguyen, D.; Vincent, S.; Zhang, S.; Lin, J.; Bunn, V.; Jin, S.; Li, S.; Jänne, P.A. Activity and safety of mobocertinib (TAK-788) in previously treated non–small cell lung cancer with EGFR exon 20 insertion mutations from a phase I/II trial. Cancer Discov., 2021, 11(7), 1688-1699. doi: 10.1158/2159-8290.CD-20-1598 PMID: 33632775
  20. Imran, M.; Khan, S.A.; Alshammari, M.K.; Alreshidi, M.A.; Alreshidi, A.A.; Alghonaim, R.S.; Alanazi, F.A.; Alshehri, S.; Ghoneim, M.M.; Shakeel, F. Discovery, development, inventions, and patent trends on Mobocertinib succinate: The first-in-class oral treatment for NSCLC with EGFR Exon 20 insertions. Biomedicines, 2021, 9(12), 1938. doi: 10.3390/biomedicines9121938 PMID: 34944754
  21. Gonzalvez, F.; Vincent, S.; Baker, T.E.; Gould, A.E. Mobocertinib (TAK-788): A targeted inhibitor of EGFR exon 20 insertion mutants in non-small cell lung cancer. Cancer Discov., 2021, 11, 1672-1687. doi: 10.1016/j.bmcl.2022.129084
  22. Ardizzone, A.; Scuderi, S.A.; Giuffrida, D.; Colarossi, C.; Puglisi, C.; Campolo, M.; Cuzzocrea, S.; Esposito, E.; Paterniti, I. Role of fibroblast growth factors receptors (FGFRs) in brain tumors, focus on astrocytoma and glioblastoma. Cancers, 2020, 12(12), 3825. doi: 10.3390/cancers12123825 PMID: 33352931
  23. Benedetto Tiz, D.; Bagnoli, L.; Rosati, O.; Marini, F.; Sancineto, L.; Santi, C. New halogen-containing drugs approved by FDA in 2021: An overview on their syntheses and pharmaceutical use. Molecules, 2022, 27(5), 1643. doi: 10.3390/molecules27051643 PMID: 35268744
  24. Guagnano, V.; Furet, P.; Spanka, C.; Bordas, V.; Le Douget, M.; Stamm, C.; Brueggen, J.; Jensen, M.R.; Schnell, C.; Schmid, H. Discovery of 3-(2,6-Dichloro-3,5-Dimethoxy-Phenyl)-1-{6-4-(4-Ethyl-Piperazin-1-Yl)-Phenylamino-Pyrimidin-4-Yl} 1-Methyl-Urea (NVP-BGJ398), a potent and selective inhibitor of the fibroblast growth factor receptor family of receptor tyrosine kinase. J. Med. Chem., 2011, 54, 7066-7083. doi: 10.1021/jm2006222 PMID: 21936542
  25. Sebastian, M.; Eberhardt, W.E.E.; Hoffknecht, P.; Metzenmacher, M.; Wehler, T.; Kokowski, K.; Alt, J.; Schütte, W.; Büttner, R.; Heukamp, L.C.; Stenzinger, A.; Jänicke, M.; Fleitz, A.; Zacharias, S.; Dille, S.; Hipper, A.; Sandberg, M.; Weichert, W.; Groschek, M.; von der Heyde, E.; Rauh, J.; Dechow, T.; Thomas, M.; Griesinger, F. KRAS G12C-mutated advanced non-small cell lung cancer: A real-world cohort from the German prospective, observational, nation-wide CRISP Registry (AIO-TRK-0315). Lung Cancer, 2021, 154, 51-61. doi: 10.1016/j.lungcan.2021.02.005 PMID: 33611226
  26. Kargbo, R. Synthesis of sotorasib. J. Am. Chem. Soc., 2021, 143, 10576-10581.
  27. Lanman, B.A.; Chen, J.; Reed, A.B.; Cee, V.J.; Liu, L.; Kopecky, D.J.; Lopez, P.; Wurz, R.P.; Nguyen, T.T.; Booker, S. Kras G12c inhibitors and methods of using the same. WO Patent 2018217651, 2018.
  28. Tan, A.R.; Wright, G.S.; Thummala, A.R.; Danso, M.A.; Popovic, L.; Pluard, T.J.; Han, H.S.; Vojnović, Ž.; Vasev, N.; Ma, L.; Richards, D.A.; Wilks, S.T.; Milenković, D.; Xiao, J.; Sorrentino, J.; Horton, J.; O’Shaughnessy, J. Trilaciclib prior to chemotherapy in patients with metastatic triple-negative breast cancer: Final efficacy and subgroup analysis from a randomized phase II study. Clin. Cancer Res., 2022, 28(4), 629-636. doi: 10.1158/1078-0432.CCR-21-2272 PMID: 34887261
  29. Young, J.A. Trilaciclib: A first-in-class therapy to reduce chemotherapy-induced myelosuppression. Touch Rev. Oncol. Haematol., 2022, 18(2), 152-158.
  30. Yuan, S.; Wang, D.S.; Liu, H.; Zhang, S.N.; Yang, W.G.; Lv, M.; Zhou, Y.X.; Zhang, S.Y.; Song, J.; Liu, H.M. New drug approvals for 2021: Synthesis and clinical applications. Eur. J. Med. Chem., 2023, 245(Pt 1), 114898. doi: 10.1016/j.ejmech.2022.114898 PMID: 36370552
  31. Ma, Y.; Gao, Q.; Zhou, L.; Liu, S.; Cheng, H.G.; Zhou, Q. Diversity‐oriented synthesis of flavones and isoflavones via palladium/norbornene cooperative catalysis. Chin. J. Chem., 2022, 40(6), 675-680. doi: 10.1002/cjoc.202100693
  32. Weiss, M.; Miskin, H.; Sportelli, P.; Vakkalanka, S.K.V.S. Combination of anti-Cd20 antibody and Pi3 kinase selective inhibitor. WO Patent 2014071125, 2014.
  33. Zhang, N.; An, B.; Zhou, Y.; Li, X.; Yan, M. Synthesis, evaluation, and mechanism study of new tepotinib derivatives as antiproliferative agents. Molecules, 2019, 24(6), 1173. doi: 10.3390/molecules24061173 PMID: 30934578
  34. Yu, Y.; Liu, A.; Dhawan, G.; Mei, H.; Zhang, W.; Izawa, K.; Soloshonok, V.A.; Han, J. Fluorine-containing pharmaceuticals approved by the FDA in 2020: Synthesis and biological activity. Chin. Chem. Lett., 2021, 32(11), 3342-3354. doi: 10.1016/j.cclet.2021.05.042
  35. Krawczyk, H. The stilbene derivatives, nucleosides, and nucleosides modified by stilbene derivatives. Bioorg. Chem., 2019, 90, 103073. doi: 10.1016/j.bioorg.2019.103073 PMID: 31234131
  36. Dhillon, S. Decitabine/cedazuridine: First approval. Drugs, 2020, 80(13), 1373-1378. doi: 10.1007/s40265-020-01389-7 PMID: 32860582
  37. Ammirati, E.; Turchetta, S.; Zenoni, M.; Brandi, P.; Berardi, G.; Anibaldi, M.D.F.; De Ferra, L. Process for the synthesis of azacitidine and decitabine. US Patent 20110245485A1, 2011.
  38. Smith, B.D.; Kaufman, M.D.; Lu, W.P.; Gupta, A.; Leary, C.B.; Wise, S.C.; Rutkoski, T.J.; Ahn, Y.M.; Al-Ani, G.; Bulfer, S.L. Ripretinib (DCC-2618) is a switch control kinase inhibitor of a broad spectrum of oncogenic and drug-resistant KIT and PDGFRA variants. Cancer cell, 2019, 35(5), 738-751.e9.
  39. Liang, X.; Yang, Q.; Wu, P.; He, C.; Yin, L.; Xu, F.; Yin, Z.; Yue, G.; Zou, Y.; Li, L.; Song, X.; Lv, C.; Zhang, W.; Jing, B. The synthesis review of the approved tyrosine kinase inhibitors for anticancer therapy in 2015–2020. Bioorg. Chem., 2021, 113, 105011. doi: 10.1016/j.bioorg.2021.105011 PMID: 34091289
  40. Al-Zaqri, N.; Pooventhiran, T.; Alharthi, F.A.; Bhattacharyya, U.; Thomas, R. Structural investigations, quantum mechanical studies on proton and metal affinity and biological activity predictions of selpercatinib. J. Mol. Liq., 2021, 325, 114765. doi: 10.1016/j.molliq.2020.114765 PMID: 33746318
  41. Junqiang, W.; Xiaolong, Q.; Tao, X.; Zhiwei, Z.; Xiaobo, X.; Dong, W. Synthesis of serpatatinib. CN Patent 113321668A, 2021.
  42. Hughes, D.L. Review of synthetic routes and crystalline forms of the oncology drugs capmatinib, selpercatinib, and pralsetinib. Org. Process Res. Dev., 2021, 25(10), 2192-2204. doi: 10.1021/acs.oprd.1c00282
  43. Kocienski, P. Synthesis of pemigatinib. Synfacts, 2021, 17(10), 1076. doi: 10.1055/s-0040-1720180
  44. García-Alonso, S.; Ocaña, A.; Pandiella, A. Trastuzumab emtansine: Mechanisms of action and resistance, clinical progress, and beyond. Trends Cancer, 2020, 6(2), 130-146. doi: 10.1016/j.trecan.2019.12.010 PMID: 32061303
  45. Upton, R.; Banuelos, A.; Feng, D.; Biswas, T.; Kao, K.; McKenna, K.; Willingham, S.; Ho, P.Y.; Rosental, B.; Tal, M.C.; Raveh, T.; Volkmer, J.P.; Pegram, M.D.; Weissman, I.L. Combining CD47 blockade with trastuzumab eliminates HER2-positive breast cancer cells and overcomes trastuzumab tolerance. Proc. Natl. Acad. Sci., 2021, 118(29), e2026849118. doi: 10.1073/pnas.2026849118 PMID: 34257155
  46. Kocienski, P. Synthesis of tucatinib. Synfacts, 2019, 15(09), 0965.
  47. O’Neil, B.H.; Goff, L.W.; Kauh, J.S.W.; Strosberg, J.R.; Bekaii-Saab, T.S.; Lee, R.; Kazi, A.; Moore, D.T.; Learoyd, M.; Lush, R.M.; Sebti, S.M.; Sullivan, D.M. Phase II study of the mitogen-activated protein kinase 1/2 inhibitor selumetinib in patients with advanced hepatocellular carcinoma. J. Clin. Oncol., 2011, 29(17), 2350-2356. doi: 10.1200/JCO.2010.33.9432 PMID: 21519015
  48. Mukhopadhyay, S.; Maitra, A.; Choudhury, S. Selumetinib: The first ever approved drug for neurofibromatosis-1 related inoperable plexiform neurofibroma. Curr. Med. Res. Opin., 2021, 37(5), 789-794. doi: 10.1080/03007995.2021.1900089 PMID: 33683166
  49. Chen, W.; Yu, D.; Sun, S.Y.; Li, F. Nanoparticles for co-delivery of osimertinib and selumetinib to overcome osimertinib-acquired resistance in non-small cell lung cancer. Acta Biomater., 2021, 129, 258-268. doi: 10.1016/j.actbio.2021.05.018 PMID: 34048974
  50. Wallace, E.L.; Lyssikatos, J.P.; Hurley, B.T.; Marlow, A.L. N3 alkylated benzimidazole derivatives as mek inhibitors. WO Patent 2003077914A1, 2003.
  51. Liu, A.; Han, J.; Nakano, A.; Konno, H.; Moriwaki, H.; Abe, H.; Izawa, K.; Soloshonok, V.A. New pharmaceuticals approved by FDA in 2020: Small‐molecule drugs derived from amino acids and related compounds. Chirality, 2022, 34(1), 86-103. doi: 10.1002/chir.23376 PMID: 34713503
  52. Kuntz, K.W. Salt form of a human histone methyltransferase EZH2 inhibitor. WO Patent 2013155317A1, 2013.
  53. Alsalme, A.; Pooventhiran, T.; Al-Zaqri, N.; Rao, D.J.; Thomas, R. Structural, physico-chemical landscapes, ground state and excited state properties in different solvent atmosphere of Avapritinib and its ultrasensitive detection using SERS/GERS on self-assembly formation with graphene quantum dots. J. Mol. Liq., 2021, 322, 114555. doi: 10.1016/j.molliq.2020.114555
  54. Ayala-Aguilera, C.C.; Valero, T.; Lorente-Macías, Á.; Baillache, D.J.; Croke, S.; Unciti-Broceta, A. Small molecule kinase inhibitor drugs (1995–2021): Medical indication, pharmacology, and synthesis. J. Med. Chem., 2022, 65(2), 1047-1131. doi: 10.1021/acs.jmedchem.1c00963 PMID: 34624192
  55. Guo, Y.; Liu, Y.; Hu, N.; Yu, D.; Zhou, C.; Shi, G.; Zhang, B.; Wei, M.; Liu, J.; Luo, L.; Tang, Z.; Song, H.; Guo, Y.; Liu, X.; Su, D.; Zhang, S.; Song, X.; Zhou, X.; Hong, Y.; Chen, S.; Cheng, Z.; Young, S.; Wei, Q.; Wang, H.; Wang, Q.; Lv, L.; Wang, F.; Xu, H.; Sun, H.; Xing, H.; Li, N.; Zhang, W.; Wang, Z.; Liu, G.; Sun, Z.; Zhou, D.; Li, W.; Liu, L.; Wang, L.; Wang, Z. Discovery of zanubrutinib (BGB-3111), a novel, potent, and selective covalent inhibitor of Bruton’s tyrosine kinase. J. Med. Chem., 2019, 62(17), 7923-7940. doi: 10.1021/acs.jmedchem.9b00687 PMID: 31381333
  56. Osman, H.M.; Tuncbilek, M. Entrectinib: A new selective tyrosine kinase inhibitor approved for the treatment of pediatric and adult patients with NTRK fusionpositive, recurrent or advanced solid tumors. Curr. Med. Chem., 2022, 29(15), 2602-2616. doi: 10.2174/0929867328666210914121324 PMID: 34521321
  57. Menichincheri, M.; Ardini, E.; Magnaghi, P.; Avanzi, N.; Banfi, P.; Bossi, R.; Buffa, L.; Canevari, G.; Ceriani, L.; Colombo, M.; Corti, L.; Donati, D.; Fasolini, M.; Felder, E.; Fiorelli, C.; Fiorentini, F.; Galvani, A.; Isacchi, A.; Borgia, A.L.; Marchionni, C.; Nesi, M.; Orrenius, C.; Panzeri, A.; Pesenti, E.; Rusconi, L.; Saccardo, M.B.; Vanotti, E.; Perrone, E.; Orsini, P. Discovery of entrectinib: A new 3-aminoindazole as a potent anaplastic lymphoma kinase (ALK), c-Ros oncogene 1 kinase (ROS1), and Pan-tropomyosin receptor kinases (Pan-TRKs) inhibitor. J. Med. Chem., 2016, 59(7), 3392-3408. doi: 10.1021/acs.jmedchem.6b00064 PMID: 27003761
  58. Kocienski, P. Synthesis of pexidartinib. Synfacts, 2019, 15(09), 0966.
  59. Chen, D.; Zhang, Y.; Li, J.; Liu, Y. Exploratory process development of pexidartinib through the tandem Tsuji–Trost reaction and Heck coupling. Synthesis, 2019, 51(12), 2564-2571. doi: 10.1055/s-0037-1612421
  60. Sugawara, T.; Baumgart, S.J.; Nevedomskaya, E.; Reichert, K.; Steuber, H.; Lejeune, P.; Mumberg, D.; Haendler, B. Darolutamide is a potent androgen receptor antagonist with strong efficacy in prostate cancer models. Int. J. Cancer, 2019, 145(5), 1382-1394. doi: 10.1002/ijc.32242 PMID: 30828788
  61. Wang, L.; Li, R.; Song, C.; Chen, Y.; Long, H.; Yang, L. Smallmolecule anti-cancer drugs from 2016 to 2020: Synthesis and clinical application. Nat. Prod. Commun., 2021, 16(9), 1934578X211040326.
  62. Mancuso, J. Selinexor (Xpovio), An XPO1 inhibitor and a new class of therapeutics for treating multiple myeloma. Current Drug Syn., 2022, 530, 2286-2303. doi: 10.1002/9781119847281.ch13
  63. Nair, A.S.; Singh, A.K.; Kumar, A.; Kumar, S.; Sukumaran, S.; Koyiparambath, V.P.; Pappachen, L.K.; Rangarajan, T.M.; Kim, H.; Mathew, B. FDA-approved trifluoromethyl group-containing drugs: A review of 20 years. Processes, 2022, 10(10), 2054. doi: 10.3390/pr10102054
  64. André, F.; Ciruelos, E.; Rubovszky, G.; Campone, M.; Loibl, S.; Rugo, H.S.; Iwata, H.; Conte, P.; Mayer, I.A.; Kaufman, B.; Yamashita, T.; Lu, Y.S.; Inoue, K.; Takahashi, M.; Pápai, Z.; Longin, A.S.; Mills, D.; Wilke, C.; Hirawat, S.; Juric, D. Alpelisib for PIK3CA-mutated, hormone receptor–positive advanced breast cancer. N. Engl. J. Med., 2019, 380(20), 1929-1940. doi: 10.1056/NEJMoa1813904 PMID: 31091374
  65. Sun, X.; Feng, L.; Sun, C.; Kang, C. Synthesis of quinoxaline derivatives as intermediates to obtain erdafitinib. Pharm. Chem. J., 2021, 55(9), 951-953. doi: 10.1007/s11094-021-02521-x
  66. Sheikhi, N.; Bahraminejad, M.; Saeedi, M.; Mirfazli, S.S. A review: FDA-approved fluorine-containing small molecules from 2015 to 2022. Eur. J. Med. Chem., 2023, 260, 115758. doi: 10.1016/j.ejmech.2023.115758 PMID: 37657268
  67. Gorcea, C.M.; Burthem, J.; Tholouli, E. ASP2215 in the treatment of relapsed/refractory acute myeloid leukemia with FLT3 mutation: Background and design of the ADMIRAL trial. Future Oncol., 2018, 14(20), 1995-2004. doi: 10.2217/fon-2017-0582 PMID: 29498296
  68. Flick, A.C.; Leverett, C.A.; Ding, H.X.; McInturff, E.; Fink, S.J.; Mahapatra, S.; Carney, D.W.; Lindsey, E.A.; DeForest, J.C.; France, S.P.; Berritt, S.; Bigi-Botterill, S.V.; Gibson, T.S.; Liu, Y.; O’Donnell, C.J. Synthetic approaches to the new drugs approved during 2019. J. Med. Chem., 2021, 64(7), 3604-3657. doi: 10.1021/acs.jmedchem.1c00208 PMID: 33783211
  69. Mori, M.; Kaneko, N.; Ueno, Y.; Yamada, M.; Tanaka, R.; Saito, R.; Shimada, I.; Mori, K.; Kuromitsu, S. Gilteritinib, a FLT3/AXL inhibitor, shows antileukemic activity in mouse models of FLT3 mutated acute myeloid leukemia. Invest. New Drugs, 2017, 35(5), 556-565. doi: 10.1007/s10637-017-0470-z PMID: 28516360
  70. Xu, H.; Chen, L.; Chen, Y.; Fu, Y.; Xu, F.; Chen, G. Study on the synthesis technology of anticancer drug Gilteritinib fumarate. Russ. Chem. Bull., 2023, 72(8), 1921-1928. doi: 10.1007/s11172-023-3977-9
  71. Qinglei, Y.; Zhiguo, Z.; Qiang, G.; Baofu, Z. Preparation of gilteritinib derivatives as inhibitors of FLT3-Axl. CN Patent 106083821, 2016.
  72. Attia, M.H.; Elrazaz, E.Z.; El-Emam, S.Z.; Taher, A.T.; Abdel-Aziz, H.A.; Abouzid, K.A.M. Synthesis and in-vitro anti-proliferative evaluation of some pyrazolo1,5-apyrimidines as novel larotrectinib analogs. Bioorg. Chem., 2020, 94, 103458. doi: 10.1016/j.bioorg.2019.103458 PMID: 31785854
  73. Haidong, J.L.; Ruiwan, Z.L.; Wang, G.; Yang, D.; Wenyuan, S.Y.; Ying, Z.; Haiyan, H. A kind of preparation method and their intermediate of larotrectinib. CN Patent 107987082A, 2019.
  74. Peklar, B.; Perdih, F.; Makuc, D.; Plavec, J.; Cluzeau, J.; Kitanovski, Z.; Časar, Z. Glasdegib dimaleate: Synthesis, characterization and comparison of its properties with monomaleate analogue. Pharmaceutics, 2022, 14(8), 1641. doi: 10.3390/pharmaceutics14081641 PMID: 36015269
  75. Munchhof, M.J.; Li, Q.; Shavnya, A.; Borzillo, G.V.; Boyden, T.L.; Jones, C.S.; LaGreca, S.D.; Martinez-Alsina, L.; Patel, N.; Pelletier, K.; Reiter, L.A.; Robbins, M.D.; Tkalcevic, G.T. Discovery of PF-04449913, a potent and orally bioavailable inhibitor of smoothened. ACS Med. Chem. Lett., 2012, 3(2), 106-111. doi: 10.1021/ml2002423 PMID: 24900436
  76. Kocienski, P. Synthesis of lorlatinib. Synfacts, 2018, 14(12), 1227. doi: 10.1055/s-0037-1611138
  77. Wang, B.; Chu, D.; Feng, Y.; Shen, Y.; Aoyagi-Scharber, M.; Post, L.E. Discovery and characterization of (8 S, 9 R)-5-Fluoro-8-(4-fluorophenyl)-9-(1-methyl-1H-1,2,4-triazol-5-yl)-2,7,8,9-tetrahydro-3H-pyrido4,3,2-dephthalazin-3-one (BMN 673, Talazoparib), a novel, highly potent, and orally efficacious poly(ADP-ribose) polymerase-1/2 inhibitor, as an anticancer agent. J. Med. Chem., 2016, 59(1), 335-357. doi: 10.1021/acs.jmedchem.5b01498 PMID: 26652717
  78. Wang, S.; Yuan, X.H.; Wang, S.Q.; Zhao, W.; Chen, X.B.; Yu, B. FDA-approved pyrimidine-fused bicyclic heterocycles for cancer therapy: Synthesis and clinical application. Eur. J. Med. Chem., 2021, 214, 113218. doi: 10.1016/j.ejmech.2021.113218 PMID: 33540357
  79. Lin, G.M.K. Synthesis method of EGFR (Epidermal Growth Factor Receptor) inhibitor dacomitinib. CN Patent 103304492.A, 2013.
  80. Rodrigues, D.A.; Sagrillo, F.S.; Fraga, C.A.M.; Duvelisib, A. 2018 novel FDA-approved small molecule inhibiting phosphoinositide 3-kinases. Pharmaceuticals, 2019, 12(2), 69. doi: 10.3390/ph12020069 PMID: 31064155
  81. Ren, Y.L. Certain chemical entities, compositions and methods. WO Patent 2011008302A, 2009.
  82. Megías-Vericat, J.E.; Solana-Altabella, A.; Ballesta-López, O.; Martínez-Cuadrón, D.; Montesinos, P. Drug-drug interactions of newly approved small molecule inhibitors for acute myeloid leukemia. Ann. Hematol., 2020, 99(9), 1989-2007. doi: 10.1007/s00277-020-04186-0 PMID: 32683457
  83. Kocienski, P. Synthesis of ivosidenib. Synfacts, 2018, 14(07), 0674.
  84. Saad, F.; Bögemann, M.; Suzuki, K.; Shore, N. Treatment of nonmetastatic castration-resistant prostate cancer: Focus on second-generation androgen receptor inhibitors. Prostate Cancer Prostatic Dis., 2021, 24(2), 323-334. doi: 10.1038/s41391-020-00310-3 PMID: 33558665
  85. Saladi, V.N.; Kammari, B.R.; Mandad, P.R.; Krishna, G.R.; Sajja, E.; Thirumali, R.S.; Marutapilli, A.; Mathad, V.T. Novel pharmaceutical cocrystal of apalutamide, a nonsteroidal antiandrogen drug: Synthesis, crystal structure, dissolution, stress, and excipient compatibility. Cryst. Growth Des., 2022, 22(2), 1130-1142. doi: 10.1021/acs.cgd.1c01087
  86. Seligson, J.M.; Patron, A.M.; Berger, M.J.; Harvey, R.D.; Seligson, N.D. Sacituzumab govitecan-hziy: An antibody-drug conjugate for the treatment of refractory, metastatic, triple-negative breast cancer. Ann. Pharmacother., 2021, 55(7), 921-931. doi: 10.1177/1060028020966548 PMID: 33070624
  87. Akhtar, S.; Ali, T.A.; Faiyaz, A.; Khan, O.S.; Raza, S.S.; Kulinski, M.; Omri, H.E.; Bhat, A.A.; Uddin, S. Cytokine-mediated dysregulation of signaling pathways in the pathogenesis of multiple myeloma. Int. J. Mol. Sci., 2020, 21(14), 5002. doi: 10.3390/ijms21145002 PMID: 32679860
  88. El-Shershaby, H.M.; Farrag, N.S.; Ebeid, N.H.; Moustafa, K.A. Radiolabeling and cytotoxicity of monoclonal antibody Isatuximab functionalized silver nanoparticles on the growth of multiple myeloma. Int. J. Pharm., 2022, 624, 122019. doi: 10.1016/j.ijpharm.2022.122019 PMID: 35842081
  89. Matos, M.J.; Labão-Almeida, C.; Sayers, C.; Dada, O.; Tacke, M.; Bernardes, G.J.L. Synthesis and biological evaluation of homogeneous thiol‐linked NHC*‐au‐albumin and ‐trastuzumab bioconjugates. Chemistry, 2018, 24(47), 12250-12253. doi: 10.1002/chem.201800872 PMID: 29729206
  90. Halford, Z.; Anderson, M.K.; Clark, M.D. Enfortumab vedotin-ejfv: A first-in-class anti–nectin-4 antibody-drug conjugate for the management of urothelial carcinoma. Ann. Pharmacother., 2021, 55(6), 772-782. doi: 10.1177/1060028020960402 PMID: 32945172
  91. Chang, E.; Weinstock, C.; Zhang, L.; Charlab, R.; Dorff, S.E.; Gong, Y.; Hsu, V.; Li, F.; Ricks, T.K.; Song, P.; Tang, S.; Waldron, P.E.; Yu, J.; Zahalka, E.; Goldberg, K.B.; Pazdur, R.; Theoret, M.R.; Ibrahim, A.; Beaver, J.A. FDA approval summary: Enfortumab vedotin for locally advanced or metastatic urothelial carcinoma. Clin. Cancer Res., 2021, 27(4), 922-927. doi: 10.1158/1078-0432.CCR-20-2275 PMID: 32962979
  92. Burke, J.M.; Morschhauser, F.; Andorsky, D.; Lee, C.; Sharman, J.P. Antibody–drug conjugates for previously treated aggressive lymphomas: Focus on polatuzumab vedotin. Expert Rev. Clin. Pharmacol., 2020, 13(10), 1073-1083. doi: 10.1080/17512433.2020.1826303 PMID: 32985934
  93. Lin, C.C.; Zucali, P.; Carthon, B.; Bauer, T.M.; Tucci, M.; Italiano, A.; Iacovelli, R.; Su, W.C.; Massard, C.; Saleh, M. Abstract LB040: Targeting CD38 and PD-1 with isatuximab (Isa) plus cemiplimab (Cemi) in patients (PTS) with advanced malignancies: Results from a phase 1/2 open-label, multicenter study. Cancer Res., 2021, 81(S13), LB040-LB040.
  94. Flanagan, E.P.; Levy, M.; Katz, E.; Cimbora, D.; Drappa, J.; Mealy, M.A.; She, D.; Cree, B.A.C. Inebilizumab for treatment of neuromyelitis optica spectrum disorder in patients with prior rituximab use from the N-MOmentum Study. Mult. Scler. Relat. Disord., 2022, 57, 103352. doi: 10.1016/j.msard.2021.103352 PMID: 35158461
  95. Frampton, J.E. Inebilizumab: First approval. Drugs, 2020, 80(12), 1259-1264. doi: 10.1007/s40265-020-01370-4 PMID: 32729016
  96. Ohmachi, K.; Ogura, M.; Suehiro, Y.; Ando, K.; Uchida, T.; Choi, I.; Ogawa, Y.; Kobayashi, M.; Fukino, K.; Yokoi, Y.; Okamura, J. A multicenter phase I study of inebilizumab, a humanized anti-CD19 monoclonal antibody, in Japanese patients with relapsed or refractory B-cell lymphoma and multiple myeloma. Int. J. Hematol., 2019, 109(6), 657-664. doi: 10.1007/s12185-019-02635-9 PMID: 30915717
  97. Hoy, S.M. Tafasitamab: First approval. Drugs, 2020, 80(16), 1731-1737. doi: 10.1007/s40265-020-01405-w PMID: 32946059
  98. Baines, A.C.; Ershler, R.; Kanapuru, B.; Xu, Q.; Shen, G.; Li, L.; Ma, L.; Okusanya, O.O.; Simpson, N.E.; Nguyen, W.; Theoret, M.R.; Pazdur, R.; Gormley, N.J. FDA approval summary: Belantamab mafodotin for patients with relapsed or refractory multiple myeloma. Clin. Cancer Res., 2022, 28(21), 4629-4633. doi: 10.1158/1078-0432.CCR-22-0618 PMID: 35736811
  99. Rajpal, M.; Shenoy, A.K.; Malhotra, A. Rising from the Ashes: The curious case of the development of biologics for the treatment of neuroblastoma. In: Biologics and Biosimilars; CRC Press, 2022; pp. 239-256. doi: 10.1201/9780429485626-16
  100. Khakinahad, Y.; Sohrabi, S.; Razi, S.; Narmani, A.; Khaleghi, S.; Asadiyun, M.; Jafari, H.; Mohammadnejad, J. Margetuximab conjugated-PEG-PAMAM G4 nano-complex: A smart nano-device for suppression of breast cancer. Biomed. Eng. Lett., 2022, 12(3), 317-329. doi: 10.1007/s13534-022-00225-z PMID: 35892030
  101. Oaknin, A.; Tinker, A.V.; Gilbert, L.; Samouëlian, V.; Mathews, C.; Brown, J.; Barretina-Ginesta, M.P.; Moreno, V.; Gravina, A.; Abdeddaim, C.; Banerjee, S.; Guo, W.; Danaee, H.; Im, E.; Sabatier, R. Clinical activity and safety of the anti-PD-1 monoclonal antibody dostarlimab for patients with recurrent or advanced dMMR endometrial cancer. Future Oncol., 2021, 17(29), 3781-3785. doi: 10.2217/fon-2021-0598 PMID: 34427115
  102. Park, U.B.; Jeong, T.J.; Gu, N.; Lee, H.T.; Heo, Y.S. Molecular basis of PD-1 blockade by dostarlimab, the FDA-approved antibody for cancer immunotherapy. Biochem. Biophys. Res. Commun., 2022, 599, 31-37. doi: 10.1016/j.bbrc.2022.02.026 PMID: 35168061
  103. Hartley, J.A. Antibody-drug conjugates (ADCs) delivering pyrrolobenzodiazepine (PBD) dimers for cancer therapy. Expert Opin. Biol. Ther., 2021, 21(7), 931-943. doi: 10.1080/14712598.2020.1776255 PMID: 32543981
  104. Syed, Y.Y. Amivantamab: First approval. Drugs, 2021, 81(11), 1349-1353. doi: 10.1007/s40265-021-01561-7 PMID: 34292533
  105. Olivier, T.; Prasad, V. Amivantamab and mobocertinib in exon 20 insertions EGFR mutant lung cancer, challenge to the current guidelines. Transl. Oncol., 2022, 23, 101475. doi: 10.1016/j.tranon.2022.101475 PMID: 35785671
  106. Criscitiello, C.; Morganti, S.; Curigliano, G. Antibody–drug conjugates in solid tumors: A look into novel targets. J. Hematol. Oncol., 2021, 14(1), 20. doi: 10.1186/s13045-021-01035-z PMID: 33509252
  107. Khongorzul, P.; Ling, C.J.; Khan, F.U.; Ihsan, A.U.; Zhang, J. Antibody–drug conjugates: A comprehensive review. Mol. Cancer Res., 2020, 18(1), 3-19. doi: 10.1158/1541-7786.MCR-19-0582 PMID: 31659006
  108. Yap, T.A.; Parkes, E.E.; Peng, W.; Moyers, J.T.; Curran, M.A.; Tawbi, H.A. Development of immunotherapy combination strategies in cancer. Cancer Discov., 2021, 11(6), 1368-1397. doi: 10.1158/2159-8290.CD-20-1209 PMID: 33811048
  109. Senter, P.D.; Sievers, E.L. The discovery and development of brentuximab vedotin for use in relapsed Hodgkin lymphoma and systemic anaplastic large cell lymphoma. Nat. Biotechnol., 2012, 30(7), 631-637. doi: 10.1038/nbt.2289 PMID: 22781692
  110. Kasamon, Y.L.; Chen, H.; de Claro, R.A.; Nie, L.; Ye, J.; Blumenthal, G.M.; Farrell, A.T.; Pazdur, R. FDA approval summary: Mogamulizumab-kpkc for mycosis fungoides and sézary syndrome. Clin. Cancer Res., 2019, 25(24), 7275-7280. doi: 10.1158/1078-0432.CCR-19-2030 PMID: 31366601
  111. Moore, D.C.; Elmes, J.B.; Shibu, P.A.; Larck, C.; Park, S.I. Mogamulizumab: An anti-CC chemokine receptor 4 antibody for T-cell lymphomas. Ann. Pharmacother., 2020, 54(4), 371-379. doi: 10.1177/1060028019884863 PMID: 31648540
  112. Keam, S.J. Piflufolastat F 18: Diagnostic first approval. Mol. Diagn. Ther., 2021, 25(5), 647-656. doi: 10.1007/s40291-021-00548-0 PMID: 34292532
  113. Carlucci, G.; Ippisch, R.; Slavik, R.; Mishoe, A.; Blecha, J.; Zhu, S. 68 Ga-PSMA-11 NDA approval: A novel and successful academic partnership. J. Nucl. Med., 2021, 62(2), 149-155. doi: 10.2967/jnumed.120.260455 PMID: 33443068
  114. Dearling, J.L.J.; van Dam, E.M.; Harris, M.J.; Packard, A.B. Detection and therapy of neuroblastoma minimal residual disease using 64/67CuCu-SARTATE in a preclinical model of hepatic metastases. EJNMMI Res., 2021, 11(1), 20. doi: 10.1186/s13550-021-00763-0 PMID: 33394212
  115. Gutfilen, B.; Souza, S.; Valentini, G. Copper-64: A real theranostic agent. Drug Des. Devel. Ther., 2018, 12, 3235-3245. doi: 10.2147/DDDT.S170879 PMID: 30323557
  116. Katzenellenbogen, J.A. The quest for improving the management of breast cancer by functional imaging: The discovery and development of 16α-18Ffluoroestradiol (FES), a PET radiotracer for the estrogen receptor, a historical review. Nucl. Med. Biol., 2021, 92, 24-37. doi: 10.1016/j.nucmedbio.2020.02.007 PMID: 32229068
  117. Yoo, J.; Dence, C.S.; Sharp, T.L.; Katzenellenbogen, J.A.; Welch, M.J. Synthesis of an estrogen receptor β-selective radioligand: 5-18Ffluoro-(2R,3S)-2,3-bis(4-hydroxyphenyl)pentanenitrile and comparison of in vivo distribution with 16α-18Ffluoro-17β-estradiol. J. Med. Chem., 2005, 48(20), 6366-6378. doi: 10.1021/jm050121f PMID: 16190762
  118. De Araujo Bispo, A.C.; do Nascimento, L.T.C.; Castro, A.C.F.; Lima, L.A.R.; Ferreira, S.M.Z.M.D.; da Silva, J.B.; Mamede, M. Synthesis and characterization of the radiopharmaceutical 18F fluoroestradiol. Braz. J. Radiat. Sci., 2021, 9(1A)
  119. Sammartano, A.; Migliari, S.; Scarlattei, M.; Baldari, G.; Ruffini, L. Validation of quality control parameters of cassette-based gallium-68-DOTA-Tyr3-octreotate synthesis. Indian J. Nucl. Med., 2020, 35(4), 291-298. doi: 10.4103/ijnm.IJNM_66_20 PMID: 33642752
  120. Hromadik, L.K.; Sturges, L. Caring for patients receiving 177Lu-DOTATATE, Lutathera®: A treatment of hope for patients with gastroenteropancreatic neuroendocrine tumors. J. Radiol. Nurs., 2019, 38(1), 28-32. doi: 10.1016/j.jradnu.2018.11.003
  121. Hennrich, U.; Kopka, K. Lutathera®: The first FDA-and EMA-approved radiopharmaceutical for peptide receptor radionuclide therapy. Pharmaceuticals, 2019, 12(3), 114. doi: 10.3390/ph12030114 PMID: 31362406
  122. Pallem, C. Solid-state fermentation of corn husk for the synthesis of Asparaginase by Fusarium oxysporum. Asian J. Pharm. Pharmacol., 2019, 5(4), 678-681. doi: 10.31024/ajpp.2019.5.4.5
  123. Salzer, W.L.; Asselin, B.L.; Plourde, P.V.; Corn, T.; Hunger, S.P. Development of asparaginase Erwinia chrysanthemi for the treatment of acute lymphoblastic leukemia. Ann. N. Y. Acad. Sci., 2014, 1329(1), 81-92. doi: 10.1111/nyas.12496 PMID: 25098829

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers