A Contemporary Review on the Critical Role of Nonsteroidal Anti-inflammatory Agents in Colorectal Cancer Therapy


Cite item

Full Text

Abstract

Nonsteroidal Anti-Inflammatory Drugs (NSAIDs) are widely recognized as effective pain relievers and function by inhibiting the cyclooxygenase enzyme (COXs). Moreover, they have been found to participate in various cellular processes through different signaling pathways, such as WNT, MAPK, NF-KB, and PI3K/AKT/mTOR. This makes them potential candidates for chemoprevention of several malignancies, particularly colorectal cancer (CRC). However, the use of NSAIDs in cancer prevention and treatment is a complex issue due to their adverse effects and gastrointestinal toxicity. Therefore, it is crucial to explore combination therapies that can minimize side effects while maximizing synergistic effects with other agents and to evaluate the success rate of such approaches in both pre-clinical and clinical studies. In this review, we aim to provide an overview of the effects of NSAIDs in the prevention and treatment of CRC. We will focus on elucidating the possible mechanisms of action of these drugs, the signaling pathways involved in CRC, and the potential synergistic effects when combined with other therapeutic agents.

About the authors

Parisa Zia Sarabi

Laboratorio de Psicobiología, Campus Santiago Ramón y Cajal, University of Sevilla

Email: info@benthamscience.net

Mohammad Moradi

Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan

Email: info@benthamscience.net

Malihe Bagheri

Department of Biotechnology and Molecular Medicine, Arak University of Medical Sciences

Email: info@benthamscience.net

Mohammad Khalili

Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine

Email: info@benthamscience.net

Shahrzad Moradifard

Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine

Email: info@benthamscience.net

Tannaz Jamialahmadi

Applied Biomedical Research Center, Mashhad University of Medical Sciences

Email: info@benthamscience.net

Faezeh Ghasemi

Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine

Author for correspondence.
Email: info@benthamscience.net

Amirhossein Sahebkar

Applied Biomedical Research Center, Mashhad University of Medical Sciences

Author for correspondence.
Email: info@benthamscience.net

References

  1. Ewing, I.; Hurley, J.J.; Josephides, E.; Millar, A. The molecular genetics of colorectal cancer. Frontline Gastroenterol., 2014, 5(1), 26-30. doi: 10.1136/flgastro-2013-100329 PMID: 24416503
  2. Rawla, P.; Sunkara, T.; Barsouk, A. Epidemiology of colorectal cancer: Incidence, mortality, survival, and risk factors. Prz. Gastroenterol., 2019, 14(2), 89-103. doi: 10.5114/pg.2018.81072 PMID: 31616522
  3. Fotheringham, S.; Mozolowski, G.A.; Murray, E.M.A.; Kerr, D.J. Challenges and solutions in patient treatment strategies for stage II colon cancer. Gastroenterol. Rep., 2019, 7(3), 151-161. doi: 10.1093/gastro/goz006 PMID: 31217978
  4. Tomić, T.; Domínguez-López, S.; Barrios-Rodríguez, R. Non-aspirin non-steroidal anti-inflammatory drugs in prevention of colorectal cancer in people aged 40 or older: A systematic review and meta-analysis. Cancer Epidemiol., 2019, 58, 52-62. doi: 10.1016/j.canep.2018.11.002 PMID: 30472477
  5. Favoriti, P.; Carbone, G.; Greco, M.; Pirozzi, F.; Pirozzi, R.E.M.; Corcione, F. Worldwide burden of colorectal cancer: A review. Updates Surg., 2016, 68(1), 7-11. doi: 10.1007/s13304-016-0359-y PMID: 27067591
  6. Wu, J.; Xia, C.; Liu, C.; Zhang, Q.; Xia, C. The role of gut microbiota and drug interactions in the development of colorectal cancer. Front. Pharmacol., 2023, 14, 1265136. doi: 10.3389/fphar.2023.1265136 PMID: 37680706
  7. Werner, J.; Heinemann, V. Standards and challenges of care for colorectal cancer today. Visc. Med., 2016, 32(3), 156-157. doi: 10.1159/000447070 PMID: 27493941
  8. Zhang, Y.; Chen, Z.; Li, J. The current status of treatment for colorectal cancer in China. Medicine, 2017, 96(40), e8242. doi: 10.1097/MD.0000000000008242 PMID: 28984783
  9. Messersmith, W.A. NCCN guidelines updates: management of metastatic colorectal cancer. J. Natl. Compr. Canc. Netw., 2019, 17(5), 599-603.
  10. Labianca, R.; Nordlinger, B.; Beretta, G.D.; Mosconi, S.; Mandalà, M.; Cervantes, A.; Arnold, D. Early colon cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann. Oncol., 2013, 24(Suppl. 6), vi64-vi72. doi: 10.1093/annonc/mdt354 PMID: 24078664
  11. Fakih, M.G. Metastatic colorectal cancer: Current state and future directions. J. Clin. Oncol., 2015, 33(16), 1809-1824. doi: 10.1200/JCO.2014.59.7633 PMID: 25918280
  12. Seymour, M.T.; Maughan, T.S.; Ledermann, J.A.; Topham, C.; James, R.; Gwyther, S.J.; Smith, D.B.; Shepherd, S.; Maraveyas, A.; Ferry, D.R.; Meade, A.M.; Thompson, L.; Griffiths, G.O.; Parmar, M.K.B.; Stephens, R.J. Different strategies of sequential and combination chemotherapy for patients with poor prognosis advanced colorectal cancer (MRC FOCUS): A randomised controlled trial. Lancet, 2007, 370(9582), 143-152. doi: 10.1016/S0140-6736(07)61087-3 PMID: 17630037
  13. Xie, Y.H.; Chen, Y.X.; Fang, J.Y. Comprehensive review of targeted therapy for colorectal cancer. Signal Transduct. Target. Ther., 2020, 5(1), 22. doi: 10.1038/s41392-020-0116-z PMID: 32296018
  14. Yau, T.O. Precision treatment in colorectal cancer: Now and the future. JGH Open, 2019, 3(5), 361-369. doi: 10.1002/jgh3.12153 PMID: 31633039
  15. Wong, R.S. Role of nonsteroidal anti-inflammatory drugs (NSAIDs) in cancer prevention and cancer promotion. Adv. Pharmacol. Sci., 2019, 2019, 3418975.
  16. Ruder, E.H.; Laiyemo, A.O.; Graubard, B.I.; Hollenbeck, A.R.; Schatzkin, A.; Cross, A.J. Non-steroidal anti-inflammatory drugs and colorectal cancer risk in a large, prospective cohort. Am. J. Gastroenterol., 2011, 106(7), 1340-1350. doi: 10.1038/ajg.2011.38 PMID: 21407185
  17. Trabert, B.; Ness, R.B.; Lo-Ciganic, W.H.; Murphy, M.A.; Goode, E.L.; Poole, E.M.; Brinton, L.A.; Webb, P.M.; Nagle, C.M.; Jordan, S.J.; Risch, H.A.; Rossing, M.A.; Doherty, J.A.; Goodman, M.T.; Lurie, G.; Kjaer, S.K.; Hogdall, E.; Jensen, A.; Cramer, D.W.; Terry, K.L.; Vitonis, A.; Bandera, E.V.; Olson, S.; King, M.G.; Chandran, U.; Anton-Culver, H.; Ziogas, A.; Menon, U.; Gayther, S.A.; Ramus, S.J.; Gentry-Maharaj, A.; Wu, A.H.; Pearce, C.L.; Pike, M.C.; Berchuck, A.; Schildkraut, J.M.; Wentzensen, N. Aspirin, nonaspirin nonsteroidal anti-inflammatory drug, and acetaminophen use and risk of invasive epithelial ovarian cancer: A pooled analysis in the Ovarian Cancer Association Consortium. J. Natl. Cancer Inst., 2014, 106(2), djt431. doi: 10.1093/jnci/djt431 PMID: 24503200
  18. Dierssen-Sotos, T.; Gómez-Acebo, I.; de Pedro, M.; Pérez-Gómez, B.; Servitja, S.; Moreno, V.; Amiano, P.; Fernandez-Villa, T.; Barricarte, A.; Tardon, A.; Diaz-Santos, M.; Peiro-Perez, R.; Marcos-Gragera, R.; Lope, V.; Gracia-Lavedan, E.; Alonso, M.H.; Michelena-Echeveste, M.J.; Garcia-Palomo, A.; Guevara, M.; Castaño-Vinyals, G.; Aragonés, N.; Kogevinas, M.; Pollán, M.; Llorca, J. Use of non-steroidal anti-inflammatory drugs and risk of breast cancer: The spanish multi-case-control (mcc) study. BMC Cancer, 2016, 16(1), 660. doi: 10.1186/s12885-016-2692-4 PMID: 27542890
  19. Doat, S.; Cénée, S.; Trétarre, B.; Rebillard, X.; Lamy, P.J.; Bringer, J.P.; Iborra, F.; Murez, T.; Sanchez, M.; Menegaux, F. Nonsteroidal anti‐inflammatory drugs (NSAIDs) and prostate cancer risk: Results from the EPICAP study. Cancer Med., 2017, 6(10), 2461-2470. doi: 10.1002/cam4.1186 PMID: 28941222
  20. Reddy, B.S.; Hirose, Y.; Lubet, R.; Steele, V.; Kelloff, G.; Paulson, S.; Seibert, K.; Rao, C.V. Chemoprevention of colon cancer by specific cyclooxygenase-2 inhibitor, celecoxib, administered during different stages of carcinogenesis. Cancer Res., 2000, 60(2), 293-297. PMID: 10667579
  21. Rao, C.V.; Rivenson, A.; Simi, B.; Zang, E.; Kelloff, G.; Steele, V.; Reddy, B.S. Chemoprevention of colon carcinogenesis by sulindac, a nonsteroidal anti-inflammatory agent. Cancer Res., 1995, 55(7), 1464-1472. PMID: 7882354
  22. Amitay, E.L.; Carr, P.R.; Jansen, L.; Walter, V.; Roth, W.; Herpel, E.; Kloor, M.; Bläker, H.; Chang-Claude, J.; Brenner, H.; Hoffmeister, M. Association of aspirin and nonsteroidal anti-inflammatory drugs with colorectal cancer risk by molecular subtypes. J. Natl. Cancer Inst., 2019, 111(5), 475-483. doi: 10.1093/jnci/djy170 PMID: 30388256
  23. Rao, C.; Reddy, B. NSAIDs and chemoprevention. Curr. Cancer Drug Targets, 2004, 4(1), 29-42. doi: 10.2174/1568009043481632 PMID: 14965265
  24. Jana, N.R. NSAIDs and apoptosis. Cell. Mol. Life Sci., 2008, 65(9), 1295-1301. doi: 10.1007/s00018-008-7511-x PMID: 18292966
  25. Tsioulias, G.J.; Go, M.F.; Rigas, B. NSAIDs and colorectal cancer control: Promise and challenges. Curr. Pharmacol. Rep., 2015, 1(5), 295-301. doi: 10.1007/s40495-015-0042-x PMID: 26688785
  26. Lai, H.; Liu, Y.; Wu, J.; Cai, J.; Jie, H.; Xu, Y.; Deng, S. Targeting cancer-related inflammation with non-steroidal anti-inflammatory drugs: Perspectives in pharmacogenomics. Front. Pharmacol., 2022, 13, 1078766. doi: 10.3389/fphar.2022.1078766 PMID: 36545311
  27. Sheng, J.; Sun, H.; Yu, F.B.; Li, B.; Zhang, Y.; Zhu, Y.T. The role of cyclooxygenase-2 in colorectal cancer. Int. J. Med. Sci., 2020, 17(8), 1095-1101. doi: 10.7150/ijms.44439 PMID: 32410839
  28. Adnan, M.; Mohammad, K.I.; Hossain Manik, M.E. Anticancer agents in combination with statins. J. Bioequivalence Bioavailab., 2017, 9(4), 463-466. doi: 10.4172/jbb.1000345
  29. Zhang, Z.; Chen, F.; Shang, L. Advances in antitumor effects of NSAIDs. Cancer Manag. Res., 2018, 10, 4631-4640. doi: 10.2147/CMAR.S175212 PMID: 30410398
  30. Tougeron, D.; Sha, D.; Manthravadi, S.; Sinicrope, F.A. Aspirin and colorectal cancer: Back to the future. Clin. Cancer Res., 2014, 20(5), 1087-1094. doi: 10.1158/1078-0432.CCR-13-2563 PMID: 24327271
  31. Willoughby, D.A.; Moore, A.R.; Colville-Nash, P.R. COX-1, COX-2, and COX-3 and the future treatment of chronic inflammatory disease. Lancet, 2000, 355(9204), 646-648. doi: 10.1016/S0140-6736(99)12031-2 PMID: 10696997
  32. Ogino, S.; Kirkner, G.J.; Nosho, K.; Irahara, N.; Kure, S.; Shima, K.; Hazra, A.; Chan, A.T.; Dehari, R.; Giovannucci, E.L.; Fuchs, C.S. Cyclooxygenase-2 expression is an independent predictor of poor prognosis in colon cancer. Clin. Cancer Res., 2008, 14(24), 8221-8227. doi: 10.1158/1078-0432.CCR-08-1841 PMID: 19088039
  33. Herbert, K.; Kerr, R.; Kerr, D.J.; Church, D.N. Are NSAIDs coming back to colorectal cancer therapy or not? Curr. Colorectal Cancer Rep., 2014, 10(4), 363-371. doi: 10.1007/s11888-014-0247-0
  34. Kurumbail, R.; Kiefer, J.R.; Marnett, L.J. Cyclooxygenase enzymes: Catalysis and inhibition. Curr. Opin. Struct. Biol., 2001, 11(6), 752-760. doi: 10.1016/S0959-440X(01)00277-9 PMID: 11751058
  35. Gurpinar, E.; Grizzle, W.E.; Piazza, G.A. NSAIDs inhibit tumorigenesis, but how? Clin. Cancer Res., 2014, 20(5), 1104-1113. doi: 10.1158/1078-0432.CCR-13-1573 PMID: 24311630
  36. Berg, J.; Christoph, T.; Widerna, M.; Bodenteich, A. Isoenzyme-specific cyclooxygenase inhibitors: A whole cell assay system using the human erythroleukemic cell line HEL and the human monocytic cell line Mono Mac 6. J. Pharmacol. Toxicol. Methods, 1997, 37(4), 179-186. doi: 10.1016/S1056-8719(97)00016-6 PMID: 9279772
  37. Blobaum, A.L.; Marnett, L.J. Structural and functional basis of cyclooxygenase inhibition. J. Med. Chem., 2007, 50(7), 1425-1441. doi: 10.1021/jm0613166 PMID: 17341061
  38. Fosslien, E. Biochemistry of cyclooxygenase (COX)-2 inhibitors and molecular pathology of COX-2 in neoplasia. Crit. Rev. Clin. Lab. Sci., 2000, 37(5), 431-502. doi: 10.1080/10408360091174286 PMID: 11078056
  39. Gonzalez-Angulo, A.M.; Fuloria, J.; Prakash, O. Cyclooxygenase 2 inhibitors and colon cancer. Ochsner J., 2002, 4(3), 176-179. PMID: 22822342
  40. Fearon, E.R. Molecular genetics of colorectal cancer. Annu. Rev. Pathol., 2011, 6(1), 479-507. doi: 10.1146/annurev-pathol-011110-130235 PMID: 21090969
  41. Maier, T.J.; Janssen, A.; Schmidt, R.; Geisslinger, G.; Grösch, S. Targeting the beta‐catenin/APC pathway: a novel mechanism to explain the cyclooxygenase‐2‐independent anticarcinogenic effects of celecoxib in human colon carcinoma cells. FASEB J., 2005, 19(10), 1353-1355. doi: 10.1096/fj.04-3274fje PMID: 15946992
  42. Deng, L.; Hu, S.; Baydoun, A.R.; Chen, J.; Chen, X.; Cong, X. Aspirin induces apoptosis in mesenchymal stem cells requiring Wnt/β‐catenin pathway. Cell Prolif., 2009, 42(6), 721-730. doi: 10.1111/j.1365-2184.2009.00639.x PMID: 19706045
  43. Qiu, W.; Wang, X.; Leibowitz, B.; Liu, H.; Barker, N.; Okada, H.; Oue, N.; Yasui, W.; Clevers, H.; Schoen, R.E.; Yu, J.; Zhang, L. Chemoprevention by nonsteroidal anti-inflammatory drugs eliminates oncogenic intestinal stem cells via SMAC-dependent apoptosis. Proc. Natl. Acad. Sci. USA, 2010, 107(46), 20027-20032. doi: 10.1073/pnas.1010430107 PMID: 21041628
  44. Tinsley, H.N.; Gary, B.D.; Thaiparambil, J.; Li, N.; Lu, W.; Li, Y.; Maxuitenko, Y.Y.; Keeton, A.B.; Piazza, G.A. Colon tumor cell growth-inhibitory activity of sulindac sulfide and other nonsteroidal anti-inflammatory drugs is associated with phosphodiesterase 5 inhibition. Cancer Prev. Res., 2010, 3(10), 1303-1313. doi: 10.1158/1940-6207.CAPR-10-0030 PMID: 20876730
  45. Rice, P.L.; Kelloff, J.; Sullivan, H.; Driggers, L.J.; Beard, K.S.; Kuwada, S.; Piazza, G.; Ahnen, D.J. Sulindac metabolites induce caspase- and proteasome-dependent degradation of β-catenin protein in human colon cancer cells. Mol. Cancer Ther., 2003, 2(9), 885-892. PMID: 14555707
  46. Thompson, W.J.; Piazza, G.A.; Li, H.; Liu, L.; Fetter, J.; Zhu, B.; Sperl, G.; Ahnen, D.; Pamukcu, R. Exisulind induction of apoptosis involves guanosine 3′,5′-cyclic monophosphate phosphodiesterase inhibition, protein kinase G activation, and attenuated β-catenin. Cancer Res., 2000, 60(13), 3338-3342. PMID: 10910034
  47. He, T.C.; Chan, T.A.; Vogelstein, B.; Kinzler, K.W. PPAR delta is an APC-regulated target of nonsteroidal anti-inflammatory drugs. Cell, 1999, 99(3), 335-345. doi: 10.1016/S0092-8674(00)81664-5 PMID: 10555149
  48. Greenspan, E.J.; Madigan, J.P.; Boardman, L.A.; Rosenberg, D.W. Ibuprofen inhibits activation of nuclear β-catenin in human colon adenomas and induces the phosphorylation of GSK-3β. Cancer Prev. Res., 2011, 4(1), 161-171. doi: 10.1158/1940-6207.CAPR-10-0021 PMID: 21205744
  49. Hoskin, A.J.; Holt, A.K.; Legge, D.N.; Collard, T.J.; Williams, A.C.; Vincent, E.E. Aspirin and the metabolic hallmark of cancer: Novel therapeutic opportunities for colorectal cancer. Explor. Target. Antitumor Ther., 2023, 4(4), 600-615. doi: 10.37349/etat.2023.00155 PMID: 37720350
  50. Hawcroft, G.; D’Amico, M.; Albanese, C.; Markham, A.F.; Pestell, R.G.; Hull, M.A. Indomethacin induces differential expression of β-catenin, γ-catenin and T-cell factor target genes in human colorectal cancer cells. Carcinogenesis, 2002, 23(1), 107-114. doi: 10.1093/carcin/23.1.107 PMID: 11756231
  51. Holmes-McNary, M. Nuclear factor kappa B signaling in catabolic disorders. Curr. Opin. Clin. Nutr. Metab. Care, 2002, 5(3), 255-263. doi: 10.1097/00075197-200205000-00004 PMID: 11953650
  52. Sakamoto, K.; Maeda, S.; Hikiba, Y.; Nakagawa, H.; Hayakawa, Y.; Shibata, W.; Yanai, A.; Ogura, K.; Omata, M. Constitutive NF-kappaB activation in colorectal carcinoma plays a key role in angiogenesis, promoting tumor growth. Clin. Cancer Res., 2009, 15(7), 2248-2258. doi: 10.1158/1078-0432.CCR-08-1383 PMID: 19276252
  53. Kopp, E.; Ghosh, S. Inhibition of NF-kappa B by sodium salicylate and aspirin. Science, 1994, 265(5174), 956-959. doi: 10.1126/science.8052854 PMID: 8052854
  54. Din, F.V.N.; Stark, L.A.; Dunlop, M.G. Aspirin-induced nuclear translocation of NFκB and apoptosis in colorectal cancer is independent of p53 status and DNA mismatch repair proficiency. Br. J. Cancer, 2005, 92(6), 1137-1143. doi: 10.1038/sj.bjc.6602455 PMID: 15770215
  55. Ouyang, N.; Ji, P.; Williams, J.L. A novel NSAID derivative, phospho-ibuprofen, prevents AOM-induced colon cancer in rats. Int. J. Oncol., 2013, 42(2), 643-650. doi: 10.3892/ijo.2012.1756 PMID: 23291777
  56. Schrör, K. Pharmacology and cellular/molecular mechanisms of action of aspirin and Non-aspirin NSAIDs in colorectal cancer. Best Pract. Res. Clin. Gastroenterol., 2011, 25(4-5), 473-484. doi: 10.1016/j.bpg.2011.10.016 PMID: 22122764
  57. Stark, L.A.; Din, F.V.N.; Zwacka, R.M.; Dunlop, M.G. Aspirin‐induced activation of the NF‐κB signaling pathway: A novel mechanism for aspirin‐mediated apoptosis in colon cancer cells. FASEB J., 2001, 15(7), 1273-1275. doi: 10.1096/fj.00-0529fje PMID: 11344111
  58. Brady, R.R.W.; Loveridge, C.J.; Dunlop, M.G.; Stark, L.A. c-Src dependency of NSAID-induced effects on NF- B-mediated apoptosis in colorectal cancer cells. Carcinogenesis, 2011, 32(7), 1069-1077. doi: 10.1093/carcin/bgr077 PMID: 21551129
  59. Cho, M.; Gwak, J.; Park, S.; Won, J.; Kim, D.E.; Yea, S.S.; Cha, I.J.; Kim, T.K.; Shin, J.G.; Oh, S. Diclofenac attenuates Wnt/β‐catenin signaling in colon cancer cells by activation of NF‐κB. FEBS Lett., 2005, 579(20), 4213-4218. doi: 10.1016/j.febslet.2005.06.049 PMID: 16051228
  60. Chen, J.; Stark, L. Aspirin prevention of colorectal cancer: focus on NF-κB signalling and the nucleolus. Biomedicines, 2017, 5(3), 43. doi: 10.3390/biomedicines5030043 PMID: 28718829
  61. Qi, M.; Elion, E.A. MAP kinase pathways. J. Cell Sci., 2005, 118(16), 3569-3572. doi: 10.1242/jcs.02470 PMID: 16105880
  62. Slattery, M.L.; Lundgreen, A.; Wolff, R.K. MAP kinase genes and colon and rectal cancer. Carcinogenesis, 2012, 33(12), 2398-2408. doi: 10.1093/carcin/bgs305 PMID: 23027623
  63. Saletti, P.; Molinari, F.; De Dosso, S.; Frattini, M. EGFR signaling in colorectal cancer: A clinical perspective. Gastrointest. Cancer, 2015, 5, 21-38.
  64. Arisan, E.D.; Ergül, Z.; Bozdağ, G.; Rencüzoğulları, Ö.; Çoker-Gürkan, A.; Obakan-Yerlikaya, P.; Coşkun, D.; Palavan-Ünsal, N. Diclofenac induced apoptosis via altering PI3K/Akt/MAPK signaling axis in HCT 116 more efficiently compared to SW480 colon cancer cells. Mol. Biol. Rep., 2018, 45(6), 2175-2184. doi: 10.1007/s11033-018-4378-2 PMID: 30406888
  65. Pan, M.R.; Chang, H.C.; Hung, W.C. Non-steroidal anti-inflammatory drugs suppress the ERK signaling pathway via block of Ras/c-Raf interaction and activation of MAP kinase phosphatases. Cell. Signal., 2008, 20(6), 1134-1141. doi: 10.1016/j.cellsig.2008.02.004 PMID: 18374541
  66. Bagheri, M.; Tabatabae, F.M.A.; Mirzaei, H.; Ghasemi, F. Evaluation of antitumor effects of aspirin and LGK974 drugs on cellular signaling pathways, cell cycle and apoptosis in colorectal cancer cell lines compared to oxaliplatin drug. Fundam. Clin. Pharmacol., 2020, 34(1), 51-64. doi: 10.1111/fcp.12492 PMID: 31233627
  67. Elder, D.J.E.; Halton, D.E.; Playle, L.C.; Paraskeva, C. The MEK/ERK pathway mediates COX‐2‐selective NSAID‐induced apoptosis and induced COX‐2 protein expression in colorectal carcinoma cells. Int. J. Cancer, 2002, 99(3), 323-327. doi: 10.1002/ijc.10330 PMID: 11992399
  68. Kim, T.; Jin, S.; Kim, W.; Kang, E.; Choi, K.; Kim, H.; Shin, S.; Kang, J. Prolonged activation of mitogen-activated protein kinases during NSAID-induced apoptosis in HT-29 colon cancer cells. Int. J. Colorectal Dis., 2001, 16(3), 167-173. doi: 10.1007/s003840100301 PMID: 11459290
  69. Lee, E.; Park, H.; Kang, H. Sodium salicylate induces apoptosis in HCT116 colorectal cancer cells through activation of p38MAPK. Int. J. Oncol., 2003, 23(2), 503-508. doi: 10.3892/ijo.23.2.503 PMID: 12851702
  70. Lennon, A.M.; Ramauge, M.; Pierre, M. Role of redox status on the activation of mitogen-activated protein kinase cascades by NSAIDs. Biochem. Pharmacol., 2002, 63(2), 163-170. doi: 10.1016/S0006-2952(01)00826-7 PMID: 11841790
  71. Danielsen, S.A.; Eide, P.W.; Nesbakken, A.; Guren, T.; Leithe, E.; Lothe, R.A. Portrait of the PI3K/AKT pathway in colorectal cancer. Biochimica et biophysica acta (BBA)-. Rev. Can., 2015, 1855(1), 104-121.
  72. Yu, L.; Chen, Y.; Tooze, S.A. Autophagy pathway: Cellular and molecular mechanisms. Autophagy, 2018, 14(2), 207-215. doi: 10.1080/15548627.2017.1378838 PMID: 28933638
  73. Din, FV; Valanciute, A; Houde, VP; Zibrova, D; Green, KA Sakamoto, K Aspirin inhibits mTOR signaling, activates AMPactivated protein kinase, and induces autophagy in colorectal cancer cells. Gastroenterology, 2012, 142(7), 1504-1515. e3.
  74. Wang, X.W.; Zhang, Y-J. Targeting mTOR network in colorectal cancer therapy. World J. Gastroenterol., 2014, 20(15), 4178-4188. doi: 10.3748/wjg.v20.i15.4178 PMID: 24764656
  75. Chen, Z.; Wang, C.; Dong, H.; Wang, X.; Gao, F.; Zhang, S.; Zhang, X. Aspirin has a better effect on PIK3CA mutant colorectal cancer cells by PI3K/Akt/Raptor pathway. Mol. Med., 2020, 26(1), 14. doi: 10.1186/s10020-020-0139-5 PMID: 32000660
  76. Grancher, A.; Michel, P.; Di Fiore, F.; Sefrioui, D. Colorectal cancer chemoprevention: Is aspirin still in the game? Cancer Biol. Ther., 2022, 23(1), 446-461. doi: 10.1080/15384047.2022.2104561 PMID: 35905195
  77. Hall, D.C.N.; Benndorf, R.A. Aspirin sensitivity of PIK3CA-mutated colorectal cancer: Potential mechanisms revisited. Cell. Mol. Life Sci., 2022, 79(7), 393. doi: 10.1007/s00018-022-04430-y PMID: 35780223
  78. Zumwalt, T.J.; Wodarz, D.; Komarova, N.L.; Toden, S.; Turner, J.; Cardenas, J.; Burn, J.; Chan, A.T.; Boland, C.R.; Goel, A. Aspirin-induced chemoprevention and response kinetics are enhanced by PIK3CA mutations in colorectal cancer cells. Cancer Prev. Res., 2017, 10(3), 208-218. doi: 10.1158/1940-6207.CAPR-16-0175 PMID: 28154202
  79. Coyle, C.; Cafferty, F.H.; Langley, R.E. Aspirin and colorectal cancer prevention and treatment: is it for everyone? Curr. Colorectal Cancer Rep., 2016, 12(1), 27-34. doi: 10.1007/s11888-016-0306-9 PMID: 27069437
  80. Ogino, S.; Lochhead, P.; Giovannucci, E.; Meyerhardt, J.A.; Fuchs, C.S.; Chan, A.T. Discovery of colorectal cancer PIK3CA mutation as potential predictive biomarker: Power and promise of molecular pathological epidemiology. Oncogene, 2014, 33(23), 2949-2955. doi: 10.1038/onc.2013.244 PMID: 23792451
  81. Domingo, E.; Church, D.N.; Sieber, O.; Ramamoorthy, R.; Yanagisawa, Y.; Johnstone, E.; Davidson, B.; Kerr, D.J.; Tomlinson, I.P.M.; Midgley, R. Evaluation of PIK3CA mutation as a predictor of benefit from nonsteroidal anti-inflammatory drug therapy in colorectal cancer. J. Clin. Oncol., 2013, 31(34), 4297-4305. doi: 10.1200/JCO.2013.50.0322 PMID: 24062397
  82. Fujishita, T.; Aoki, K.; Lane, H.A.; Aoki, M.; Taketo, M.M. Inhibition of the mTORC1 pathway suppresses intestinal polyp formation and reduces mortality in ApcΔ716 mice. Proc. Natl. Acad. Sci. USA, 2008, 105(36), 13544-13549. doi: 10.1073/pnas.0800041105 PMID: 18768809
  83. Zhou, H.; Liu, W.; Su, Y.; Wei, Z.; Liu, J.; Kolluri, S.K.; Wu, H.; Cao, Y.; Chen, J.; Wu, Y.; Yan, T.; Cao, X.; Gao, W.; Molotkov, A.; Jiang, F.; Li, W.G.; Lin, B.; Zhang, H.P.; Yu, J.; Luo, S.P.; Zeng, J.Z.; Duester, G.; Huang, P.Q.; Zhang, X.K. NSAID sulindac and its analog bind RXRalpha and inhibit RXRalpha-dependent AKT signaling. Cancer Cell, 2010, 17(6), 560-573. doi: 10.1016/j.ccr.2010.04.023 PMID: 20541701
  84. Ricchi, P.; Zarrilli, R.; di Palma, A.; Acquaviva, A.M. Nonsteroidal anti-inflammatory drugs in colorectal cancer: from prevention to therapy. Br. J. Cancer, 2003, 88(6), 803-807. doi: 10.1038/sj.bjc.6600829 PMID: 12644813
  85. Mohammed, A.; Yarla, N.S.; Madka, V.; Rao, C.V. Clinically relevant anti-inflammatory agents for chemoprevention of colorectal cancer: New perspectives. Int. J. Mol. Sci., 2018, 19(8), 2332. doi: 10.3390/ijms19082332 PMID: 30096840
  86. Zhou, P.; Cheng, S.W.; Yang, R.; Wang, B.; Liu, J. Combination chemoprevention. Eur. J. Cancer Prev., 2012, 21(3), 231-240. doi: 10.1097/CEJ.0b013e32834dbbfd PMID: 22456425
  87. Bahrami, A.; Parsamanesh, N.; Atkin, S.L.; Banach, M.; Sahebkar, A. Effect of statins on toll-like receptors: A new insight to pleiotropic effects. Pharmacol. Res., 2018, 135, 230-238. doi: 10.1016/j.phrs.2018.08.014 PMID: 30120976
  88. Bland, A.R.; Payne, F.M.; Ashton, J.C.; Jamialahmadi, T.; Sahebkar, A. The cardioprotective actions of statins in targeting mitochondrial dysfunction associated with myocardial ischaemia-reperfusion injury. Pharmacol. Res., 2022, 175, 105986. doi: 10.1016/j.phrs.2021.105986 PMID: 34800627
  89. Bytyçi, I.; Penson, P.E.; Mikhailidis, D.P.; Wong, N.D.; Hernandez, A.V.; Sahebkar, A.; Thompson, P.D.; Mazidi, M.; Rysz, J.; Pella, D.; Reiner, Ž.; Toth, P.P.; Banach, M. Prevalence of statin intolerance: A meta-analysis. Eur. Heart J., 2022, 43(34), 3213-3223. doi: 10.1093/eurheartj/ehac015 PMID: 35169843
  90. Chruściel, P.; Sahebkar, A.; Rembek-Wieliczko, M.; Serban, M.C.; Ursoniu, S.; Mikhailidis, D.P.; Jones, S.R.; Mosteoru, S.; Blaha, M.J.; Martin, S.S.; Rysz, J.; Toth, P.P.; Lip, G.Y.H.; Pencina, M.J.; Ray, K.K.; Banach, M. Impact of statin therapy on plasma adiponectin concentrations: A systematic review and meta-analysis of 43 randomized controlled trial arms. Atherosclerosis, 2016, 253, 194-208. doi: 10.1016/j.atherosclerosis.2016.07.897 PMID: 27498397
  91. Ferretti, G.; Bacchetti, T.; Sahebkar, A. Effect of statin therapy on paraoxonase-1 status: A systematic review and meta-analysis of 25 clinical trials. Prog. Lipid Res., 2015, 60, 50-73. doi: 10.1016/j.plipres.2015.08.003 PMID: 26416579
  92. Kandelouei, T.; Abbasifard, M.; Imani, D.; Aslani, S.; Razi, B.; Fasihi, M. Effect of statins on serum level of hs-CRP and CRP in patients with cardiovascular diseases: A systematic review and meta-analysis of randomized controlled trials. Mediators Inflamm., 2022, 2022, 8732360. doi: 10.1155/2022/8732360
  93. Koushki, K.; Shahbaz, S.K.; Mashayekhi, K.; Sadeghi, M.; Zayeri, Z.D.; Taba, M.Y.; Banach, M.; Al-Rasadi, K.; Johnston, T.P.; Sahebkar, A. Anti-inflammatory action of statins in cardiovascular disease: The role of inflammasome and toll-like receptor pathways. Clin. Rev. Allergy Immunol., 2021, 60(2), 175-199. doi: 10.1007/s12016-020-08791-9 PMID: 32378144
  94. Mollazadeh, H.; Tavana, E.; Fanni, G.; Bo, S.; Banach, M.; Pirro, M.; von Haehling, S.; Jamialahmadi, T.; Sahebkar, A. Effects of statins on mitochondrial pathways. J. Cachexia Sarcopenia Muscle, 2021, 12(2), 237-251. doi: 10.1002/jcsm.12654 PMID: 33511728
  95. Sahebkar, A.; Chew, G.T.; Watts, G.F. Recent advances in pharmacotherapy for hypertriglyceridemia. Prog. Lipid Res., 2014, 56(1), 47-66. doi: 10.1016/j.plipres.2014.07.002 PMID: 25083925
  96. Serban, C.; Sahebkar, A.; Ursoniu, S.; Mikhailidis, D.P.; Rizzo, M.; Lip, G.Y.H.; Kees Hovingh, G.; Kastelein, J.J.P.; Kalinowski, L.; Rysz, J.; Banach, M. A systematic review and meta-analysis of the effect of statins on plasma asymmetric dimethylarginine concentrations. Sci. Rep., 2015, 5(1), 9902. doi: 10.1038/srep09902 PMID: 25970700
  97. Sohrevardi, S.; Nasab, F.; Mirjalili, M.; Bagherniya, M.; Tafti, A.; Jarrahzadeh, M.; Azarpazhooh, M.; Saeidmanesh, M.; Banach, M.; Jamialahmadi, T.; Sahebkar, A. Effect of atorvastatin on delirium status of patients in the intensive care unit: A randomized controlled trial. Arch. Med. Sci., 2019, 17(5), 1423-1428. doi: 10.5114/aoms.2019.89330 PMID: 34522273
  98. Vahedian-Azimi, A.; Mohammadi, S.M.; Banach, M.; Beni, F.H.; Guest, P.C.; Al-Rasadi, K. Improved COVID-19 outcomes following statin therapy: An updated systematic review and meta-analysis. BioMed Res. Int., 2021, 2021, 1901772.
  99. Seliger, C.; Schaertl, J.; Gerken, M.; Luber, C.; Proescholdt, M.; Riemenschneider, M.J.; Leitzmann, M.F.; Hau, P.; Klinkhammer-Schalke, M. Use of statins or NSAIDs and survival of patients with high-grade glioma. PLoS One, 2018, 13(12), e0207858. doi: 10.1371/journal.pone.0207858 PMID: 30507932
  100. Suh, N.; Reddy, B.S.; DeCastro, A.; Paul, S.; Lee, H.J.; Smolarek, A.K.; So, J.Y.; Simi, B.; Wang, C.X.; Janakiram, N.B.; Steele, V.; Rao, C.V. Combination of atorvastatin with sulindac or naproxen profoundly inhibits colonic adenocarcinomas by suppressing the p65/β-catenin/cyclin D1 signaling pathway in rats. Cancer Prev. Res., 2011, 4(11), 1895-1902. doi: 10.1158/1940-6207.CAPR-11-0222 PMID: 21764859
  101. Reddy, B.S.; Wang, C.X.; Kong, A.N.; Khor, T.O.; Zheng, X.; Steele, V.E.; Kopelovich, L.; Rao, C.V. Prevention of azoxymethane-induced colon cancer by combination of low doses of atorvastatin, aspirin, and celecoxib in F 344 rats. Cancer Res., 2006, 66(8), 4542-4546. doi: 10.1158/0008-5472.CAN-05-4428 PMID: 16618783
  102. Chang, W.C.L.; Jackson, C.; Riel, S.; Cooper, H.S.; Devarajan, K.; Hensley, H.H.; Zhou, Y.; Vanderveer, L.A.; Nguyen, M.T.; Clapper, M.L. Differential preventive activity of sulindac and atorvastatin in Apc +/Min-FCCC mice with or without colorectal adenomas. Gut, 2018, 67(7), 1290-1298. doi: 10.1136/gutjnl-2017-313942 PMID: 29122850
  103. Xiao, H.; Zhang, Q.; Lin, Y.; Reddy, B.S.; Yang, C.S. Combination of atorvastatin and celecoxib synergistically induces cell cycle arrest and apoptosis in colon cancer cells. Int. J. Cancer, 2008, 122(9), 2115-2124. doi: 10.1002/ijc.23315 PMID: 18172863
  104. Swamy, M.; Cooma, I.; Reddy, B.; Rao, C. Lamin B, caspase-3 activity, and apoptosis induction by a combination of HMG-CoA reductase inhibitor and COX-2 inhibitors: A novel approach in developing effective chemopreventive regimens. Int. J. Oncol., 2002, 20(4), 753-759. doi: 10.3892/ijo.20.4.753 PMID: 11894121
  105. Agarwal, B.; Halmos, B.; Feoktistov, A.S.; Protiva, P.; Ramey, W.G.; Chen, M.; Pothoulakis, C.; Lamont, J.T.; Holt, P.R. Mechanism of lovastatin-induced apoptosis in intestinal epithelial cells. Carcinogenesis, 2002, 23(3), 521-528. doi: 10.1093/carcin/23.3.521 PMID: 11895868
  106. Hoffmeister, M.; Chang-Claude, J.; Brenner, H. Individual and joint use of statins and low‐dose aspirin and risk of colorectal cancer: A population‐based case–control study. Int. J. Cancer, 2007, 121(6), 1325-1330. doi: 10.1002/ijc.22796 PMID: 17487832
  107. Alexiou, G.A.; Lianos, G.D.; Ragos, V.; Galani, V.; Kyritsis, A.P. Difluoromethylornithine in cancer: New advances. Future Oncol., 2017, 13(9), 809-819. doi: 10.2217/fon-2016-0266 PMID: 28125906
  108. Raj, K.P.; Zell, J.A.; Rock, C.L.; McLaren, C.E.; Zoumas-Morse, C.; Gerner, E.W.; Meyskens, F.L. Role of dietary polyamines in a phase III clinical trial of difluoromethylornithine (DFMO) and sulindac for prevention of sporadic colorectal adenomas. Br. J. Cancer, 2013, 108(3), 512-518. doi: 10.1038/bjc.2013.15 PMID: 23340449
  109. Meyskens, F.L., Jr; McLaren, C.E.; Pelot, D.; Fujikawa-Brooks, S.; Carpenter, P.M.; Hawk, E.; Kelloff, G.; Lawson, M.J.; Kidao, J.; McCracken, J.; Albers, C.G.; Ahnen, D.J.; Turgeon, D.K.; Goldschmid, S.; Lance, P.; Hagedorn, C.H.; Gillen, D.L.; Gerner, E.W. Difluoromethylornithine plus sulindac for the prevention of sporadic colorectal adenomas: A randomized placebo-controlled, double-blind trial. Cancer Prev. Res., 2008, 1(1), 32-38. doi: 10.1158/1940-6207.CAPR-08-0042 PMID: 18841250
  110. Thompson, PA; Wertheim, BC; Zell, JA; Chen, W-P; McLaren, CE; LaFleur, BJ Levels of rectal mucosal polyamines and prostaglandin E2 predict ability of DFMO and sulindac to prevent colorectal adenoma Gastroenterology, 2010, 139(3), 797-805. e1. doi: 10.1053/j.gastro.2010.06.005
  111. Ignatenko, N.A.; Besselsen, D.G.; Stringer, D.E.; Blohm-Mangone, K.A.; Cui, H.; Gerner, E.W. Combination chemoprevention of intestinal carcinogenesis in a murine model of familial adenomatous polyposis. Nutr. Cancer, 2008, 60(Suppl. 1), 30-35. doi: 10.1080/01635580802401317 PMID: 19003578
  112. Mackenzie, G.G.; Ouyang, N.; Xie, G.; Vrankova, K.; Huang, L.; Sun, Y.; Komninou, D.; Kopelovich, L.; Rigas, B. Phospho-sulindac (OXT-328) combined with difluoromethylornithine prevents colon cancer in mice. Cancer Prev. Res., 2011, 4(7), 1052-1060. doi: 10.1158/1940-6207.CAPR-11-0067 PMID: 21464038
  113. Jacoby, R.F.; Cole, C.E.; Tutsch, K.; Newton, M.A.; Kelloff, G.; Hawk, E.T.; Lubet, R.A. Chemopreventive efficacy of combined piroxicam and difluoromethylornithine treatment of Apc mutant Min mouse adenomas, and selective toxicity against Apc mutant embryos. Cancer Res., 2000, 60(7), 1864-1870. PMID: 10766173
  114. Kemp Bohan, P.M.; Mankaney, G.; Vreeland, T.J.; Chick, R.C.; Hale, D.F.; Cindass, J.L.; Hickerson, A.T.; Ensley, D.C.; Sohn, V.; Clifton, G.T.; Peoples, G.E.; Burke, C.A. Chemoprevention in familial adenomatous polyposis: Past, present and future. Fam. Cancer, 2021, 20(1), 23-33. doi: 10.1007/s10689-020-00189-y PMID: 32507936
  115. Burke, C.A.; Dekker, E.; Samadder, N.J.; Stoffel, E.; Cohen, A. Efficacy and safety of eflornithine (CPP-1X)/sulindac combination therapy versus each as monotherapy in patients with familial adenomatous polyposis (FAP): Design and rationale of a randomized, double-blind, Phase III trial. BMC Gastroenterol., 2016, 16(1), 87. doi: 10.1186/s12876-016-0494-4 PMID: 27480131
  116. Petrera, M.; Paleari, L.; Puntoni, M.; Caviglia, S.; Clavarezza, M.; Romagnolli, P. ASAMET: A randomized, 2x2 biomarker prevention trial of low-dose aspirin and metformin in colorectal cancer. J. Clin. Oncol., 2017, 35(15)
  117. Palazzolo, G.; Mollica, H.; Lusi, V.; Rutigliani, M.; Di Francesco, M.; Pereira, R.C.; Filauro, M.; Paleari, L.; DeCensi, A.; Decuzzi, P. Modulating the distant spreading of patient-derived colorectal cancer cells via aspirin and metformin. Transl. Oncol., 2020, 13(4), 100760. doi: 10.1016/j.tranon.2020.100760 PMID: 32247264
  118. De Monte, A.; Brunetti, D.; Cattin, L.; Lavanda, F.; Naibo, E.; Malagoli, M.; Stanta, G.; Bonin, S. Metformin and aspirin treatment could lead to an improved survival rate for Type 2 diabetic patients with stage II and III colorectal adenocarcinoma relative to non-diabetic patients. Mol. Clin. Oncol., 2018, 8(3), 504-512. doi: 10.3892/mco.2018.1554 PMID: 29456855
  119. Xu, K.; Shu, H.K.G. Transcription factor interactions mediate EGF-dependent COX-2 expression. Mol. Cancer Res., 2013, 11(8), 875-886. doi: 10.1158/1541-7786.MCR-12-0706 PMID: 23635401
  120. Torrance, C.J.; Jackson, P.E.; Montgomery, E.; Kinzler, K.W.; Vogelstein, B.; Wissner, A.; Nunes, M.; Frost, P.; Discafani, C.M. Combinatorial chemoprevention of intestinal neoplasia. Nat. Med., 2000, 6(9), 1024-1028. doi: 10.1038/79534 PMID: 10973323
  121. Buchanan, F.G.; Holla, V.; Katkuri, S.; Matta, P.; DuBois, R.N. Targeting cyclooxygenase-2 and the epidermal growth factor receptor for the prevention and treatment of intestinal cancer. Cancer Res., 2007, 67(19), 9380-9388. doi: 10.1158/0008-5472.CAN-07-0710 PMID: 17909047
  122. Samadder, N.J.; Kuwada, S.K.; Boucher, K.M.; Byrne, K.; Kanth, P.; Samowitz, W.; Jones, D.; Tavtigian, S.V.; Westover, M.; Berry, T.; Jasperson, K.; Pappas, L.; Smith, L.; Sample, D.; Burt, R.W.; Neklason, D.W. Association of sulindac and erlotinib vs placebo with colorectal neoplasia in familial adenomatous polyposis: Secondary analysis of a randomized clinical trial. JAMA Oncol., 2018, 4(5), 671-677. doi: 10.1001/jamaoncol.2017.5431 PMID: 29423501
  123. Tortora, G.; Caputo, R.; Damiano, V.; Melisi, D.; Bianco, R.; Fontanini, G.; Veneziani, B.M.; De Placido, S.; Bianco, A.R.; Ciardiello, F. Combination of a selective cyclooxygenase-2 inhibitor with epidermal growth factor receptor tyrosine kinase inhibitor ZD1839 and protein kinase A antisense causes cooperative antitumor and antiangiogenic effect. Clin. Cancer Res., 2003, 9(4), 1566-1572. PMID: 12684433
  124. Tuccillo, C.; Romano, M.; Troiani, T.; Martinelli, E.; Morgillo, F.; De Vita, F.; Bianco, R.; Fontanini, G.; Bianco, R.A.; Tortora, G.; Ciardiello, F. Antitumor activity of ZD6474, a vascular endothelial growth factor-2 and epidermal growth factor receptor small molecule tyrosine kinase inhibitor, in combination with SC-236, a cyclooxygenase-2 inhibitor. Clin. Cancer Res., 2005, 11(3), 1268-1276. doi: 10.1158/1078-0432.1268.11.3 PMID: 15709198
  125. Valverde, A.; Peñarando, J.; Cañas, A.; López-Sánchez, L.M.; Conde, F.; Guil-Luna, S.; Hernández, V.; Villar, C.; Morales-Estévez, C.; de la Haba-Rodríguez, J.; Aranda, E.; Rodríguez-Ariza, A. The addition of celecoxib improves the antitumor effect of cetuximab in colorectal cancer: Role of EGFR-RAS-FOXM1-β-catenin signaling axis. Oncotarget, 2017, 8(13), 21754-21769. doi: 10.18632/oncotarget.15567 PMID: 28423516
  126. Davis, J.S.; Kanikarla-Marie, P.; Gagea, M.; Yu, P.L.; Fang, D.; Sebastian, M.; Yang, P.; Hawk, E.; Dashwood, R.; Lichtenberger, L.M.; Menter, D.; Kopetz, S. Sulindac plus a phospholipid is effective for polyp reduction and safer than sulindac alone in a mouse model of colorectal cancer development. BMC Cancer, 2020, 20(1), 871. doi: 10.1186/s12885-020-07311-4 PMID: 32912193
  127. Al-Obaidi, Z.M.J.; Mousa, T.H. I; Ali, A.A., II Synthesis of novel ibuprofen-tranexamic acid codrug: Estimation of the clinical activity against hct116 colorectal carcinoma cell line and the determination of toxicity profile against mdck normal kidney cell line. Int. J. Drug Deliv. Techn., 2019, 9(2), 226-2350. doi: 10.25258/ijddt.9.2.18
  128. El‐Mahdy, N.A.; El‐Sayad, M.E.S.; El‐Kadem, A.H.; Abu‐Risha, S.E.S. Targeting IL‐10, ZO‐1 gene expression and IL‐6/STAT‐3 trans‐signaling by a combination of atorvastatin and mesalazine to enhance anti‐inflammatory effects and attenuates progression of oxazolone‐induced colitis. Fundam. Clin. Pharmacol., 2021, 35(1), 143-155. PMID: 32383169
  129. Ishikawa, H.; Mutoh, M.; Sato, Y.; Doyama, H.; Tajika, M.; Tanaka, S.; Horimatsu, T.; Takeuchi, Y.; Kashida, H.; Tashiro, J.; Ezoe, Y.; Nakajima, T.; Ikematsu, H.; Hori, S.; Suzuki, S.; Otani, T.; Takayama, T.; Ohda, Y.; Mure, K.; Wakabayashi, K.; Sakai, T. Chemoprevention with low-dose aspirin, mesalazine, or both in patients with familial adenomatous polyposis without previous colectomy (J-FAPP Study IV): A multicentre, double-blind, randomised, two-by-two factorial design trial. Lancet Gastroenterol. Hepatol., 2021, 6(6), 474-481. doi: 10.1016/S2468-1253(21)00018-2 PMID: 33812492
  130. Pennarun, B.; Kleibeuker, J.H.; Boersma-van Ek, W.; Hollema, H.; de Vries, E.G.; de Jong, S. Sorafenib plus aspirin promotes TRAIL-induced apoptosis by targeting FLIP and Mcl-1 and potentiates growth inhibition in colon cancer cells. In: Improving the response to molecular targeting of the TRAIL death receptors in colon cancer cells; , 2010; p. 153.
  131. Shpitz, B.; Giladi, N.; Sagiv, E.; Lev-Ari, S.; Liberman, E.; Kazanov, D.; Arber, N. Celecoxib and curcumin additively inhibit the growth of colorectal cancer in a rat model. Digestion, 2006, 74(3-4), 140-144. doi: 10.1159/000098655 PMID: 17228149
  132. Lerdwanangkun, P.; Wonganan, P.; Storer, R.J.; Limpanasithikul, W. Combined effects of celecoxib and cepharanthine on human colorectal cancer cells in vitro. J. Appl. Pharm. Sci., 2019, 9(4), 117-125. doi: 10.7324/JAPS.2019.90415
  133. Pence, B.C.; Belasco, E.J.; Lyford, C.P. Combination aspirin and/or calcium chemoprevention with colonoscopy in colorectal cancer prevention: cost-effectiveness analyses. Cancer Epidemiol. Biomarkers Prev., 2013, 22(3), 399-405. doi: 10.1158/1055-9965.EPI-12-0658 PMID: 23250933
  134. Pommergaard, H-C; Burcharth, J; Rosenberg, J; Raskov, H Aspirin, calcitriol, and calcium do not prevent adenoma recurrence in a randomized controlled trial. Gastroenterology, 2016, 150(1), 114-122. e4. doi: 10.1053/j.gastro.2015.09.010
  135. Ma, S.C.; Zhang, J.Q.; Yan, T.H.; Miao, M.X.; Cao, Y.M.; Cao, Y.B.; Zhang, L.C.; Li, L. Novel strategies to reverse chemoresistance in colorectal cancer. Cancer Med., 2023, 12(10), 11073-11096. doi: 10.1002/cam4.5594 PMID: 36645225
  136. Okda, T.; Abd-Elghaffar, S.; Katary, M.; Abd-αlhaseeb, M. Chemopreventive and anticancer activities of indomethacin and vitamin D combination on colorectal cancer induced by 1,2-dimethylhydrazine in rats. Biomed. Rep., 2020, 14(2), 27. doi: 10.3892/br.2020.1403 PMID: 33408861
  137. Gong, E.Y.; Shin, Y.J.; Hwang, I.Y.; Kim, J.H.; Kim, S.M.; Moon, J.H.; Shin, J.S.; Lee, D.H.; Hur, D.Y.; Jin, D.H.; Hong, S.W.; Lee, W.K.; Lee, W.J. Combined treatment with vitamin C and sulindac synergistically induces p53- and ROS-dependent apoptosis in human colon cancer cells. Toxicol. Lett., 2016, 258, 126-133. doi: 10.1016/j.toxlet.2016.06.019 PMID: 27339904
  138. Yang, Z.; Xiao, H.; Jin, H.; Koo, P.T.; Tsang, D.J.; Yang, C.S. Synergistic actions of atorvastatin with γ‐tocotrienol and celecoxib against human colon cancer HT29 and HCT116 cells. Int. J. Cancer, 2010, 126(4), 852-863. doi: 10.1002/ijc.24766 PMID: 19626588
  139. Swamy, M.V.; Patlolla, J.M.R.; Steele, V.E.; Kopelovich, L.; Reddy, B.S.; Rao, C.V. Chemoprevention of familial adenomatous polyposis by low doses of atorvastatin and celecoxib given individually and in combination to APCMin mice. Cancer Res., 2006, 66(14), 7370-7377. doi: 10.1158/0008-5472.CAN-05-4619 PMID: 16849589
  140. Guruswamy, S.; Rao, C.V. Synergistic effects of lovastatin and celecoxib on caveolin-1 and its down-stream signaling molecules: Implications for colon cancer prevention. Int. J. Oncol., 2009, 35(5), 1037-1043. PMID: 19787257
  141. Ulusan, A.M.; Rajendran, P.; Dashwood, W.M.; Yavuz, O.F.; Kapoor, S.; Gustafson, T.A.; Savage, M.I.; Brown, P.H.; Sei, S.; Mohammed, A.; Vilar, E.; Dashwood, R.H. Optimization of erlotinib plus sulindac dosing regimens for intestinal cancer prevention in an APC-mutant model of familial adenomatous polyposis (FAP). Cancer Prev. Res., 2021, 14(3), 325-336. doi: 10.1158/1940-6207.CAPR-20-0262 PMID: 33277315
  142. Rajendran, P.; Ulusan, A.; Dashwood, W.M.; Kapoor, S.; Mohammed, A.; Sei, S.; Rashid, A.; Brown, P.H.; Vilar-Sanchez, E.; Dashwood, R.H. Abstract 21: Optimization of dosing regimens of sulindac in combination with erlotinib for small intestine and colorectal cancer prevention. Cancer Res., 2020, 80(16), 21. doi: 10.1158/1538-7445.AM2020-21
  143. Sinicrope, F.A.; Penington, R.C. Sulindac sulfide–induced apoptosis is enhanced by a small-molecule Bcl-2 inhibitor and by TRAIL in human colon cancer cells overexpressing Bcl-2. Mol. Cancer Ther., 2005, 4(10), 1475-1483. doi: 10.1158/1535-7163.MCT-05-0137 PMID: 16227396
  144. Fu, J.; Xu, Y.; Yang, Y.; Liu, Y.; Ma, L.; Zhang, Y. Aspirin suppresses chemoresistance and enhances antitumor activity of 5-Fu in 5-Fu-resistant colorectal cancer by abolishing 5-Fu-induced NF-κB activation. Sci. Rep., 2019, 9(1), 16937. doi: 10.1038/s41598-019-53276-1 PMID: 31729451
  145. Holt, A.K.; Najumudeen, A.K.; Hoskin, A.J.; Legge, D.N.; Mortensson, E.M.; Flanagan, D.J. Aspirin reprogrammes colorectal cancer cell metabolism and sensitises to glutaminase inhibition. bioRxiv, 2022, 11(1), 18. doi: 10.1101/2022.08.24.505115
  146. Chudy-Onwugaje, K.; Huang, W.Y.; Su, L.J.; Purdue, M.P.; Johnson, C.C.; Wang, L.; Katki, H.A.; Barry, K.H.; Berndt, S.I. Aspirin, ibuprofen, and reduced risk of advanced colorectal adenoma incidence and recurrence and colorectal cancer in the PLCO cancer screening trial. Cancer, 2021, 127(17), 3145-3155. doi: 10.1002/cncr.33623 PMID: 33974712
  147. Shebl, F.M.; Hsing, A.W.; Park, Y.; Hollenbeck, A.R.; Chu, L.W.; Meyer, T.E.; Koshiol, J. Non-steroidal anti-inflammatory drugs use is associated with reduced risk of inflammation-associated cancers: NIH-AARP study. PLoS One, 2014, 9(12), e114633. doi: 10.1371/journal.pone.0114633 PMID: 25551641
  148. Murff, H.J.; Shrubsole, M.J.; Chen, Z.; Smalley, W.E.; Chen, H.; Shyr, Y.; Ness, R.M.; Zheng, W. Nonsteroidal anti-inflammatory drug use and risk of adenomatous and hyperplastic polyps. Cancer Prev. Res., 2011, 4(11), 1799-1807. doi: 10.1158/1940-6207.CAPR-11-0107 PMID: 21764857
  149. Lynch, P.M.; Burke, C.A.; Phillips, R.; Morris, J.S.; Slack, R.; Wang, X.; Liu, J.; Patterson, S.; Sinicrope, F.A.; Rodriguez-Bigas, M.A.; Half, E.; Bulow, S.; Latchford, A.; Clark, S.; Ross, W.A.; Malone, B.; Hasson, H.; Richmond, E.; Hawk, E. An international randomised trial of celecoxib versus celecoxib plus difluoromethylornithine in patients with familial adenomatous polyposis. Gut, 2016, 65(2), 286-295. doi: 10.1136/gutjnl-2014-307235 PMID: 25792707
  150. Bertagnolli, M.M.; Eagle, C.J.; Zauber, A.G.; Redston, M.; Breazna, A.; Kim, K.; Tang, J.; Rosenstein, R.B.; Umar, A.; Bagheri, D.; Collins, N.T.; Burn, J.; Chung, D.C.; Dewar, T.; Foley, T.R.; Hoffman, N.; Macrae, F.; Pruitt, R.E.; Saltzman, J.R.; Salzberg, B.; Sylwestrowicz, T.; Hawk, E.T. Five-year efficacy and safety analysis of the adenoma prevention with celecoxib trial. Cancer Prev. Res., 2009, 2(4), 310-321. doi: 10.1158/1940-6207.CAPR-08-0206 PMID: 19336730
  151. He, P.; Yang, C.; Ye, G.; Xie, H.; Zhong, W. Risks of colorectal neoplasms and cardiovascular thromboembolic events after the combined use of selective COX‐2 inhibitors and aspirin with 5‐year follow‐up: A meta‐analysis. Colorectal Dis., 2019, 21(4), 417-426. doi: 10.1111/codi.14556 PMID: 30656820

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers