Design and Synthesis of Aspirin-chalcone Mimic Conjugates as Potential Anticancer Agents
- 作者: Mohamed-Ezzat R.1, Srour A.2
-
隶属关系:
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute,, National Research Centre
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute,, National Research Centre
- 期: 卷 24, 编号 7 (2024)
- 页面: 544-557
- 栏目: Oncology
- URL: https://snv63.ru/1871-5206/article/view/644270
- DOI: https://doi.org/10.2174/0118715206280025231213065519
- ID: 644270
如何引用文章
全文:
详细
Background:Extensive research has been conducted on aspirin, a widely recognized NSAID medication, regarding its potential as an anticancer agent. Studies have revealed its ability to trigger cell death in different types of cancer cells.
Methods:A set of aspirin-chalcone mimic conjugates 5a-k and 6a-d utilizing the freshly prepared acid chloride of aspirin moiety has been designed and synthesized. To evaluate the newly developed compounds, the NCI 60- cell line panel was employed to assess their anti-proliferative properties. Subsequently, cell cycle analysis was conducted along with an examination of the compounds' impact on the levels of p53, Bax, Bcl-2, active caspase- 3, and their inhibition mechanism of tubulin polymerization.
Results:Derivative 6c displayed the best anticancer activity among the tested series while 6d was the best against breast cancer MDA-MB-468, therefore both of them were selected for the 5-dose stage, however, targeting MDA-MB-468, PI-flow cytometry of compound 6d proved the triggered cell growth arrest at the G1/S phase avoiding the mitotic cycle in MDA-MB-468 cells. Similarly, the upregulation of oncogenic parameters such as caspase-3, p53, and Bax/Bcl-2, along with the inhibition of PARP-1 enzyme level, was observed with compound 6d. This compound also exhibited a significant ability to induce apoptosis and disrupt the intracellular microtubule network through a promising activity as a tubulin polymerization inhibitor with IC50 = 1.065 ± 0.024 ng/ml. Furthermore, to examine the manner in which compound 6d binds to the active pocket of the tubulin polymerization enzyme, a molecular docking study was conducted.
Conclusion:The study indicated that compound 6d could be a powerful microtubule-destabilizing agent. Therefore, further research on 6d could be worthwhile.
关键词
作者简介
Reham Mohamed-Ezzat
Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute,, National Research Centre
Email: info@benthamscience.net
Aladdin Srour
Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute,, National Research Centre
编辑信件的主要联系方式.
Email: info@benthamscience.net
参考
- Haider, K.; Rahaman, S.; Yar, M.S.; Kamal, A. Tubulin inhibitors as novel anticancer agents: An overview on patents (2013-2018). Expert Opin. Ther. Pat., 2019, 29(8), 623-641. doi: 10.1080/13543776.2019.1648433 PMID: 31353978
- Peddi, P.F.; Hurvitz, S.A. Ado-trastuzumab emtansine (T-DM1) in human epidermal growth factor receptor 2 (HER2)-positive metastatic breast cancer: Latest evidence and clinical potential. Ther. Adv. Med. Oncol., 2014, 6(5), 202-209. doi: 10.1177/1758834014539183 PMID: 25342987
- Elgemeie, G.H.; Mohamed-Ezzat, R.A. New Strategies Targeting Cancer Metabolism, 1st ed; Elsevier: Amsterdam, 2022, pp. 1-619. doi: 10.1016/C2019-0-00369-X
- Singh, H.; Singh, J.V.; Gupta, M.K.; Saxena, A.K.; Sharma, S.; Nepali, K.; Bedi, P.M.S. Triazole tethered isatin-coumarin based molecular hybrids as novel antitubulin agents: Design, synthesis, biological investigation and docking studies. Bioorg. Med. Chem. Lett., 2017, 27(17), 3974-3979. doi: 10.1016/j.bmcl.2017.07.069 PMID: 28797799
- Gangjee, A.; Park, A. Cyclopentapyrimidines and substituted cyclopentapyrimidines as antitubulin and microtubule targeting agents, monocyclic pyrimidines as tubulin inhibitors, and pyrrolopyrimidnes as targeted antifolates and tubulin and multiple receptor tyrosine Kinase inhibition and antitumor agents. US20160304525A1, 2016.
- Kamal, A.; Sultana, F.; Bharathi, E.V. 3-arylethynyl substituted quinazolinone compounds. US 2013/0317221 A1; Council of Scientific & Industrial Research: New Delhi, 2013.
- Kamal, A.; Srikanth, Y.V.; Khan, M.N. Council of Scientific & Industrial Research; 2-anilinonicotinyl linked 2-amino benzothiazoleconugates and process for the prepration thereof. U.S. Pataent, 2013, 2013/0324734, A1.
- Kamal, A.; Mallareddy, A.; Suresh, P. Council of Scientific & Industrial Research (IN); Benzothiazole hybrids useful as anticancer agents and process for the preparation thereof. U.S. Patent 8,921,552 B2, 2014.
- Kamal, A.; Reddy, A.M.; Paidakula, S. Council of Scientific & Industrial Research (IN); Amidobenzothiazoles and process For the preparation thereof. U.S. Patent 9,102,638 B2, 2015.
- Cimino, P.; Huang, L.; Du, L.; Wu, Y.; Bishop, J.; Dalsing-Hernandez, J.; Kotlarczyk, K.; Gonzales, P.; Carew, J.; Nawrocki, S.; Jordan, M.; Wilson, L.; Lloyd, G.; Wirsching, H.G. Plinabulin, an inhibitor of tubulin polymerization, targets KRAS signaling through disruption of endosomal recycling. Biomed. Rep., 2019, 10(4), 218-224. doi: 10.3892/br.2019.1196 PMID: 30972217
- Nepali, K.; Ojha, R.; Sharma, S.; Bedi, P.; Dhar, K. Tubulin inhibitors: A patent survey. Recent Patents Anticancer Drug Discov., 2014, 9(2), 176-220. doi: 10.2174/15748928113089990042 PMID: 23746164
- Negi, A.; Prakasham, A. Anticancer and tubulin polymerisation inhibition activity of benzyldeneindanones and process of preparing the same. U.S. Patent 2013/0079396 A1, 2013.
- Alfonso, L.; Ai, G.; Spitale, R.C.; Bhat, G.J. Molecular targets of aspirin and cancer prevention. Br. J. Cancer, 2014, 111(1), 61-67. doi: 10.1038/bjc.2014.271 PMID: 24874482
- Celebioglu, H.U. Effects of potential synbiotic interaction between Lactobacillus rhamnosus GG and salicylic acid on human colon and prostate cancer cells. Arch. Microbiol., 2021, 203(3), 1221-1229. doi: 10.1007/s00203-021-02200-1 PMID: 33620523
- Xia, H.; Lee, K.W.; Chen, J.; Kong, S.N.; Sekar, K.; Deivasigamani, A.; Seshachalam, V.P.; Goh, B.K.P.; Ooi, L.L.; Hui, K.M. Simultaneous silencing of ACSL4 and induction of GADD45B in hepatocellular carcinoma cells amplifies the synergistic therapeutic effect of aspirin and sorafenib. Cell Death Discov., 2017, 3(1), 17058. doi: 10.1038/cddiscovery.2017.58 PMID: 28900541
- Claudius, A.K.; Kankipati, C.S.; Kilari, R.S.; Hassan, S.; Guest, K.; Russel, S.T.; Perry, C.J.; Stark, L.A.; Nicholl, I.D. Identification of aspirin analogues that repress NF-κB signalling and demonstrate anti-proliferative activity towards colorectal cancer in vitro and in vivo. Oncol. Rep., 2014, 32(4), 1670-1680. doi: 10.3892/or.2014.3373 PMID: 25109257
- Dachineni, R.; Ai, G.; Kumar, D.R.; Sadhu, S.S.; Tummala, H.; Bhat, G.J. Cyclin A2 and CDK2 as Novel Targets of Aspirin and Salicylic Acid: A Potential Role in Cancer Prevention. Mol. Cancer Res., 2016, 14(3), 241-252. doi: 10.1158/1541-7786.MCR-15-0360 PMID: 26685215
- Ausina, P.; Branco, J.R.; Demaria, T.M.; Esteves, A.M.; Leandro, J.G.B.; Ochioni, A.C.; Mendonça, A.P.M.; Palhano, F.L.; Oliveira, M.F.; Abou-Kheir, W.; Sola-Penna, M.; Zancan, P. Acetylsalicylic acid and salicylic acid present anticancer properties against melanoma by promoting nitric oxide-dependent endoplasmic reticulum stress and apoptosis. Sci. Rep., 2020, 10(1), 19617. doi: 10.1038/s41598-020-76824-6 PMID: 33184378
- Tewari, D.; Majumdar, D.; Vallabhaneni, S.; Bera, A.K.; Bera, A.K. Aspirin induces cell death by directly modulating mitochondrial voltage-dependent anion channel (VDAC). Sci. Rep., 2017, 7(1), 45184. doi: 10.1038/srep45184 PMID: 28327594
- Yang, H.; Pellegrini, L.; Napolitano, A.; Giorgi, C.; Jube, S.; Preti, A.; Jennings, C.J.; De Marchis, F.; Flores, E.G.; Larson, D.; Pagano, I.; Tanji, M.; Powers, A.; Kanodia, S.; Gaudino, G.; Pastorino, S.; Pass, H.I.; Pinton, P.; Bianchi, M.E.; Carbone, M. Aspirin delays mesothelioma growth by inhibiting HMGB1-mediated tumor progression. Cell Death Dis., 2015, 6(6), e1786. doi: 10.1038/cddis.2015.153 PMID: 26068794
- Hou, J.; Karin, M.; Sun, B. Targeting cancer-promoting inflammation have anti-inflammatory therapies come of age? Nat. Rev. Clin. Oncol., 2021, 18(5), 261-279. doi: 10.1038/s41571-020-00459-9 PMID: 33469195
- Sankaranarayanan, R.; Kumar, D.R.; Altinoz, M.A.; Bhat, G.J. Mechanisms of colorectal cancer prevention by aspirina literature review and perspective on the role of COX-dependent and -independent pathways. Int. J. Mol. Sci., 2020, 21(23), 9018. doi: 10.3390/ijms21239018 PMID: 33260951
- Sankaranarayanan, R.; Kumar, D.R.; Patel, J.; Bhat, G.J. Do aspirin and flavonoids prevent cancer through a common mechanism involving hydroxybenzoic acids?The metabolite hypothesis. Molecules, 2020, 25(9), 2243. doi: 10.3390/molecules25092243 PMID: 32397626
- Dachineni, R.; Kumar, D.R. Salicylic acid metabolites and derivatives inhibit CDK activity: Novel insights into aspirins chemopreventive effects against colorectal cancer Inter. J. Oncol., 2017, 51, 1661-1673.
- Drew, D.A.; Cao, Y.; Chan, A.T. Aspirin and colorectal cancer: The promise of precision chemoprevention. Nat. Rev. Cancer, 2016, 16(3), 173-186. doi: 10.1038/nrc.2016.4 PMID: 26868177
- Ai, G.; Dachineni, R.; Muley, P.; Tummala, H.; Bhat, G.J. Aspirin and salicylic acid decrease c-Myc expression in cancer cells: A potential role in chemoprevention. Tumour Biol., 2016, 37(2), 1727-1738. doi: 10.1007/s13277-015-3959-0 PMID: 26314861
- Choi, B.H.; Chakraborty, G.; Baek, K.; Yoon, H.S. Aspirin-induced Bcl-2 translocation and its phosphorylation in the nucleus trigger apoptosis in breast cancer cells. Exp. Mol. Med., 2013, 45(10), e47. doi: 10.1038/emm.2013.91 PMID: 24113271
- Zhu, Y.; Wang, F.; Zhao, Y.; Wang, P.; Sang, S. Gastroprotective 6-gingerol aspirinate as a novel chemopreventive prodrug of aspirin for colon cancer. Sci. Rep., 2017, 7(1), 40119. doi: 10.1038/srep40119 PMID: 28067282
- Nakanishi, C.; Toi, M. Nuclear factor-κB inhibitors as sensitizers to anticancer drugs. Nat. Rev. Cancer, 2005, 5(4), 297-309. doi: 10.1038/nrc1588 PMID: 15803156
- Bos, C.L.; Kodach, L.L.; van den Brink, G.R.; Diks, S.H.; van Santen, M.M.; Richel, D.J. Effect of aspirin on the Wnt/b-catenin pathway is mediated via protein phosphatase 2A. Oncogene, 2006, 25, 6447-6456. doi: 10.1038/sj.onc.1209658 PMID: 16878161
- Ricchi, P.; Matola, T.D.; Ruggiero, G.; Zanzi, D.; Apicella, A.; di Palma, A.; Pensabene, M.; Pignata, S.; Zarrilli, R.; Acquaviva, A.M. Effect of non-steroidal anti-inflammatory drugs on colon carcinoma Caco-2 cell responsiveness to topoisomerase inhibitor drugs. Br. J. Cancer, 2002, 86(9), 1501-1509. doi: 10.1038/sj.bjc.6600289 PMID: 11986787
- Bilani, N.; Bahmad, H.; Abou-Kheir, W. Prostate cancer and aspirin use: Synopsis of the proposed molecular mechanisms. Front. Pharmacol., 2017, 8, 145. doi: 10.3389/fphar.2017.00145 PMID: 28377721
- Vad, N.M.; Yount, G.; Moridani, M.Y. Biochemical mechanism of acetylsalicylic acid (Aspirin) selective toxicity toward melanoma cell lines. Melanoma Res., 2008, 18(6), 386-399. doi: 10.1097/CMR.0b013e3283107df7 PMID: 18971789
- Chen, Z.; Luo, Y.; Fang, A.; Fan, C.; Zeng, C. Synthesis of novel SN38-aspirin prodrugs for the treatment of hepatocellular carcinoma. Turk. J. Chem., 2018, 42, 929-939.
- Jeankumar, V.U.; Chandran, M.; Samala, G.; Alvala, M.; Koushik, P.V.; Yogeeswari, P.; Salina, E.G.; Sriram, D. Development of 5-nitrothiazole derivatives: Identification of leads against both replicative and latent Mycobacterium tuberculosis. Bioorg. Med. Chem. Lett., 2012, 22(24), 7414-7417. doi: 10.1016/j.bmcl.2012.10.060 PMID: 23137434
- Sharma, H.; Patil, S.; Sanchez, T.W.; Neamati, N.; Schinazi, R.F.; Buolamwini, J.K. Synthesis, biological evaluation and 3D-QSAR studies of 3-keto salicylic acid chalcones and related amides as novel HIV-1 integrase inhibitors. Bioorg. Med. Chem., 2011, 19(6), 2030-2045. doi: 10.1016/j.bmc.2011.01.047 PMID: 21371895
- Mohamed-Ezzat, R.A.; Kariuki, B.M.; Srour, A.M. Synthesis, "crystal structure and in vitro anti-proliferative activity of 2-(4-acetyl-phen-yl)carbamoylphenyl acetate. Acta Cryst., 2023, E79, 999-1002.
- Monks, A.; Scudiero, D.; Skehan, P.; Shoemaker, R.; Paull, K.; Vistica, D.; Hose, C.; Langley, J.; Cronise, P.; Vaigro-Wolff, A.; Gray-Goodrich, M.; Campbell, H.; Mayo, J.; Boyd, M. Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines. J. Natl. Cancer Inst., 1991, 83(11), 757-766. doi: 10.1093/jnci/83.11.757 PMID: 2041050
- Shoemaker, R.H. The NCI60 human tumour cell line anticancer drug screen. Nat. Rev. Cancer, 2006, 6(10), 813-823. doi: 10.1038/nrc1951 PMID: 16990858
- Boyd, M.R.; Paull, K.D. Some practical considerations and applications of the national cancer institute in vitro anticancer drug discovery screen. Drug Dev. Res., 1995, 34(2), 91-109. doi: 10.1002/ddr.430340203
- NIH. DTP Developmental Therapeutics Program. 2022. Available From: https://dtp.cancer.gov/databases_tools/docs/compare/compare_methodology.htm
- Holbeck, S.L.; Collins, J.M.; Doroshow, J.H. Analysis of FDA-approved anti-cancer agents in the NCI60 panel of human tumor cell lines. Mol. Cancer Ther., 2010, 9(5), 1451-1460. doi: 10.1158/1535-7163.MCT-10-0106 PMID: 20442306
- Jaimes, M.; Inokuma, M.; McIntyre, C.; Mittar, D. Detection of apoptosis using the BD Annexin V FITC assay on the BD FACSVerseTM system. BD BiosciENCE, 2011. 2011.
- Gorczyca, W. Cytometric analyses to distinguish death processes. Endocr. Relat. Cancer, 1999, 6(1), 17-19. doi: 10.1677/erc.0.0060017 PMID: 10732781
- Miyashita, T.; Krajewski, S.; Krajewska, M.; Wang, H.G.; Lin, H.K.; Liebermann, D.A.; Hoffman, B.; Reed, J.C. Tumor suppressor p53 is a regulator of bcl-2 and bax gene expression in vitro and in vivo. Oncogene, 1994, 9(6), 1799-1805. PMID: 8183579
- Zimmermann, K.C.; Green, D.R. How cells die: Apoptosis pathways. J. Allergy Clin. Immunol., 2001, 108(4)(Suppl.), S99-S103. doi: 10.1067/mai.2001.117819 PMID: 11586274
- Elmore, S. Apoptosis: A review of programmed cell death. Toxicol. Pathol., 2007, 35(4), 495-516. doi: 10.1080/01926230701320337 PMID: 17562483
- Coskun, D.; Erkisa, M.; Ulukaya, E.; Coskun, M.F.; Ari, F. Novel 1-(7-ethoxy-1-benzofuran-2-yl) substituted chalcone derivatives: Synthesis, characterization and anticancer activity. Eur. J. Med. Chem., 2017, 136, 212-222. doi: 10.1016/j.ejmech.2017.05.017 PMID: 28494257
- Zhang, L.; Ren, W.; Wang, X.; Zhang, J.; Liu, J.; Zhao, L.; Zhang, X. Discovery of novel polycyclic spiro-fused carbocyclicoxindole-based anticancer agents. Eur. J. Med. Chem., 2017, 126, 1071-1082. doi: 10.1016/j.ejmech.2016.12.021 PMID: 28027532
- Labib, M.B.; Philoppes, J.N.; Lamie, P.F.; Ahmed, E.R. Azole-hydrazone derivatives: Design, synthesis, in vitro biological evaluation, dual EGFR/HER2 inhibitory activity, cell cycle analysis and molecular docking study as anticancer agents. Bioorg. Chem., 2018, 76, 67-80. doi: 10.1016/j.bioorg.2017.10.016 PMID: 29153588
- Van Raam, B.J.; Salvesen, G.S. Handbook of Proteolytic Enzymes, 3rd ed; Elsevier Ltd.: Amsterdam, 2013, pp. 2252-2255. doi: 10.1016/B978-0-12-382219-2.00506-8
- Ghorab, M.M.; Alsaid, M.S.; Samir, N.; Abdel-Latif, G.A.; Soliman, A.M.; Ragab, F.A.; Abou El Ella, D.A. Aromatase inhibitors and apoptotic inducers: Design, synthesis, anticancer activity and molecular modeling studies of novel phenothiazine derivatives carrying sulfonamide moiety as hybrid molecules. Eur. J. Med. Chem., 2017, 134, 304-315. doi: 10.1016/j.ejmech.2017.04.028 PMID: 28427017
- Bánhegyi, P.; Kéri, G.; Örfi, L.; Szekélyhidi, Z.; Waczek, F. Tricyclic benzo4,5thieno2,3-dpyrimidine-4-yl-amines, their salts, process for producing the compounds and their pharmaceutical use. U.S. Patent HU 2006000706 A2, 2009.
- Taguchi, T.; Kato, Y.; Baba, Y.; Nishimura, G.; Tanigaki, Y.; Horiuchi, C.; Mochimatsu, I.; Tsukuda, M. Protein levels of p21, p27, cyclin E and Bax predict sensitivity to cisplatin and paclitaxel in head and neck squamous cell carcinomas. Oncol. Rep., 2004, 11(2), 421-426. doi: 10.3892/or.11.2.421 PMID: 14719078
- Fridman, J.S.; Lowe, S.W. Control of apoptosis by p53. Oncogene, 2003, 22(56), 9030-9040. doi: 10.1038/sj.onc.1207116 PMID: 14663481
- Srour, A.M.; Ahmed, N.S.; Abd El-Karim, S.S.; Anwar, M.M.; El-Hallouty, S.M. Design, synthesis, biological evaluation, QSAR analysis and molecular modelling of new thiazol-benzimidazoles as EGFR inhibitors. Bioorg. Med. Chem., 2020, 28(18), 115657. doi: 10.1016/j.bmc.2020.115657 PMID: 32828424
- Brandão, P.; Loureiro, J.B.; Carvalho, S.; Hamadou, M.H.; Cravo, S.; Moreira, J.; Pereira, D.; Palmeira, A.; Pinto, M.; Saraiva, L.; Cidade, H. Targeting the MDM2-p53 protein-protein interaction with prenylchalcones: Synthesis of a small library and evaluation of potential antitumor activity. Eur. J. Med. Chem., 2018, 156, 711-721. doi: 10.1016/j.ejmech.2018.07.037 PMID: 30041135
- Griguolo, G.; Dieci, M.V.; Guarneri, V.; Conte, P. Olaparib for the treatment of breast cancer. Expert Rev. Anticancer Ther., 2018, 18(6), 519-530. doi: 10.1080/14737140.2018.1458613 PMID: 29582690
- Amin, K.M.; Anwar, M.M.; Syam, Y.M.; Khedr, M.A.; Kamel, M.M.; Kassem, E.M. A novel class of substituted spiro quinazoline-2,1′-cyclohexane derivatives as effective PPAR-1 inhibitors: Molecular modeling, synthesis, cytotoxic and enzyme assay evaluation. Acta Pol. Pharm., 2013, 70(4), 687-708. PMID: 23923393
- Livraghi, L.; Garber, J.E. PARP inhibitors in the management of breast cancer: Current data and future prospects. BMC Med., 2015, 13(1), 188-203. doi: 10.1186/s12916-015-0425-1 PMID: 26268938
- Srour, A.M.; Panda, S.S.; Mostafa, A.; Fayad, W.; El-Manawaty, M.A.; A F Soliman, A.; Moatasim, Y.; El Taweel, A.; Abdelhameed, M.F.; Bekheit, M.S.; Ali, M.A.; Girgis, A.S. Synthesis of aspirin-curcumin mimic conjugates of potential antitumor and anti-SARS-CoV-2 properties. Bioorg. Chem., 2021, 117, 105466. doi: 10.1016/j.bioorg.2021.105466 PMID: 34775204
补充文件
