Design and Synthesis of Aspirin-chalcone Mimic Conjugates as Potential Anticancer Agents


如何引用文章

全文:

详细

Background:Extensive research has been conducted on aspirin, a widely recognized NSAID medication, regarding its potential as an anticancer agent. Studies have revealed its ability to trigger cell death in different types of cancer cells.

Methods:A set of aspirin-chalcone mimic conjugates 5a-k and 6a-d utilizing the freshly prepared acid chloride of aspirin moiety has been designed and synthesized. To evaluate the newly developed compounds, the NCI 60- cell line panel was employed to assess their anti-proliferative properties. Subsequently, cell cycle analysis was conducted along with an examination of the compounds' impact on the levels of p53, Bax, Bcl-2, active caspase- 3, and their inhibition mechanism of tubulin polymerization.

Results:Derivative 6c displayed the best anticancer activity among the tested series while 6d was the best against breast cancer MDA-MB-468, therefore both of them were selected for the 5-dose stage, however, targeting MDA-MB-468, PI-flow cytometry of compound 6d proved the triggered cell growth arrest at the G1/S phase avoiding the mitotic cycle in MDA-MB-468 cells. Similarly, the upregulation of oncogenic parameters such as caspase-3, p53, and Bax/Bcl-2, along with the inhibition of PARP-1 enzyme level, was observed with compound 6d. This compound also exhibited a significant ability to induce apoptosis and disrupt the intracellular microtubule network through a promising activity as a tubulin polymerization inhibitor with IC50 = 1.065 ± 0.024 ng/ml. Furthermore, to examine the manner in which compound 6d binds to the active pocket of the tubulin polymerization enzyme, a molecular docking study was conducted.

Conclusion:The study indicated that compound 6d could be a powerful microtubule-destabilizing agent. Therefore, further research on 6d could be worthwhile.

作者简介

Reham Mohamed-Ezzat

Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute,, National Research Centre

Email: info@benthamscience.net

Aladdin Srour

Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute,, National Research Centre

编辑信件的主要联系方式.
Email: info@benthamscience.net

参考

  1. Haider, K.; Rahaman, S.; Yar, M.S.; Kamal, A. Tubulin inhibitors as novel anticancer agents: An overview on patents (2013-2018). Expert Opin. Ther. Pat., 2019, 29(8), 623-641. doi: 10.1080/13543776.2019.1648433 PMID: 31353978
  2. Peddi, P.F.; Hurvitz, S.A. Ado-trastuzumab emtansine (T-DM1) in human epidermal growth factor receptor 2 (HER2)-positive metastatic breast cancer: Latest evidence and clinical potential. Ther. Adv. Med. Oncol., 2014, 6(5), 202-209. doi: 10.1177/1758834014539183 PMID: 25342987
  3. Elgemeie, G.H.; Mohamed-Ezzat, R.A. New Strategies Targeting Cancer Metabolism, 1st ed; Elsevier: Amsterdam, 2022, pp. 1-619. doi: 10.1016/C2019-0-00369-X
  4. Singh, H.; Singh, J.V.; Gupta, M.K.; Saxena, A.K.; Sharma, S.; Nepali, K.; Bedi, P.M.S. Triazole tethered isatin-coumarin based molecular hybrids as novel antitubulin agents: Design, synthesis, biological investigation and docking studies. Bioorg. Med. Chem. Lett., 2017, 27(17), 3974-3979. doi: 10.1016/j.bmcl.2017.07.069 PMID: 28797799
  5. Gangjee, A.; Park, A. Cyclopentapyrimidines and substituted cyclopentapyrimidines as antitubulin and microtubule targeting agents, monocyclic pyrimidines as tubulin inhibitors, and pyrrolopyrimidnes as targeted antifolates and tubulin and multiple receptor tyrosine Kinase inhibition and antitumor agents. US20160304525A1, 2016.
  6. Kamal, A.; Sultana, F.; Bharathi, E.V. 3-arylethynyl substituted quinazolinone compounds. US 2013/0317221 A1; Council of Scientific & Industrial Research: New Delhi, 2013.
  7. Kamal, A.; Srikanth, Y.V.; Khan, M.N. Council of Scientific & Industrial Research; 2-anilinonicotinyl linked 2-amino benzothiazoleconugates and process for the prepration thereof. U.S. Pataent, 2013, 2013/0324734, A1.
  8. Kamal, A.; Mallareddy, A.; Suresh, P. Council of Scientific & Industrial Research (IN); Benzothiazole hybrids useful as anticancer agents and process for the preparation thereof. U.S. Patent 8,921,552 B2, 2014.
  9. Kamal, A.; Reddy, A.M.; Paidakula, S. Council of Scientific & Industrial Research (IN); Amidobenzothiazoles and process For the preparation thereof. U.S. Patent 9,102,638 B2, 2015.
  10. Cimino, P.; Huang, L.; Du, L.; Wu, Y.; Bishop, J.; Dalsing-Hernandez, J.; Kotlarczyk, K.; Gonzales, P.; Carew, J.; Nawrocki, S.; Jordan, M.; Wilson, L.; Lloyd, G.; Wirsching, H.G. Plinabulin, an inhibitor of tubulin polymerization, targets KRAS signaling through disruption of endosomal recycling. Biomed. Rep., 2019, 10(4), 218-224. doi: 10.3892/br.2019.1196 PMID: 30972217
  11. Nepali, K.; Ojha, R.; Sharma, S.; Bedi, P.; Dhar, K. Tubulin inhibitors: A patent survey. Recent Patents Anticancer Drug Discov., 2014, 9(2), 176-220. doi: 10.2174/15748928113089990042 PMID: 23746164
  12. Negi, A.; Prakasham, A. Anticancer and tubulin polymerisation inhibition activity of benzyldeneindanones and process of preparing the same. U.S. Patent 2013/0079396 A1, 2013.
  13. Alfonso, L.; Ai, G.; Spitale, R.C.; Bhat, G.J. Molecular targets of aspirin and cancer prevention. Br. J. Cancer, 2014, 111(1), 61-67. doi: 10.1038/bjc.2014.271 PMID: 24874482
  14. Celebioglu, H.U. Effects of potential synbiotic interaction between Lactobacillus rhamnosus GG and salicylic acid on human colon and prostate cancer cells. Arch. Microbiol., 2021, 203(3), 1221-1229. doi: 10.1007/s00203-021-02200-1 PMID: 33620523
  15. Xia, H.; Lee, K.W.; Chen, J.; Kong, S.N.; Sekar, K.; Deivasigamani, A.; Seshachalam, V.P.; Goh, B.K.P.; Ooi, L.L.; Hui, K.M. Simultaneous silencing of ACSL4 and induction of GADD45B in hepatocellular carcinoma cells amplifies the synergistic therapeutic effect of aspirin and sorafenib. Cell Death Discov., 2017, 3(1), 17058. doi: 10.1038/cddiscovery.2017.58 PMID: 28900541
  16. Claudius, A.K.; Kankipati, C.S.; Kilari, R.S.; Hassan, S.; Guest, K.; Russel, S.T.; Perry, C.J.; Stark, L.A.; Nicholl, I.D. Identification of aspirin analogues that repress NF-κB signalling and demonstrate anti-proliferative activity towards colorectal cancer in vitro and in vivo. Oncol. Rep., 2014, 32(4), 1670-1680. doi: 10.3892/or.2014.3373 PMID: 25109257
  17. Dachineni, R.; Ai, G.; Kumar, D.R.; Sadhu, S.S.; Tummala, H.; Bhat, G.J. Cyclin A2 and CDK2 as Novel Targets of Aspirin and Salicylic Acid: A Potential Role in Cancer Prevention. Mol. Cancer Res., 2016, 14(3), 241-252. doi: 10.1158/1541-7786.MCR-15-0360 PMID: 26685215
  18. Ausina, P.; Branco, J.R.; Demaria, T.M.; Esteves, A.M.; Leandro, J.G.B.; Ochioni, A.C.; Mendonça, A.P.M.; Palhano, F.L.; Oliveira, M.F.; Abou-Kheir, W.; Sola-Penna, M.; Zancan, P. Acetylsalicylic acid and salicylic acid present anticancer properties against melanoma by promoting nitric oxide-dependent endoplasmic reticulum stress and apoptosis. Sci. Rep., 2020, 10(1), 19617. doi: 10.1038/s41598-020-76824-6 PMID: 33184378
  19. Tewari, D.; Majumdar, D.; Vallabhaneni, S.; Bera, A.K.; Bera, A.K. Aspirin induces cell death by directly modulating mitochondrial voltage-dependent anion channel (VDAC). Sci. Rep., 2017, 7(1), 45184. doi: 10.1038/srep45184 PMID: 28327594
  20. Yang, H.; Pellegrini, L.; Napolitano, A.; Giorgi, C.; Jube, S.; Preti, A.; Jennings, C.J.; De Marchis, F.; Flores, E.G.; Larson, D.; Pagano, I.; Tanji, M.; Powers, A.; Kanodia, S.; Gaudino, G.; Pastorino, S.; Pass, H.I.; Pinton, P.; Bianchi, M.E.; Carbone, M. Aspirin delays mesothelioma growth by inhibiting HMGB1-mediated tumor progression. Cell Death Dis., 2015, 6(6), e1786. doi: 10.1038/cddis.2015.153 PMID: 26068794
  21. Hou, J.; Karin, M.; Sun, B. Targeting cancer-promoting inflammation — have anti-inflammatory therapies come of age? Nat. Rev. Clin. Oncol., 2021, 18(5), 261-279. doi: 10.1038/s41571-020-00459-9 PMID: 33469195
  22. Sankaranarayanan, R.; Kumar, D.R.; Altinoz, M.A.; Bhat, G.J. Mechanisms of colorectal cancer prevention by aspirin—a literature review and perspective on the role of COX-dependent and -independent pathways. Int. J. Mol. Sci., 2020, 21(23), 9018. doi: 10.3390/ijms21239018 PMID: 33260951
  23. Sankaranarayanan, R.; Kumar, D.R.; Patel, J.; Bhat, G.J. Do aspirin and flavonoids prevent cancer through a common mechanism involving hydroxybenzoic acids?—The metabolite hypothesis. Molecules, 2020, 25(9), 2243. doi: 10.3390/molecules25092243 PMID: 32397626
  24. Dachineni, R.; Kumar, D.R. Salicylic acid metabolites and derivatives inhibit CDK activity: Novel insights into aspirin’s chemopreventive effects against colorectal cancer Inter. J. Oncol., 2017, 51, 1661-1673.
  25. Drew, D.A.; Cao, Y.; Chan, A.T. Aspirin and colorectal cancer: The promise of precision chemoprevention. Nat. Rev. Cancer, 2016, 16(3), 173-186. doi: 10.1038/nrc.2016.4 PMID: 26868177
  26. Ai, G.; Dachineni, R.; Muley, P.; Tummala, H.; Bhat, G.J. Aspirin and salicylic acid decrease c-Myc expression in cancer cells: A potential role in chemoprevention. Tumour Biol., 2016, 37(2), 1727-1738. doi: 10.1007/s13277-015-3959-0 PMID: 26314861
  27. Choi, B.H.; Chakraborty, G.; Baek, K.; Yoon, H.S. Aspirin-induced Bcl-2 translocation and its phosphorylation in the nucleus trigger apoptosis in breast cancer cells. Exp. Mol. Med., 2013, 45(10), e47. doi: 10.1038/emm.2013.91 PMID: 24113271
  28. Zhu, Y.; Wang, F.; Zhao, Y.; Wang, P.; Sang, S. Gastroprotective 6-gingerol aspirinate as a novel chemopreventive prodrug of aspirin for colon cancer. Sci. Rep., 2017, 7(1), 40119. doi: 10.1038/srep40119 PMID: 28067282
  29. Nakanishi, C.; Toi, M. Nuclear factor-κB inhibitors as sensitizers to anticancer drugs. Nat. Rev. Cancer, 2005, 5(4), 297-309. doi: 10.1038/nrc1588 PMID: 15803156
  30. Bos, C.L.; Kodach, L.L.; van den Brink, G.R.; Diks, S.H.; van Santen, M.M.; Richel, D.J. Effect of aspirin on the Wnt/b-catenin pathway is mediated via protein phosphatase 2A. Oncogene, 2006, 25, 6447-6456. doi: 10.1038/sj.onc.1209658 PMID: 16878161
  31. Ricchi, P.; Matola, T.D.; Ruggiero, G.; Zanzi, D.; Apicella, A.; di Palma, A.; Pensabene, M.; Pignata, S.; Zarrilli, R.; Acquaviva, A.M. Effect of non-steroidal anti-inflammatory drugs on colon carcinoma Caco-2 cell responsiveness to topoisomerase inhibitor drugs. Br. J. Cancer, 2002, 86(9), 1501-1509. doi: 10.1038/sj.bjc.6600289 PMID: 11986787
  32. Bilani, N.; Bahmad, H.; Abou-Kheir, W. Prostate cancer and aspirin use: Synopsis of the proposed molecular mechanisms. Front. Pharmacol., 2017, 8, 145. doi: 10.3389/fphar.2017.00145 PMID: 28377721
  33. Vad, N.M.; Yount, G.; Moridani, M.Y. Biochemical mechanism of acetylsalicylic acid (Aspirin) selective toxicity toward melanoma cell lines. Melanoma Res., 2008, 18(6), 386-399. doi: 10.1097/CMR.0b013e3283107df7 PMID: 18971789
  34. Chen, Z.; Luo, Y.; Fang, A.; Fan, C.; Zeng, C. Synthesis of novel SN38-aspirin prodrugs for the treatment of hepatocellular carcinoma. Turk. J. Chem., 2018, 42, 929-939.
  35. Jeankumar, V.U.; Chandran, M.; Samala, G.; Alvala, M.; Koushik, P.V.; Yogeeswari, P.; Salina, E.G.; Sriram, D. Development of 5-nitrothiazole derivatives: Identification of leads against both replicative and latent Mycobacterium tuberculosis. Bioorg. Med. Chem. Lett., 2012, 22(24), 7414-7417. doi: 10.1016/j.bmcl.2012.10.060 PMID: 23137434
  36. Sharma, H.; Patil, S.; Sanchez, T.W.; Neamati, N.; Schinazi, R.F.; Buolamwini, J.K. Synthesis, biological evaluation and 3D-QSAR studies of 3-keto salicylic acid chalcones and related amides as novel HIV-1 integrase inhibitors. Bioorg. Med. Chem., 2011, 19(6), 2030-2045. doi: 10.1016/j.bmc.2011.01.047 PMID: 21371895
  37. Mohamed-Ezzat, R.A.; Kariuki, B.M.; Srour, A.M. Synthesis, "crystal structure and in vitro anti-proliferative activity of 2-(4-acetyl-phen-yl)carbamoylphenyl acetate. Acta Cryst., 2023, E79, 999-1002.
  38. Monks, A.; Scudiero, D.; Skehan, P.; Shoemaker, R.; Paull, K.; Vistica, D.; Hose, C.; Langley, J.; Cronise, P.; Vaigro-Wolff, A.; Gray-Goodrich, M.; Campbell, H.; Mayo, J.; Boyd, M. Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines. J. Natl. Cancer Inst., 1991, 83(11), 757-766. doi: 10.1093/jnci/83.11.757 PMID: 2041050
  39. Shoemaker, R.H. The NCI60 human tumour cell line anticancer drug screen. Nat. Rev. Cancer, 2006, 6(10), 813-823. doi: 10.1038/nrc1951 PMID: 16990858
  40. Boyd, M.R.; Paull, K.D. Some practical considerations and applications of the national cancer institute in vitro anticancer drug discovery screen. Drug Dev. Res., 1995, 34(2), 91-109. doi: 10.1002/ddr.430340203
  41. NIH. DTP Developmental Therapeutics Program. 2022. Available From: https://dtp.cancer.gov/databases_tools/docs/compare/compare_methodology.htm
  42. Holbeck, S.L.; Collins, J.M.; Doroshow, J.H. Analysis of FDA-approved anti-cancer agents in the NCI60 panel of human tumor cell lines. Mol. Cancer Ther., 2010, 9(5), 1451-1460. doi: 10.1158/1535-7163.MCT-10-0106 PMID: 20442306
  43. Jaimes, M.; Inokuma, M.; McIntyre, C.; Mittar, D. Detection of apoptosis using the BD Annexin V FITC assay on the BD FACSVerseTM system. BD BiosciENCE, 2011. 2011.
  44. Gorczyca, W. Cytometric analyses to distinguish death processes. Endocr. Relat. Cancer, 1999, 6(1), 17-19. doi: 10.1677/erc.0.0060017 PMID: 10732781
  45. Miyashita, T.; Krajewski, S.; Krajewska, M.; Wang, H.G.; Lin, H.K.; Liebermann, D.A.; Hoffman, B.; Reed, J.C. Tumor suppressor p53 is a regulator of bcl-2 and bax gene expression in vitro and in vivo. Oncogene, 1994, 9(6), 1799-1805. PMID: 8183579
  46. Zimmermann, K.C.; Green, D.R. How cells die: Apoptosis pathways. J. Allergy Clin. Immunol., 2001, 108(4)(Suppl.), S99-S103. doi: 10.1067/mai.2001.117819 PMID: 11586274
  47. Elmore, S. Apoptosis: A review of programmed cell death. Toxicol. Pathol., 2007, 35(4), 495-516. doi: 10.1080/01926230701320337 PMID: 17562483
  48. Coskun, D.; Erkisa, M.; Ulukaya, E.; Coskun, M.F.; Ari, F. Novel 1-(7-ethoxy-1-benzofuran-2-yl) substituted chalcone derivatives: Synthesis, characterization and anticancer activity. Eur. J. Med. Chem., 2017, 136, 212-222. doi: 10.1016/j.ejmech.2017.05.017 PMID: 28494257
  49. Zhang, L.; Ren, W.; Wang, X.; Zhang, J.; Liu, J.; Zhao, L.; Zhang, X. Discovery of novel polycyclic spiro-fused carbocyclicoxindole-based anticancer agents. Eur. J. Med. Chem., 2017, 126, 1071-1082. doi: 10.1016/j.ejmech.2016.12.021 PMID: 28027532
  50. Labib, M.B.; Philoppes, J.N.; Lamie, P.F.; Ahmed, E.R. Azole-hydrazone derivatives: Design, synthesis, in vitro biological evaluation, dual EGFR/HER2 inhibitory activity, cell cycle analysis and molecular docking study as anticancer agents. Bioorg. Chem., 2018, 76, 67-80. doi: 10.1016/j.bioorg.2017.10.016 PMID: 29153588
  51. Van Raam, B.J.; Salvesen, G.S. Handbook of Proteolytic Enzymes, 3rd ed; Elsevier Ltd.: Amsterdam, 2013, pp. 2252-2255. doi: 10.1016/B978-0-12-382219-2.00506-8
  52. Ghorab, M.M.; Alsaid, M.S.; Samir, N.; Abdel-Latif, G.A.; Soliman, A.M.; Ragab, F.A.; Abou El Ella, D.A. Aromatase inhibitors and apoptotic inducers: Design, synthesis, anticancer activity and molecular modeling studies of novel phenothiazine derivatives carrying sulfonamide moiety as hybrid molecules. Eur. J. Med. Chem., 2017, 134, 304-315. doi: 10.1016/j.ejmech.2017.04.028 PMID: 28427017
  53. Bánhegyi, P.; Kéri, G.; Örfi, L.; Szekélyhidi, Z.; Waczek, F. Tricyclic benzo4,5thieno2,3-dpyrimidine-4-yl-amines, their salts, process for producing the compounds and their pharmaceutical use. U.S. Patent HU 2006000706 A2, 2009.
  54. Taguchi, T.; Kato, Y.; Baba, Y.; Nishimura, G.; Tanigaki, Y.; Horiuchi, C.; Mochimatsu, I.; Tsukuda, M. Protein levels of p21, p27, cyclin E and Bax predict sensitivity to cisplatin and paclitaxel in head and neck squamous cell carcinomas. Oncol. Rep., 2004, 11(2), 421-426. doi: 10.3892/or.11.2.421 PMID: 14719078
  55. Fridman, J.S.; Lowe, S.W. Control of apoptosis by p53. Oncogene, 2003, 22(56), 9030-9040. doi: 10.1038/sj.onc.1207116 PMID: 14663481
  56. Srour, A.M.; Ahmed, N.S.; Abd El-Karim, S.S.; Anwar, M.M.; El-Hallouty, S.M. Design, synthesis, biological evaluation, QSAR analysis and molecular modelling of new thiazol-benzimidazoles as EGFR inhibitors. Bioorg. Med. Chem., 2020, 28(18), 115657. doi: 10.1016/j.bmc.2020.115657 PMID: 32828424
  57. Brandão, P.; Loureiro, J.B.; Carvalho, S.; Hamadou, M.H.; Cravo, S.; Moreira, J.; Pereira, D.; Palmeira, A.; Pinto, M.; Saraiva, L.; Cidade, H. Targeting the MDM2-p53 protein-protein interaction with prenylchalcones: Synthesis of a small library and evaluation of potential antitumor activity. Eur. J. Med. Chem., 2018, 156, 711-721. doi: 10.1016/j.ejmech.2018.07.037 PMID: 30041135
  58. Griguolo, G.; Dieci, M.V.; Guarneri, V.; Conte, P. Olaparib for the treatment of breast cancer. Expert Rev. Anticancer Ther., 2018, 18(6), 519-530. doi: 10.1080/14737140.2018.1458613 PMID: 29582690
  59. Amin, K.M.; Anwar, M.M.; Syam, Y.M.; Khedr, M.A.; Kamel, M.M.; Kassem, E.M. A novel class of substituted spiro quinazoline-2,1′-cyclohexane derivatives as effective PPAR-1 inhibitors: Molecular modeling, synthesis, cytotoxic and enzyme assay evaluation. Acta Pol. Pharm., 2013, 70(4), 687-708. PMID: 23923393
  60. Livraghi, L.; Garber, J.E. PARP inhibitors in the management of breast cancer: Current data and future prospects. BMC Med., 2015, 13(1), 188-203. doi: 10.1186/s12916-015-0425-1 PMID: 26268938
  61. Srour, A.M.; Panda, S.S.; Mostafa, A.; Fayad, W.; El-Manawaty, M.A.; A F Soliman, A.; Moatasim, Y.; El Taweel, A.; Abdelhameed, M.F.; Bekheit, M.S.; Ali, M.A.; Girgis, A.S. Synthesis of aspirin-curcumin mimic conjugates of potential antitumor and anti-SARS-CoV-2 properties. Bioorg. Chem., 2021, 117, 105466. doi: 10.1016/j.bioorg.2021.105466 PMID: 34775204

补充文件

附件文件
动作
1. JATS XML

版权所有 © Bentham Science Publishers, 2024